2.19. Custom Class for coupled PDEs

This example shows how to solve a set of coupled PDEs, the spatially coupled FitzHugh–Nagumo model, which is a simple model for the excitable dynamics of coupled Neurons:

\[\begin{split}\partial_t u &= \nabla^2 u + u (u - \alpha) (1 - u) + w \\ \partial_t w &= \epsilon u\end{split}\]

Here, \(\alpha\) denotes the external stimulus and \(\epsilon\) defines the recovery time scale. We implement this as a custom PDE class below.

pde coupled

Out:

  0%|          | 0/100.0 [00:00<?, ?it/s]
Initializing:   0%|          | 0/100.0 [00:00<?, ?it/s]
  0%|          | 0/100.0 [00:00<?, ?it/s]
  0%|          | 0.25/100.0 [00:03<20:10, 12.13s/it]
  0%|          | 0.38/100.0 [00:03<13:17,  8.00s/it]
  2%|1         | 1.96/100.0 [00:03<02:36,  1.60s/it]
  7%|7         | 7.31/100.0 [00:03<00:43,  2.14it/s]
 17%|#7        | 17.29/100.0 [00:03<00:18,  4.37it/s]
 31%|###       | 30.81/100.0 [00:04<00:10,  6.57it/s]
 47%|####6     | 46.65/100.0 [00:05<00:06,  8.41it/s]
 64%|######3   | 63.76/100.0 [00:06<00:03,  9.87it/s]
 82%|########1 | 81.64/100.0 [00:07<00:01, 10.97it/s]
100%|#########9| 99.71/100.0 [00:08<00:00, 11.86it/s]
100%|#########9| 99.71/100.0 [00:08<00:00, 11.84it/s]
100%|##########| 100.0/100.0 [00:08<00:00, 11.88it/s]
100%|##########| 100.0/100.0 [00:08<00:00, 11.88it/s]

from pde import FieldCollection, PDEBase, UnitGrid


class FitzhughNagumoPDE(PDEBase):
    """FitzHugh–Nagumo model with diffusive coupling"""

    def __init__(self, stimulus=0.5, τ=10, a=0, b=0, bc="auto_periodic_neumann"):
        self.bc = bc
        self.stimulus = stimulus
        self.τ = τ
        self.a = a
        self.b = b

    def evolution_rate(self, state, t=0):
        v, w = state  # membrane potential and recovery variable

        v_t = v.laplace(bc=self.bc) + v - v**3 / 3 - w + self.stimulus
        w_t = (v + self.a - self.b * w) / self.τ

        return FieldCollection([v_t, w_t])


grid = UnitGrid([32, 32])
state = FieldCollection.scalar_random_uniform(2, grid)

eq = FitzhughNagumoPDE()
result = eq.solve(state, t_range=100, dt=0.01)
result.plot()

Total running time of the script: ( 0 minutes 8.704 seconds)

Gallery generated by Sphinx-Gallery