Note
Go to the end to download the full example code.
2.4.4 Custom Class for coupled PDEs
This example shows how to solve a set of coupled PDEs, the spatially coupled FitzHugh–Nagumo model, which is a simple model for the excitable dynamics of coupled Neurons:
\[\begin{split}\partial_t u &= \nabla^2 u + u (u - \alpha) (1 - u) + w \\
\partial_t w &= \epsilon u\end{split}\]
Here, \(\alpha\) denotes the external stimulus and \(\epsilon\) defines the recovery time scale. We implement this as a custom PDE class below.
0%| | 0/100.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/100.0 [00:00<?, ?it/s]
0%| | 0/100.0 [00:00<?, ?it/s]
0%| | 0.29/100.0 [00:00<00:52, 1.89it/s]
1%| | 1.02/100.0 [00:00<00:19, 5.12it/s]
4%|▍ | 4.44/100.0 [00:00<00:08, 10.76it/s]
12%|█▏ | 11.82/100.0 [00:00<00:06, 13.06it/s]
22%|██▏ | 22.35/100.0 [00:01<00:05, 13.25it/s]
34%|███▍ | 34.25/100.0 [00:02<00:04, 13.99it/s]
48%|████▊ | 47.9/100.0 [00:03<00:03, 14.01it/s]
62%|██████▏ | 61.75/100.0 [00:04<00:02, 14.24it/s]
76%|███████▌ | 76.21/100.0 [00:05<00:01, 14.17it/s]
90%|█████████ | 90.38/100.0 [00:06<00:00, 14.30it/s]
90%|█████████ | 90.38/100.0 [00:06<00:00, 12.95it/s]
100%|██████████| 100.0/100.0 [00:06<00:00, 14.33it/s]
100%|██████████| 100.0/100.0 [00:06<00:00, 14.33it/s]
from pde import FieldCollection, PDEBase, UnitGrid
class FitzhughNagumoPDE(PDEBase):
"""FitzHugh–Nagumo model with diffusive coupling."""
def __init__(self, stimulus=0.5, τ=10, a=0, b=0, bc="auto_periodic_neumann"):
super().__init__()
self.bc = bc
self.stimulus = stimulus
self.τ = τ
self.a = a
self.b = b
def evolution_rate(self, state, t=0):
v, w = state # membrane potential and recovery variable
v_t = v.laplace(bc=self.bc) + v - v**3 / 3 - w + self.stimulus
w_t = (v + self.a - self.b * w) / self.τ
return FieldCollection([v_t, w_t])
grid = UnitGrid([32, 32])
state = FieldCollection.scalar_random_uniform(2, grid)
eq = FitzhughNagumoPDE()
result = eq.solve(state, t_range=100, dt=0.01)
result.plot()
Total running time of the script: (0 minutes 7.214 seconds)