Note
Go to the end to download the full example code
2.8. Diffusion on a Cartesian grid
This example shows how to solve the diffusion equation on a Cartesian grid.

0%| | 0/1.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/1.0 [00:00<?, ?it/s]
0%| | 0/1.0 [00:05<?, ?it/s]
1%| | 0.01/1.0 [00:05<08:40, 526.13s/it]
3%|▎ | 0.03/1.0 [00:05<02:50, 175.39s/it]
3%|▎ | 0.03/1.0 [00:05<02:50, 175.44s/it]
100%|██████████| 1.0/1.0 [00:05<00:00, 5.26s/it]
100%|██████████| 1.0/1.0 [00:05<00:00, 5.26s/it]
from pde import CartesianGrid, DiffusionPDE, ScalarField
grid = CartesianGrid([[-1, 1], [0, 2]], [30, 16]) # generate grid
state = ScalarField(grid) # generate initial condition
state.insert([0, 1], 1)
eq = DiffusionPDE(0.1) # define the pde
result = eq.solve(state, t_range=1, dt=0.01)
result.plot(cmap="magma")
Total running time of the script: (0 minutes 5.458 seconds)