Note
Go to the end to download the full example code.
2.4.6 Custom noise
This example solves a diffusion equation with a custom noise.
0%| | 0/10.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/10.0 [00:00<?, ?it/s]
0%| | 0/10.0 [00:03<?, ?it/s]
0%| | 0.01/10.0 [00:04<1:17:25, 465.05s/it]
0%| | 0.02/10.0 [00:04<38:40, 232.54s/it]
4%|▍ | 0.38/10.0 [00:04<01:57, 12.24s/it]
89%|████████▉ | 8.94/10.0 [00:04<00:00, 1.91it/s]
89%|████████▉ | 8.94/10.0 [00:04<00:00, 1.90it/s]
100%|██████████| 10.0/10.0 [00:04<00:00, 2.13it/s]
100%|██████████| 10.0/10.0 [00:04<00:00, 2.13it/s]
import numpy as np
from pde import DiffusionPDE, ScalarField, UnitGrid
from pde.tools.numba import jit
class DiffusionCustomNoisePDE(DiffusionPDE):
"""Diffusion PDE with custom noise implementations."""
def noise_realization(self, state, t):
"""Numpy implementation of spatially-dependent noise."""
noise_field = ScalarField.random_uniform(state.grid, -self.noise, self.noise)
return state.grid.cell_coords[..., 0] * noise_field
def _make_noise_realization_numba(self, state):
"""Numba implementation of spatially-dependent noise."""
noise = float(self.noise)
x_values = state.grid.cell_coords[..., 0]
@jit
def noise_realization(state_data, t):
return x_values * np.random.uniform(-noise, noise, size=state_data.shape)
return noise_realization
eq = DiffusionCustomNoisePDE(diffusivity=0.1, noise=0.1) # define the pde
state = ScalarField.random_uniform(UnitGrid([64, 64])) # generate initial condition
result = eq.solve(state, t_range=10, dt=0.01)
result.plot()
Total running time of the script: (0 minutes 4.768 seconds)