Source code for pde.tools.spherical

# type: ignore
r"""
Module collecting functions for handling spherical geometry

The coordinate systems use the following convention for polar coordinates
:math:`(r, \phi)`, where :math:`r` is the radial coordinate and :math:`\phi` is
the polar angle:

.. math::
    \begin{cases}
        x = r \cos(\phi) &\\
        y = r \sin(\phi) &
    \end{cases}
    \text{for} \; r \in [0, \infty] \;
    \text{and} \; \phi \in [0, 2\pi)
    
Similarly, for spherical coordinates :math:`(r, \theta, \phi)`, where :math:`r`
is the radial coordinate, :math:`\theta` is the azimuthal angle, and
:math:`\phi` is the polar angle, we use

.. math::
    \begin{cases}
        x = r \sin(\theta) \cos(\phi) &\\
        y = r \sin(\theta) \sin(\phi) &\\
        z = r \cos(\theta)
    \end{cases}
    \text{for} \; r \in [0, \infty], \;
    \theta \in [0, \pi], \; \text{and} \;
    \phi \in [0, 2\pi)
    
    
The module also provides functions for handling spherical harmonics.
These spherical harmonics are described by the degree :math:`l` and the order 
:math:`m` or, alternatively, by the mode :math:`k`. The relation between these
values is

.. math::
    k = l(l + 1) + m
    
and

.. math::
    l &= \text{floor}(\sqrt{k}) \\
    m &= k - l(l + 1)
    
We will use these indices interchangeably, although the mode :math:`k` is
preferred internally. Note that we also consider axisymmetric spherical
harmonics, where the order is always zero and the degree :math:`l` and the mode
:math:`k` are thus identical.    
    
    
.. autosummary::
   :nosignatures:

   radius_from_volume
   volume_from_radius
   surface_from_radius
   spherical_index_k
   spherical_index_lm
   spherical_index_count
   spherical_index_count_optimal
   spherical_harmonic_symmetric
   spherical_harmonic_real
   spherical_harmonic_real_k
   
   
.. codeauthor:: David Zwicker <david.zwicker@ds.mpg.de>    
"""

import itertools
from typing import Callable, Optional, Tuple, TypeVar

import numpy as np
from scipy.special import sph_harm

from .cache import cached_method
from .numba import jit

π = float(np.pi)

TNumArr = TypeVar("TNumArr", float, np.ndarray)


[docs]def radius_from_volume(volume: TNumArr, dim: int) -> TNumArr: """Return the radius of a sphere with a given volume Args: volume (float or :class:`~numpy.ndarray`): Volume of the sphere dim (int): Dimension of the space Returns: float or :class:`~numpy.ndarray`: Radius of the sphere """ if dim == 1: return volume / 2 elif dim == 2: return np.sqrt(volume / π) elif dim == 3: return (3 * volume / (4 * π)) ** (1 / 3) else: raise NotImplementedError(f"Cannot calculate the radius in {dim} dimensions")
[docs]def make_radius_from_volume_compiled(dim: int) -> Callable[[TNumArr], TNumArr]: """Return a function calculating the radius of a sphere with a given volume Args: dim (int): Dimension of the space Returns: function: A function that takes a volume and returns the radius """ if dim == 1: def radius_from_volume(volume): return volume / 2 elif dim == 2: def radius_from_volume(volume): return np.sqrt(volume / π) elif dim == 3: def radius_from_volume(volume): return (3 * volume / (4 * π)) ** (1 / 3) else: raise NotImplementedError(f"Cannot calculate the radius in {dim} dimensions") return jit(radius_from_volume)
[docs]def volume_from_radius(radius: TNumArr, dim: int) -> TNumArr: """Return the volume of a sphere with a given radius Args: radius (float or :class:`~numpy.ndarray`): Radius of the sphere dim (int): Dimension of the space Returns: float or :class:`~numpy.ndarray`: Volume of the sphere """ if dim == 1: return 2 * radius elif dim == 2: return π * radius**2 elif dim == 3: return 4 * π / 3 * radius**3 else: raise NotImplementedError(f"Cannot calculate the volume in {dim} dimensions")
[docs]def make_volume_from_radius_compiled(dim: int) -> Callable[[TNumArr], TNumArr]: """Return a function calculating the volume of a sphere with a given radius Args: dim (int): Dimension of the space Returns: function: A function that takes a radius and returns the volume """ if dim == 1: def volume_from_radius(radius: TNumArr) -> TNumArr: return 2 * radius elif dim == 2: def volume_from_radius(radius: TNumArr) -> TNumArr: return π * radius**2 elif dim == 3: def volume_from_radius(radius: TNumArr) -> TNumArr: return 4 * π / 3 * radius**3 else: raise NotImplementedError(f"Cannot calculate the volume in {dim} dimensions") return jit(volume_from_radius)
[docs]def surface_from_radius(radius: TNumArr, dim: int) -> TNumArr: """Return the surface area of a sphere with a given radius Args: radius (float or :class:`~numpy.ndarray`): Radius of the sphere dim (int): Dimension of the space Returns: float or :class:`~numpy.ndarray`: Surface area of the sphere """ if dim == 1: if isinstance(radius, np.ndarray): return np.broadcast_to(2, radius.shape) else: return 2 elif dim == 2: return 2 * π * radius elif dim == 3: return 4 * π * radius**2 else: raise NotImplementedError( f"Cannot calculate the surface area in {dim} dimensions" )
[docs]def radius_from_surface(surface: TNumArr, dim: int) -> TNumArr: """Return the radius of a sphere with a given surface area Args: surface (float or :class:`~numpy.ndarray`): Surface area of the sphere dim (int): Dimension of the space Returns: float or :class:`~numpy.ndarray`: Radius of the sphere """ if dim == 1: raise RuntimeError("Cannot calculate radius of 1-d sphere from surface") elif dim == 2: return surface / (2 * π) elif dim == 3: return np.sqrt(surface / (4 * π)) else: raise NotImplementedError(f"Cannot calculate the radius in {dim} dimensions")
[docs]def make_surface_from_radius_compiled(dim: int) -> Callable[[TNumArr], TNumArr]: """Return a function calculating the surface area of a sphere Args: dim (int): Dimension of the space Returns: function: A function that takes a radius and returns the surface area """ import numba as nb if dim == 1: if nb.config.DISABLE_JIT: # jitting is disabled => return generic python function def surface_from_radius(radius: TNumArr) -> TNumArr: if isinstance(radius, np.ndarray): return np.full(radius.shape, 2) else: return 2 else: # jitting is enabled => return specific compiled functions @nb.generated_jit(nopython=True) def surface_from_radius(radius: TNumArr) -> TNumArr: if isinstance(radius, nb.types.Float): return lambda radius: 2 else: return lambda radius: np.full(radius.shape, 2) elif dim == 2: @jit def surface_from_radius(radius: TNumArr) -> TNumArr: return 2 * π * radius elif dim == 3: @jit def surface_from_radius(radius: TNumArr) -> TNumArr: return 4 * π * radius**2 else: raise NotImplementedError( f"Cannot calculate the surface area in {dim} dimensions" ) return surface_from_radius
[docs]def points_cartesian_to_spherical(points: np.ndarray) -> np.ndarray: """Convert points from Cartesian to spherical coordinates Args: points (:class:`~numpy.ndarray`): Points in Cartesian coordinates Returns: :class:`~numpy.ndarray`: Points (r, θ, φ) in spherical coordinates """ points = np.atleast_1d(points) assert points.shape[-1] == 3, "Points must have 3 coordinates" ps_spherical = np.empty(points.shape) # calculate radius in [0, infinity] ps_spherical[..., 0] = np.linalg.norm(points, axis=-1) # calculate θ in [0, pi] ps_spherical[..., 1] = np.arccos(points[..., 2] / ps_spherical[..., 0]) # calculate φ in [0, 2 * pi] ps_spherical[..., 2] = np.arctan2(points[..., 1], points[..., 0]) % (2 * π) return ps_spherical
[docs]def points_spherical_to_cartesian(points: np.ndarray) -> np.ndarray: """Convert points from spherical to Cartesian coordinates Args: points (:class:`~numpy.ndarray`): Points in spherical coordinates (r, θ, φ) Returns: :class:`~numpy.ndarray`: Points in Cartesian coordinates """ points = np.atleast_1d(points) assert points.shape[-1] == 3, "Points must have 3 coordinates" sin_θ = np.sin(points[..., 1]) ps_cartesian = np.empty(points.shape) ps_cartesian[..., 0] = points[..., 0] * np.cos(points[..., 2]) * sin_θ ps_cartesian[..., 1] = points[..., 0] * np.sin(points[..., 2]) * sin_θ ps_cartesian[..., 2] = points[..., 0] * np.cos(points[..., 1]) return ps_cartesian
[docs]def haversine_distance(point1: np.ndarray, point2: np.ndarray) -> np.ndarray: """Calculate the haversine-based distance between two points on the surface of a sphere. Should be more accurate than the arc cosine strategy. See, for example: https://en.wikipedia.org/wiki/Haversine_formula Adapted from https://github.com/tylerjereddy/spherical-SA-docker-demo Licensed under MIT License (see copy in root of this project) Args: point1 (:class:`~numpy.ndarray`): First point(s) on the sphere (given in Cartesian coordinates) point2 (:class:`~numpy.ndarray`): Second point on the sphere Second point(s) on the sphere (given in Cartesian coordinates) Returns: :class:`~numpy.ndarray`: The distances between the points """ # note that latitude φ is θ and longitude λ is φ in our notation coords = points_cartesian_to_spherical(point1) r1, φ1, λ1 = coords[..., 0], coords[..., 1], coords[..., 2] coords = points_cartesian_to_spherical(point2) r2, φ2, λ2 = coords[..., 0], coords[..., 1], coords[..., 2] # check whether both points lie on the same sphere assert np.allclose(r1, r2) # we rewrite the standard Haversine slightly as long/lat is not the same as # spherical coordinates - φ differs by π/4 factor = (1 - np.cos(λ2 - λ1)) / 2 arg = (1 - np.cos(φ2 - φ1)) / 2 + np.sin(φ1) * np.sin(φ2) * factor return 2 * r1 * np.arcsin(np.sqrt(arg))
[docs]def get_spherical_polygon_area(vertices: np.ndarray, radius: float = 1) -> float: """Calculate the surface area of a polygon on the surface of a sphere. Based on equation provided here: http://mathworld.wolfram.com/LHuiliersTheorem.html Decompose into triangles, calculate excess for each Adapted from https://github.com/tylerjereddy/spherical-SA-docker-demo Licensed under MIT License (see copy in root of this project) Args: vertices (:class:`~numpy.ndarray`): List of vertices (using Cartesian coordinates) that describe the corners of the polygon. The vertices need to be oriented. radius (float): Radius of the sphere """ # have to convert to unit sphere before applying the formula spherical_coordinates = points_cartesian_to_spherical(vertices) spherical_coordinates[..., 0] = 1.0 vertices = points_spherical_to_cartesian(spherical_coordinates) n = vertices.shape[0] # point we start from root_point = vertices[0] totalexcess = 0 # loop from 1 to n-2, with point 2 to n-1 as other vertex of triangle # this could definitely be written more nicely b_point = vertices[1] root_b_dist = haversine_distance(root_point, b_point) for i in np.arange(1, n - 1): a_point = b_point b_point = vertices[i + 1] root_a_dist = root_b_dist root_b_dist = haversine_distance(root_point, b_point) a_b_dist = haversine_distance(a_point, b_point) s = (root_a_dist + root_b_dist + a_b_dist) / 2.0 arg = ( np.tan(0.5 * s) * np.tan(0.5 * (s - root_a_dist)) * np.tan(0.5 * (s - root_b_dist)) * np.tan(0.5 * (s - a_b_dist)) ) totalexcess += 4 * np.arctan(np.sqrt(arg)) return totalexcess * radius**2
[docs]class PointsOnSphere: """class representing points on an n-dimensional unit sphere""" def __init__(self, points): """ Args: points (:class:`~numpy.ndarray`): The list of points on the unit sphere """ self.points = np.asarray(points, dtype=np.double) # normalize vectors to force them onto the unit-sphere self.points /= np.linalg.norm(self.points, axis=1)[:, np.newaxis] self.dim = self.points.shape[-1]
[docs] @classmethod def make_uniform(cls, dim: int, num_points: Optional[int] = None): """create uniformly distributed points on a sphere Args: dim (int): The dimension of space num_points (int, optional): The number of points to generate. Note that for one-dimensional spheres (intervals), only exactly two points can be generated """ if dim == 1: # just have two directions in 2d if num_points is None: num_points = 2 if num_points != 2: raise ValueError("Can only place 2 points in 1d") points = [[-1], [1]] elif dim == 2: if num_points is None: num_points = 8 # distribute points evenly around the circle φs = np.linspace(0, 2 * π, num_points, endpoint=False) points = np.c_[np.cos(φs), np.sin(φs)] elif dim == 3: # Distribute points on the unit sphere using a sunflower spiral # (inspired by https://stackoverflow.com/a/44164075/932593) if num_points is None: num_points = 18 indices = np.arange(0, num_points) + 0.5 φ = np.arccos(1 - 2 * indices / num_points) θ = π * (1 + 5**0.5) * indices # convert to Cartesian coordinates points = np.c_[np.cos(θ) * np.sin(φ), np.sin(θ) * np.sin(φ), np.cos(φ)] elif num_points is None: # use vertices of hypercube in n dimensions points = [ p for p in itertools.product([-1, 0, 1], repeat=dim) if any(c != 0 for c in p) ] else: raise NotImplementedError() # normalize vectors return cls(points)
[docs] @cached_method() def get_area_weights(self, balance_axes: bool = True): """return the weight of each point associated with the unit cell size Args: balance_axes (bool): Flag determining whether the weights should be chosen such that the weighted average of all points is the zero vector Returns: :class:`~numpy.ndarray`: The weight associated with each point """ from scipy import spatial points_flat = self.points.reshape(-1, self.dim) if self.dim == 1: assert points_flat.shape == (2, 1) weights = np.array([0.5, 0.5]) elif self.dim == 2: # get angles φ = np.arctan2(points_flat[:, 1], points_flat[:, 0]) idx = np.argsort(φ) s0 = φ[idx[0]] + 2 * π - φ[idx[-1]] sizes = np.r_[s0, np.diff(φ[idx]), s0] weights = (sizes[1:] + sizes[:-1]) / 2 weights /= 2 * π elif self.dim == 3: # calculate weights using spherical voronoi construction voronoi = spatial.SphericalVoronoi(points_flat) voronoi.sort_vertices_of_regions() weight_vals = [ get_spherical_polygon_area(voronoi.vertices[ix]) for ix in voronoi.regions ] weights = np.array(weight_vals, dtype=np.double) weights /= surface_from_radius(1, dim=self.dim) else: raise NotImplementedError() if balance_axes: weights /= weights.sum() # normalize weights # adjust weights such that all distances are weighted equally, i.e., # the weighted sum of all shell vectors should vanish. Additionally, # the sum of all weights needs to be one. To satisfy these # constraints simultaneously, the weights are adjusted minimally # (in a least square sense). matrix = np.c_[points_flat, np.ones(len(points_flat))] vector = -weights @ matrix + np.r_[np.zeros(self.dim), 1] weights += np.linalg.lstsq(matrix.T, vector, rcond=None)[0] return weights.reshape(self.points.shape[:-1])
[docs] def get_distance_matrix(self): """calculate the (spherical) distances between each point Returns: :class:`~numpy.ndarray`: the distance of each point to each other """ from scipy import spatial if self.dim == 1: raise ValueError("Distances can only be calculated for dim >= 2") elif self.dim == 2: # use arc length on unit circle to calculate distances def metric(a, b): return np.arccos(a @ b) elif self.dim == 3: # calculate distances on sphere using haversine definition metric = haversine_distance else: raise NotImplementedError() # determine the distances between all points dists = spatial.distance.pdist(self.points, metric) return spatial.distance.squareform(dists)
[docs] def get_mean_separation(self) -> float: """float: calculates the mean distance to the nearest neighbor""" if len(self.points) < 1: return float("nan") dists_sorted = np.sort(self.get_distance_matrix(), axis=1) return float(dists_sorted[:, 1].mean())
[docs] def write_to_xyz(self, path: str, comment: str = "", symbol: str = "S"): """write the point coordinates to a xyz file Args: path (str): location of the file where data is written comment (str, optional): comment that is written to the second line symbol (str, optional): denotes the symbol used for the atoms """ with open(path, "w") as fp: fp.write("%d\n" % len(self.points)) fp.write(comment + "\n") for point in self.points: point_str = " ".join(("%.12g" % v for v in point)) line = "%s %s\n" % (symbol, point_str) fp.write(line)
[docs]def spherical_index_k(degree: int, order: int = 0) -> int: """returns the mode `k` from the degree `degree` and order `order` Args: degree (int): Degree of the spherical harmonics order (int): Order of the spherical harmonics Raises: ValueError: if `order < -degree` or `order > degree` Returns: int: a combined index k """ if not -degree <= order <= degree: raise ValueError("order must lie between -degree and degree") return degree * (degree + 1) + order
[docs]def spherical_index_lm(k: int) -> Tuple[int, int]: """returns the degree `l` and the order `m` from the mode `k` Args: k (int): The combined index for the spherical harmonics Returns: tuple: The degree `l` and order `m` of the spherical harmonics assoicated with the combined index """ degree = int(np.floor(np.sqrt(k))) return degree, k - degree * (degree + 1)
[docs]def spherical_index_count(l: int) -> int: """return the number of modes for all indices <= l The returned value is one less than the maximal mode `k` required. Args: l (int): Maximal degree of the spherical harmonics Returns: int: The number of modes """ return 1 + 2 * l + l * l
[docs]def spherical_index_count_optimal(k_count: int) -> bool: """checks whether the modes captures all orders for maximal degree Args: k_count (int): The number of modes considered """ is_square = bool(int(np.sqrt(k_count) + 0.5) ** 2 == k_count) return is_square
[docs]def spherical_harmonic_symmetric(degree: int, θ: float) -> float: r"""axisymmetric spherical harmonics with degree `degree`, so `m=0`. Args: degree (int): Degree of the spherical harmonics θ (float): Azimuthal angle at which the spherical harmonics is evaluated (in :math:`[0, \pi]`) Returns: float: The value of the spherical harmonics """ # note that the definition of `sph_harm` has a different convention for the # usage of the variables φ and θ and we thus have to swap the args return np.real(sph_harm(0.0, degree, 0.0, θ))
[docs]def spherical_harmonic_real(degree: int, order: int, θ: float, φ: float) -> float: r"""real spherical harmonics of degree l and order m Args: degree (int): Degree :math:`l` of the spherical harmonics order (int): Order :math:`m` of the spherical harmonics θ (float): Azimuthal angle (in :math:`[0, \pi]`) at which the spherical harmonics is evaluated. φ (float): Polar angle (in :math:`[0, 2\pi]`) at which the spherical harmonics is evaluated. Returns: float: The value of the spherical harmonics """ # note that the definition of `sph_harm` has a different convention for the # usage of the variables φ and θ and we thus have to swap the args # Moreover, the scipy functions expect first the order and then the degree if order > 0: term1 = sph_harm(order, degree, φ, θ) term2 = (-1) ** order * sph_harm(-order, degree, φ, θ) return np.real((term1 + term2) / np.sqrt(2)) elif order == 0: return np.real(sph_harm(0, degree, φ, θ)) else: # order < 0 term1 = sph_harm(-order, degree, φ, θ) term2 = (-1) ** order * sph_harm(order, degree, φ, θ) return np.real((term1 - term2) / (complex(0, np.sqrt(2))))
[docs]def spherical_harmonic_real_k(k: int, θ: float, φ: float) -> float: r"""real spherical harmonics described by mode k Args: k (int): Combined index determining the degree and order of the spherical harmonics θ (float): Azimuthal angle (in :math:`[0, \pi]`) at which the spherical harmonics is evaluated. φ (float): Polar angle (in :math:`[0, 2\pi]`) at which the spherical harmonics is evaluated. Returns: float: The value of the spherical harmonics """ return spherical_harmonic_real(*spherical_index_lm(k), θ=θ, φ=φ)
import warnings # deprecated the module on 2022-03-08. Scheduled for removal on 2022-09-08 warnings.warn( "The `spherical` module is deprecated. Some of the functions have been migrated to " "the `droplets.tools.spherical` module of the `py-droplets` package", DeprecationWarning, )