Source code for pde.pdes.base

"""Base class for defining partial differential equations.

.. codeauthor:: David Zwicker <david.zwicker@ds.mpg.de>
"""

from __future__ import annotations

import copy
import logging
from abc import ABCMeta, abstractmethod
from typing import TYPE_CHECKING, Any, Callable, Literal, TypeVar

import numpy as np

from ..fields import FieldCollection
from ..fields.base import FieldBase
from ..fields.datafield_base import DataFieldBase
from ..tools.numba import jit
from ..tools.typing import ArrayLike, StepperHook
from ..trackers.base import TrackerCollectionDataType

if TYPE_CHECKING:
    from ..solvers.base import SolverBase
    from ..solvers.controller import TRangeType


TState = TypeVar("TState", FieldCollection, DataFieldBase)


[docs] class PDEBase(metaclass=ABCMeta): """Base class for defining partial differential equations (PDEs) Custom PDEs can be implemented by subclassing :class:`PDEBase` to specify the evolution rate. In the simple case of deterministic PDEs, the methods :meth:`PDEBase.evolution_rate` and :meth:`PDEBase._make_pde_rhs_numba` need to be overwritten for supporting the `numpy` and `numba` backend, respectively. """ diagnostics: dict[str, Any] """dict: Diagnostic information (available after the PDE has been solved)""" check_implementation: bool = True """bool: Flag determining whether numba-compiled functions should be checked against their numpy counter-parts. This can help with implementing a correct compiled version for a PDE class.""" cache_rhs: bool = False """bool: Flag indicating whether the right hand side of the equation should be cached. If True, the same implementation is used in subsequent calls to `solve`. Note that the cache is only invalidated when the grid of the underlying state changes. Consequently, the simulation might lead to wrong results if the parameters of the PDE are changed after the first call. This option is thus disabled by default and should be used with care.""" explicit_time_dependence: bool | None = None """bool: Flag indicating whether the right hand side of the PDE has an explicit time dependence.""" complex_valued: bool = False """bool: Flag indicating whether the right hand side is a complex-valued PDE, which requires all involved variables to have complex data type.""" def __init__(self, *, noise: ArrayLike = 0, rng: np.random.Generator | None = None): """ Args: noise (float or :class:`~numpy.ndarray`): Variance of the additive Gaussian white noise that is supported for all PDEs by default. If set to zero, a deterministic partial differential equation will be solved. Different noise magnitudes can be supplied for each field in coupled PDEs. rng (:class:`~numpy.random.Generator`): Random number generator (default: :func:`~numpy.random.default_rng()`) used for stochastic simulations. Note that this random number generator is only used for numpy function, while compiled numba code uses the random number generator of numba. Moreover, in simulations using multiprocessing, setting the same generator in all processes might yield unintended correlations in the simulation results. Note: If more complicated noise structures are required, the methods :meth:`PDEBase.noise_realization` and :meth:`PDEBase._make_noise_realization_numba` need to be overwritten for the `numpy` and `numba` backend, respectively. """ self._logger = logging.getLogger(self.__class__.__name__) self._cache: dict[str, Any] = {} self.diagnostics = {} self.noise = np.asanyarray(noise) self.rng = rng if rng is not None else np.random.default_rng() def __getstate__(self) -> dict[str, Any]: state = self.__dict__.copy() del state["_logger"] del state["_cache"] return state def __setstate__(self, state): self.__dict__.update(state) self._logger = logging.getLogger(self.__class__.__name__) self._cache = {} @property def is_sde(self) -> bool: """bool: flag indicating whether this is a stochastic differential equation The :class:`BasePDF` class supports additive Gaussian white noise, whose magnitude is controlled by the `noise` property. In this case, `is_sde` is `True` if `self.noise != 0`. """ # check for self.noise, in case __init__ is not called in a subclass return hasattr(self, "noise") and np.any(self.noise != 0) # type: ignore
[docs] def make_post_step_hook(self, state: FieldBase) -> tuple[StepperHook, Any]: """Returns a function that is called after each step. This function receives three arugments: the current state as a numpy array, the current time point, and a numpy array that can store data for the hook function. The function can modify the state data in place. If the function makes use of the data feature, it must replace the data in place. The hook can also be used to abort the simulation when a user-defined condition is met by raising `StopIteration`. Note that this interrupts the inner-most loop, so that some final information might be still reflect the values they assumed at the last tracker interrupt. Additional information (beside the current state) should be returned by the 1post_step_data1. Example: The following code provides an example that creates a hook function that limits the state to a maximal value of 1 and keeps track of the total correction that is applied. This is achieved using `post_step_data`, which is initialized with the second value (0) returned by the method and incremented each time the hook is called. .. code-block:: python def make_post_step_hook(self, state): def post_step_hook(state_data, t, post_step_data): i = state_data > 1 # get violating entries overshoot = (state_data[i] - 1).sum() # get total correction state_data[i] = 1 # limit data entries post_step_data += overshoot # accumulate total correction return post_step_hook, 0. # hook function and initial value Args: state (:class:`~pde.fields.FieldBase`): An example for the state from which the grid and other information can be extracted Returns: tuple: The first entry is the function that implements the hook. The second entry gives the initial data that is used as auxiallary data in the hook. This can be `None` if no data is used. """ raise NotImplementedError
[docs] @abstractmethod def evolution_rate(self, state: TState, t: float = 0) -> TState: """Evaluate the right hand side of the PDE. Args: state (:class:`~pde.fields.base.FieldBase`): The field at the current time point t (float): The current time point Returns: :class:`~pde.fields.base.FieldBase`: Field describing the evolution rate of the PDE """
def _make_pde_rhs_numba( self, state: FieldBase, **kwargs ) -> Callable[[np.ndarray, float], np.ndarray]: """Create a compiled function for evaluating the right hand side.""" raise NotImplementedError("No backend `numba`")
[docs] def check_rhs_consistency( self, state: TState, t: float = 0, *, tol: float = 1e-7, rhs_numba: Callable | None = None, **kwargs, ) -> None: """Check the numba compiled right hand side versus the numpy variant. Args: state (:class:`~pde.fields.FieldBase`): The state for which the evolution rates should be compared t (float): The associated time point tol (float): Acceptance tolerance. The check passes if the evolution rates differ by less then this value rhs_numba (callable): The implementation of the numba variant that is to be checked. If omitted, an implementation is obtained by calling :meth:`PDEBase._make_pde_rhs_numba_cached`. """ # obtain evolution rate from the numpy implementation res_numpy = self.evolution_rate(state.copy(), t, **kwargs).data if not np.all(np.isfinite(res_numpy)): self._logger.warning( "The numpy implementation of the PDE returned non-finite values." ) # obtain evolution rate from the numba implementation if rhs_numba is None: rhs_numba = self._make_pde_rhs_numba_cached(state, **kwargs) test_state = state.copy() res_numba = rhs_numba(test_state.data, t) if not np.all(np.isfinite(res_numba)): self._logger.warning( "The numba implementation of the PDE returned non-finite values." ) # compare the two implementations msg = ( "The numba compiled implementation of the right hand side is not " "compatible with the numpy implementation. This check can be disabled " "by setting the class attribute `check_implementation` to `False`." ) np.testing.assert_allclose( res_numba, res_numpy, err_msg=msg, rtol=tol, atol=tol, equal_nan=True )
def _make_pde_rhs_numba_cached( self, state: TState, **kwargs ) -> Callable[[np.ndarray, float], np.ndarray]: """Create a compiled function for evaluating the right hand side. This method implements caching and checking of the actual method, which is defined by overwriting the method `_make_pde_rhs_numba`. Args: state (:class:`~pde.fields.FieldBase`): An example for the state from which the grid and other information can be extracted. Returns: callable: Function determining the right hand side of the PDE """ check_implementation = self.check_implementation if self.cache_rhs: # support caching of the right hand side grid_state = state.grid.state_serialized if self._cache.get("pde_rhs_numba_state") == grid_state: # cache was successful self._logger.info("Use compiled rhs from cache") check_implementation = False # skip checking to save time else: # cache was not hit self._logger.info("Write compiled rhs to cache") self._cache["pde_rhs_numba_state"] = grid_state self._cache["pde_rhs_numba"] = self._make_pde_rhs_numba(state, **kwargs) rhs = self._cache["pde_rhs_numba"] else: # caching was skipped rhs = self._make_pde_rhs_numba(state, **kwargs) if rhs is None: raise RuntimeError("`_make_pde_rhs_numba` returned None") if check_implementation: self.check_rhs_consistency(state, rhs_numba=rhs, **kwargs) return rhs # type: ignore
[docs] def make_pde_rhs( self, state: TState, backend: Literal["auto", "numpy", "numba"] = "auto", **kwargs, ) -> Callable[[np.ndarray, float], np.ndarray]: """Return a function for evaluating the right hand side of the PDE. Args: state (:class:`~pde.fields.FieldBase`): An example for the state from which the grid and other information can be extracted. backend (str): Determines how the function is created. Accepted values are 'numpy' and 'numba'. Alternatively, 'auto' lets the code pick the optimal backend. Returns: callable: Function determining the right hand side of the PDE """ if backend == "auto": try: rhs = self._make_pde_rhs_numba_cached(state, **kwargs) except NotImplementedError: backend = "numpy" else: rhs._backend = "numba" # type: ignore if backend == "numpy": # this will be called if backend was chosen explicitely or if it was set to # "auto" and the numba compilation is not available state = state.copy() # save this exact state for the closure def evolution_rate_numpy(state_data: np.ndarray, t: float) -> np.ndarray: """Evaluate the rhs given only a state without the grid.""" state.data = state_data return self.evolution_rate(state, t, **kwargs).data rhs = evolution_rate_numpy rhs._backend = "numpy" # type: ignore elif backend == "numba": # this will not be called if backend is "auto" and numba compilation worked rhs = self._make_pde_rhs_numba_cached(state, **kwargs) rhs._backend = "numba" # type: ignore elif backend != "auto": raise ValueError( f"Unknown backend `{backend}`. Possible values are ['auto', 'numpy', " "'numba']" ) return rhs
[docs] def noise_realization( self, state: TState, t: float = 0, *, label: str = "Noise realization" ) -> TState: """Returns a realization for the noise. Args: state (:class:`~pde.fields.ScalarField`): The scalar field describing the concentration distribution t (float): The current time point label (str): The label for the returned field Returns: :class:`~pde.fields.ScalarField`: Scalar field describing the evolution rate of the PDE """ result: TState if self.is_sde: if isinstance(state, FieldCollection): # multiple fields with potentially different noise strengths result = state.copy(label=label) noises_var = np.broadcast_to(self.noise, len(state)) for field, noise_var in zip(result, noises_var): if noise_var == 0: field.data.fill(0) else: field.data = field.random_normal( # type: ignore state.grid, std=np.sqrt(noise_var), scaling="physical", dtype=state.dtype, rng=self.rng, ) elif isinstance(state, DataFieldBase): # a single field noise_var = self.noise result = state.random_normal( state.grid, std=np.sqrt(self.noise), scaling="physical", label=label, dtype=state.dtype, rng=self.rng, ) else: raise TypeError else: # no noise result = state.copy(label=label) result.data[:] = 0 return result
def _make_noise_realization_numba( self, state: TState, **kwargs ) -> Callable[[np.ndarray, float], np.ndarray]: """Return a function for evaluating the noise term of the PDE. Args: state (:class:`~pde.fields.FieldBase`): An example for the state from which the grid and other information can be extracted Returns: Function determining the right hand side of the PDE """ if self.is_sde: data_shape: tuple[int, ...] = state.data.shape noise_var: float cell_volume: Callable[[int], float] = state.grid.make_cell_volume_compiled( flat_index=True ) if state.dtype != float: raise TypeError("Noise is only supported for float types") if isinstance(state, FieldCollection): # different noise strengths, assuming one for each field noises_var: np.ndarray = np.empty(data_shape[0]) for n, noise_var in enumerate(np.broadcast_to(self.noise, len(state))): noises_var[state._slices[n]] = noise_var @jit def noise_realization(state_data: np.ndarray, t: float) -> np.ndarray: """Helper function returning a noise realization.""" out = np.empty(data_shape) for n in range(len(state_data)): if noises_var[n] == 0: out[n].fill(0) else: for i in range(state_data[n].size): scale = noises_var[n] / cell_volume(i) out[n].flat[i] = np.sqrt(scale) * np.random.randn() return out else: # a single noise value is given for all fields noise_var = float(self.noise) @jit def noise_realization(state_data: np.ndarray, t: float) -> np.ndarray: """Helper function returning a noise realization.""" out = np.empty(state_data.shape) for i in range(state_data.size): scale = noise_var / cell_volume(i) out.flat[i] = np.sqrt(scale) * np.random.randn() return out else: @jit def noise_realization(state_data: np.ndarray, t: float) -> None: """Helper function returning a noise realization.""" return None return noise_realization # type: ignore def _make_sde_rhs_numba( self, state: TState, **kwargs ) -> Callable[[np.ndarray, float], tuple[np.ndarray, np.ndarray]]: """Return a function for evaluating the noise term of the PDE. Args: state (:class:`~pde.fields.FieldBase`): An example for the state from which the grid and other information can be extracted Returns: Function determining the right hand side of the PDE """ evolution_rate = self._make_pde_rhs_numba_cached(state, **kwargs) noise_realization = self._make_noise_realization_numba(state, **kwargs) @jit def sde_rhs(state_data: np.ndarray, t: float) -> tuple[np.ndarray, np.ndarray]: """Compiled helper function returning a noise realization.""" return (evolution_rate(state_data, t), noise_realization(state_data, t)) return sde_rhs # type: ignore def _make_sde_rhs_numba_cached( self, state: TState, **kwargs ) -> Callable[[np.ndarray, float], tuple[np.ndarray, np.ndarray]]: """Create a compiled function for evaluating the noise term of the PDE. Args: state (:class:`~pde.fields.FieldBase`): An example for the state from which information can be extracted This method implements caching and checking of the actual method, which is defined by overwriting the method `_make_pde_rhs_numba`. """ if self.cache_rhs: # support caching of the noise term grid_state = state.grid.state_serialized if self._cache.get("sde_rhs_numba_state") == grid_state: # cache was successful self._logger.info("Use compiled noise term from cache") else: # cache was not hit self._logger.info("Write compiled noise term to cache") self._cache["sde_rhs_numba_state"] = grid_state self._cache["sde_rhs_numba"] = self._make_sde_rhs_numba(state, **kwargs) sde_rhs = self._cache["sde_rhs_numba"] else: # caching was skipped sde_rhs = self._make_sde_rhs_numba(state, **kwargs) return sde_rhs # type: ignore
[docs] def make_sde_rhs( self, state: TState, backend: Literal["auto", "numpy", "numba"] = "auto", **kwargs, ) -> Callable[[np.ndarray, float], tuple[np.ndarray, np.ndarray]]: """Return a function for evaluating the right hand side of the SDE. Args: state (:class:`~pde.fields.FieldBase`): An example for the state from which information can be extracted backend (str): Determines how the function is created. Accepted values are 'numpy' and 'numba'. Alternatively, 'auto' lets the code pick the optimal backend. Returns: Function determining the deterministic part of the right hand side of the PDE together with a noise realization. """ if backend == "auto": try: sde_rhs = self._make_sde_rhs_numba_cached(state, **kwargs) except NotImplementedError: backend = "numpy" else: sde_rhs._backend = "numba" # type: ignore return sde_rhs if backend == "numba": sde_rhs = self._make_sde_rhs_numba_cached(state, **kwargs) sde_rhs._backend = "numba" # type: ignore elif backend == "numpy": state = state.copy() def sde_rhs( state_data: np.ndarray, t: float ) -> tuple[np.ndarray, np.ndarray]: """Evaluate the rhs given only a state without the grid.""" state.data = state_data return ( self.evolution_rate(state, t, **kwargs).data, self.noise_realization(state, t, **kwargs).data, ) sde_rhs._backend = "numpy" # type: ignore else: raise ValueError(f"Unsupported backend `{backend}`") return sde_rhs
[docs] def solve( self, state: TState, t_range: TRangeType, dt: float | None = None, tracker: TrackerCollectionDataType = "auto", *, solver: str | SolverBase = "explicit", ret_info: bool = False, **kwargs, ) -> None | TState | tuple[TState | None, dict[str, Any]]: """Solves the partial differential equation. The method constructs a suitable solver (:class:`~pde.solvers.base.SolverBase`) and controller (:class:`~pde.controller.Controller`) to advance the state over the temporal range specified by `t_range`. This method only exposes the most common functions, so explicit construction of these classes might offer more flexibility. Args: state (:class:`~pde.fields.base.FieldBase`): The initial state (which also defines the spatial grid). t_range (float or tuple): Sets the time range for which the PDE is solved. This should typically be a tuple of two numbers, `(t_start, t_end)`, specifying the initial and final time of the simulation. If only a single value is given, it is interpreted as `t_end` and the time range is `(0, t_end)`. dt (float): Time step of the chosen stepping scheme. If `None`, a default value based on the stepper will be chosen. If an adaptive stepper is used (supported by :class:`~pde.solvers.ScipySolver` and :class:`~pde.solvers.ExplicitSolver`), `dt` sets the initial time step. tracker: Defines trackers that process the state of the simulation at specified times. A tracker is either an instance of :class:`~pde.trackers.base.TrackerBase` or a string identifying a tracker (possible identifiers can be obtained by calling :func:`~pde.trackers.base.get_named_trackers`). Multiple trackers can be specified as a list. The default value `auto` checks the state for consistency (tracker 'consistency') and displays a progress bar (tracker 'progress') when :mod:`tqdm` is installed. More general trackers are defined in :mod:`~pde.trackers`, where all options are explained in detail. In particular, the time points where the tracker analyzes data can be chosen when creating a tracker object explicitly. solver (:class:`~pde.solvers.base.SolverBase` or str): Specifies the method for solving the differential equation. This can either be an instance of :class:`~pde.solvers.base.SolverBase` or a descriptive name like 'explicit' or 'scipy'. The valid names are given by :meth:`pde.solvers.registered_solvers`. Details of the solvers and additional features (like adaptive time steps) are explained in :mod:`~pde.solvers`. ret_info (bool): Flag determining whether diagnostic information about the solver process should be returned. Note that the same information is also available as the :attr:`~PDEBase.diagnostics` attribute. **kwargs: Additional keyword arguments are forwarded to the solver class chosen with the `solver` argument. In particular, :class:`~pde.solvers.explicit.ExplicitSolver` supports several `schemes` and an adaptive stepper can be enabled using :code:`adaptive=True`. Conversely, :class:`~pde.solvers.ScipySolver` accepts the additional arguments of :func:`scipy.integrate.solve_ivp`. Returns: :class:`~pde.fields.base.FieldBase`: The state at the final time point. If `ret_info == True`, a tuple with the final state and a dictionary with additional information is returned. Note that `None` instead of a field is returned in multiprocessing simulations if the current node is not the main MPI node. """ from ..solvers import Controller from ..solvers.base import SolverBase # @Reimport # create solver instance if callable(solver): solver_obj = solver(pde=self, **kwargs) if not isinstance(solver_obj, SolverBase): self._logger.warning("Solver is not an instance of `SolverBase`.") elif isinstance(solver, str): solver_obj = SolverBase.from_name(solver, pde=self, **kwargs) else: raise TypeError(f"Solver {solver} is not supported") # create controller instance controller = Controller(solver_obj, t_range=t_range, tracker=tracker) # run the simulation try: final_state = controller.run(state, dt) finally: # copy diagnostic information to the PDE instance if hasattr(self, "diagnostics"): self.diagnostics.update(controller.diagnostics) else: self.diagnostics = copy.copy(controller.diagnostics) if ret_info: # return a copy of the diagnostic information so it will not be overwritten # by a repeated call to `solve()`. return final_state, copy.deepcopy(self.diagnostics) else: return final_state
[docs] def expr_prod(factor: float, expression: str) -> str: """Helper function for building an expression with an (optional) pre-factor. Args: factor (float): The value of the prefactor expression (str): The remaining expression Returns: str: The expression with the factor appended if necessary """ if factor == 0: return "0" elif factor == 1: return expression elif factor == -1: return "-" + expression else: return f"{factor:g} * {expression}"