2.6. Kuramoto-Sivashinsky - Using PDE class

This example implements a scalar PDE using the PDE. We here consider the Kuramoto–Sivashinsky equation, which for instance describes the dynamics of flame fronts:

\[\partial_t u = -\frac12 |\nabla u|^2 - \nabla^2 u - \nabla^4 u\]
pde custom expression

Out:

  0%|          | 0/10.0 [00:00<?, ?it/s]
Initializing:   0%|          | 0/10.0 [00:00<?, ?it/s]
  0%|          | 0/10.0 [00:12<?, ?it/s]
  0%|          | 0.01/10.0 [00:25<6:56:47, 2503.29s/it]
  0%|          | 0.02/10.0 [00:27<3:50:55, 1388.29s/it]
  0%|          | 0.03/10.0 [00:27<2:33:47, 925.54s/it]
  1%|1         | 0.1/10.0 [00:27<45:48, 277.67s/it]
 45%|####5     | 4.55/10.0 [00:27<00:33,  6.10s/it]
 45%|####5     | 4.55/10.0 [00:27<00:33,  6.11s/it]
100%|##########| 10.0/10.0 [00:27<00:00,  2.78s/it]
100%|##########| 10.0/10.0 [00:27<00:00,  2.78s/it]

from pde import PDE, ScalarField, UnitGrid

grid = UnitGrid([32, 32])  # generate grid
state = ScalarField.random_uniform(grid)  # generate initial condition

eq = PDE({"u": "-gradient_squared(u) / 2 - laplace(u + laplace(u))"})  # define the pde
result = eq.solve(state, t_range=10, dt=0.01)
result.plot()

Total running time of the script: ( 0 minutes 27.947 seconds)

Gallery generated by Sphinx-Gallery