2.6. Kuramoto-Sivashinsky - Using PDE class

This example implements a scalar PDE using the PDE. We here consider the Kuramoto–Sivashinsky equation, which for instance describes the dynamics of flame fronts:

\[\partial_t u = -\frac12 |\nabla u|^2 - \nabla^2 u - \nabla^4 u\]
pde custom expression
  0%|          | 0/10.0 [00:00<?, ?it/s]
Initializing:   0%|          | 0/10.0 [00:00<?, ?it/s]
  0%|          | 0/10.0 [00:14<?, ?it/s]
  0%|          | 0.01/10.0 [00:28<7:46:46, 2803.43s/it]
  0%|          | 0.02/10.0 [00:30<4:16:16, 1540.77s/it]
  0%|          | 0.03/10.0 [00:30<2:50:41, 1027.19s/it]
  1%|1         | 0.1/10.0 [00:30<50:50, 308.16s/it]
 46%|####6     | 4.6/10.0 [00:30<00:36,  6.70s/it]
 46%|####6     | 4.6/10.0 [00:30<00:36,  6.70s/it]
100%|##########| 10.0/10.0 [00:30<00:00,  3.08s/it]
100%|##########| 10.0/10.0 [00:30<00:00,  3.08s/it]

from pde import PDE, ScalarField, UnitGrid

grid = UnitGrid([32, 32])  # generate grid
state = ScalarField.random_uniform(grid)  # generate initial condition

eq = PDE({"u": "-gradient_squared(u) / 2 - laplace(u + laplace(u))"})  # define the pde
result = eq.solve(state, t_range=10, dt=0.01)
result.plot()

Total running time of the script: ( 0 minutes 31.012 seconds)