Note
Go to the end to download the full example code.
2.2.6 Diffusion on a Cartesian grid
This example shows how to solve the diffusion equation on a Cartesian grid.

0%| | 0/1.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/1.0 [00:00<?, ?it/s]
0%| | 0/1.0 [00:03<?, ?it/s]
1%| | 0.01/1.0 [00:03<04:58, 301.26s/it]
49%|████▉ | 0.49/1.0 [00:03<00:03, 6.15s/it]
49%|████▉ | 0.49/1.0 [00:03<00:03, 6.15s/it]
100%|██████████| 1.0/1.0 [00:03<00:00, 3.01s/it]
100%|██████████| 1.0/1.0 [00:03<00:00, 3.01s/it]
from pde import CartesianGrid, DiffusionPDE, ScalarField
grid = CartesianGrid([[-1, 1], [0, 2]], [30, 16]) # generate grid
state = ScalarField(grid) # generate initial condition
state.insert([0, 1], 1)
eq = DiffusionPDE(0.1) # define the pde
result = eq.solve(state, t_range=1, dt=0.01)
result.plot(cmap="magma")
Total running time of the script: (0 minutes 3.075 seconds)