Source code for pde.grids.operators.common

"""
Common functions that are used by many operators 

.. codeauthor:: David Zwicker <david.zwicker@ds.mpg.de>
"""

from __future__ import annotations

import logging
import warnings
from typing import Callable, Literal

import numpy as np

from ...tools.numba import jit
from ...tools.typing import OperatorType
from ..base import GridBase

logger = logging.getLogger(__name__)


[docs] def make_derivative( grid: GridBase, axis: int = 0, method: Literal["central", "forward", "backward"] = "central", ) -> OperatorType: """make a derivative operator along a single axis using numba compilation Args: grid (:class:`~pde.grids.base.GridBase`): The grid for which the operator is created axis (int): The axis along which the derivative will be taken method (str): The method for calculating the derivative. Possible values are 'central', 'forward', and 'backward'. Returns: A function that can be applied to an full array of values including those at ghost cells. The result will be an array of the same shape containing the actual derivatives at the valid (interior) grid points. """ if method not in {"central", "forward", "backward"}: raise ValueError(f"Unknown derivative type `{method}`") shape = grid.shape num_axes = len(shape) dx = grid.discretization[axis] if axis == 0: di, dj, dk = 1, 0, 0 elif axis == 1: di, dj, dk = 0, 1, 0 elif axis == 2: di, dj, dk = 0, 0, 1 else: raise NotImplementedError(f"Derivative for {axis:d} dimensions") if num_axes == 1: @jit def diff(arr: np.ndarray, out: np.ndarray) -> None: """calculate derivative of 1d array `arr`""" for i in range(1, shape[0] + 1): if method == "central": out[i - 1] = (arr[i + 1] - arr[i - 1]) / (2 * dx) elif method == "forward": out[i - 1] = (arr[i + 1] - arr[i]) / dx elif method == "backward": out[i - 1] = (arr[i] - arr[i - 1]) / dx elif num_axes == 2: @jit def diff(arr: np.ndarray, out: np.ndarray) -> None: """calculate derivative of 2d array `arr`""" for i in range(1, shape[0] + 1): for j in range(1, shape[1] + 1): arr_l = arr[i - di, j - dj] arr_r = arr[i + di, j + dj] if method == "central": out[i - 1, j - 1] = (arr_r - arr_l) / (2 * dx) elif method == "forward": out[i - 1, j - 1] = (arr_r - arr[i, j]) / dx elif method == "backward": out[i - 1, j - 1] = (arr[i, j] - arr_l) / dx elif num_axes == 3: @jit def diff(arr: np.ndarray, out: np.ndarray) -> None: """calculate derivative of 3d array `arr`""" for i in range(1, shape[0] + 1): for j in range(1, shape[1] + 1): for k in range(1, shape[2] + 1): arr_l = arr[i - di, j - dj, k - dk] arr_r = arr[i + di, j + dj, k + dk] if method == "central": out[i - 1, j - 1, k - 1] = (arr_r - arr_l) / (2 * dx) elif method == "forward": out[i - 1, j - 1, k - 1] = (arr_r - arr[i, j, k]) / dx elif method == "backward": out[i - 1, j - 1, k - 1] = (arr[i, j, k] - arr_l) / dx else: raise NotImplementedError( f"Numba derivative operator not implemented for {num_axes:d} axes" ) return diff # type: ignore
[docs] def make_derivative2(grid: GridBase, axis: int = 0) -> OperatorType: """make a second-order derivative operator along a single axis Args: grid (:class:`~pde.grids.base.GridBase`): The grid for which the operator is created axis (int): The axis along which the derivative will be taken Returns: A function that can be applied to an full array of values including those at ghost cells. The result will be an array of the same shape containing the actual derivatives at the valid (interior) grid points. """ shape = grid.shape num_axes = len(shape) scale = 1 / grid.discretization[axis] ** 2 if axis == 0: di, dj, dk = 1, 0, 0 elif axis == 1: di, dj, dk = 0, 1, 0 elif axis == 2: di, dj, dk = 0, 0, 1 else: raise NotImplementedError(f"Derivative for {axis:d} dimensions") if num_axes == 1: @jit def diff(arr: np.ndarray, out: np.ndarray) -> None: """calculate derivative of 1d array `arr`""" for i in range(1, shape[0] + 1): out[i - 1] = (arr[i + 1] - 2 * arr[i] + arr[i - 1]) * scale elif num_axes == 2: @jit def diff(arr: np.ndarray, out: np.ndarray) -> None: """calculate derivative of 2d array `arr`""" for i in range(1, shape[0] + 1): for j in range(1, shape[1] + 1): arr_l = arr[i - di, j - dj] arr_r = arr[i + di, j + dj] out[i - 1, j - 1] = (arr_r - 2 * arr[i, j] + arr_l) * scale elif num_axes == 3: @jit def diff(arr: np.ndarray, out: np.ndarray) -> None: """calculate derivative of 3d array `arr`""" for i in range(1, shape[0] + 1): for j in range(1, shape[1] + 1): for k in range(1, shape[2] + 1): arr_l = arr[i - di, j - dj, k - dk] arr_r = arr[i + di, j + dj, k + dk] out[i - 1, j - 1, k - 1] = ( arr_r - 2 * arr[i, j, k] + arr_l ) * scale else: raise NotImplementedError( f"Numba derivative operator not implemented for {num_axes:d} axes" ) return diff # type: ignore
[docs] def uniform_discretization(grid: GridBase) -> float: """returns the uniform discretization or raises RuntimeError Args: grid (:class:`~pde.grids.base.GridBase`): The grid whose discretization is tested Raises: `RuntimeError` if discretization is different between different axes Returns: float: the common discretization of all axes """ dx_mean = np.mean(grid.discretization) if np.allclose(grid.discretization, dx_mean): return float(dx_mean) else: raise RuntimeError("Grid discretization is not uniform")
[docs] def make_laplace_from_matrix( matrix, vector ) -> Callable[[np.ndarray, np.ndarray | None], np.ndarray]: """make a Laplace operator using matrix vector products Args: matrix: (Sparse) matrix representing the laplace operator on the given grid vector: Constant part representing the boundary conditions of the Laplace operator Returns: A function that can be applied to an array of values to obtain the result of applying the linear operator `matrix` and the offset given by `vector`. """ mat = matrix.tocsc() vec = vector.toarray()[:, 0] def laplace(arr: np.ndarray, out: np.ndarray | None = None) -> np.ndarray: """apply the laplace operator to `arr`""" result = mat.dot(arr.flat) + vec if out is None: out = result.reshape(arr.shape) else: out[:] = result.reshape(arr.shape) return out return laplace
[docs] def make_general_poisson_solver( matrix, vector, method: Literal["auto", "scipy"] = "auto" ) -> OperatorType: """make an operator that solves Poisson's problem Args: matrix: The (sparse) matrix representing the laplace operator on the given grid. vector: The constant part representing the boundary conditions of the Laplace operator. method (str): The chosen method for implementing the operator Returns: A function that can be applied to an array of values to obtain the solution to Poisson's equation where the array is used as the right hand side """ from scipy import sparse try: from scipy.sparse.linalg import MatrixRankWarning except ImportError: from scipy.sparse.linalg.dsolve.linsolve import MatrixRankWarning if method not in {"auto", "scipy"}: raise ValueError(f"Method {method} is not available") # prepare the matrix representing the operator mat = matrix.tocsc() vec = vector.toarray()[:, 0] def solve_poisson(arr: np.ndarray, out: np.ndarray) -> None: """solves Poisson's equation using sparse linear algebra""" # prepare the right hand side vector rhs = np.ravel(arr) - vec # solve the linear problem using a sparse solver try: with warnings.catch_warnings(): warnings.simplefilter("error") # enable warning catching result = sparse.linalg.spsolve(mat, rhs) except MatrixRankWarning: # this can happen for singular laplace matrix, e.g. when pure # Neumann conditions are considered. In this case, a solution is # obtained using least squares logger.warning( "Poisson problem seems to be under-determined and " "could not be solved using sparse.linalg.spsolve" ) use_leastsquares = True else: # test whether the solution is good enough if np.allclose(mat.dot(result), rhs, rtol=1e-5, atol=1e-5): logger.info("Solved Poisson problem with sparse.linalg.spsolve") use_leastsquares = False else: logger.warning( "Poisson problem was not solved using sparse.linalg.spsolve" ) use_leastsquares = True if use_leastsquares: # use least squares to solve an underdetermined problem result = sparse.linalg.lsmr(mat, rhs)[0] if not np.allclose(mat.dot(result), rhs, rtol=1e-5, atol=1e-5): residual = np.linalg.norm(mat.dot(result) - rhs) raise RuntimeError( f"Poisson problem could not be solved (Residual: {residual})" ) logger.info("Solved Poisson problem with sparse.linalg.lsmr") # convert the result to the correct format out[:] = result.reshape(arr.shape) return solve_poisson