2.20. Custom Class for coupled PDEs

This example shows how to solve a set of coupled PDEs, the spatially coupled FitzHugh–Nagumo model, which is a simple model for the excitable dynamics of coupled Neurons:

\[\begin{split}\partial_t u &= \nabla^2 u + u (u - \alpha) (1 - u) + w \\ \partial_t w &= \epsilon u\end{split}\]

Here, \(\alpha\) denotes the external stimulus and \(\epsilon\) defines the recovery time scale. We implement this as a custom PDE class below.

pde coupled
  0%|          | 0/100.0 [00:00<?, ?it/s]
Initializing:   0%|          | 0/100.0 [00:00<?, ?it/s]
  0%|          | 0/100.0 [00:00<?, ?it/s]
  0%|          | 0.24/100.0 [00:00<01:39,  1.00it/s]
  1%|          | 0.74/100.0 [00:00<00:38,  2.57it/s]
  3%|▎         | 2.95/100.0 [00:00<00:16,  5.97it/s]
  8%|▊         | 7.82/100.0 [00:00<00:11,  8.26it/s]
 15%|█▌        | 15.06/100.0 [00:01<00:09,  8.72it/s]
 23%|██▎       | 23.25/100.0 [00:02<00:08,  8.89it/s]
 32%|███▏      | 31.95/100.0 [00:03<00:07,  9.30it/s]
 42%|████▏     | 41.55/100.0 [00:04<00:06,  9.47it/s]
 51%|█████▏    | 51.4/100.0 [00:05<00:05,  9.40it/s]
 61%|██████    | 60.87/100.0 [00:06<00:04,  9.58it/s]
 71%|███████   | 70.91/100.0 [00:07<00:03,  9.62it/s]
 81%|████████  | 80.9/100.0 [00:08<00:01,  9.57it/s]
 90%|█████████ | 90.48/100.0 [00:09<00:00,  9.67it/s]
 90%|█████████ | 90.48/100.0 [00:10<00:01,  8.77it/s]
100%|██████████| 100.0/100.0 [00:10<00:00,  9.69it/s]
100%|██████████| 100.0/100.0 [00:10<00:00,  9.69it/s]

from pde import FieldCollection, PDEBase, UnitGrid


class FitzhughNagumoPDE(PDEBase):
    """FitzHugh–Nagumo model with diffusive coupling"""

    def __init__(self, stimulus=0.5, τ=10, a=0, b=0, bc="auto_periodic_neumann"):
        super().__init__()
        self.bc = bc
        self.stimulus = stimulus
        self.τ = τ
        self.a = a
        self.b = b

    def evolution_rate(self, state, t=0):
        v, w = state  # membrane potential and recovery variable

        v_t = v.laplace(bc=self.bc) + v - v**3 / 3 - w + self.stimulus
        w_t = (v + self.a - self.b * w) / self.τ

        return FieldCollection([v_t, w_t])


grid = UnitGrid([32, 32])
state = FieldCollection.scalar_random_uniform(2, grid)

eq = FitzhughNagumoPDE()
result = eq.solve(state, t_range=100, dt=0.01)
result.plot()

Total running time of the script: (0 minutes 10.745 seconds)