Note
Click here to download the full example code
2.24. Custom PDE class: SIR model¶
This example implements a spatially coupled SIR model with the following dynamics for the density of susceptible, infected, and recovered individuals:
\[\begin{split}\partial_t s &= D \nabla^2 s - \beta is \\
\partial_t i &= D \nabla^2 i + \beta is - \gamma i \\
\partial_t r &= D \nabla^2 r + \gamma i\end{split}\]
Here, \(D\) is the diffusivity, \(\beta\) the infection rate, and \(\gamma\) the recovery rate.

0%| | 0/50.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/50.0 [00:00<?, ?it/s]
0%| | 0/50.0 [00:00<?, ?it/s]
0%| | 0.02/50.0 [00:00<37:15, 44.72s/it]
0%| | 0.04/50.0 [00:00<18:42, 22.46s/it]
1%| | 0.39/50.0 [00:00<02:02, 2.46s/it]
4%|3 | 1.8/50.0 [00:01<00:32, 1.48it/s]
9%|9 | 4.58/50.0 [00:01<00:16, 2.67it/s]
17%|#7 | 8.52/50.0 [00:02<00:11, 3.52it/s]
26%|##6 | 13.22/50.0 [00:03<00:09, 3.78it/s]
36%|###5 | 17.75/50.0 [00:04<00:07, 4.13it/s]
46%|####5 | 22.78/50.0 [00:05<00:06, 4.19it/s]
55%|#####5 | 27.51/50.0 [00:06<00:05, 4.38it/s]
65%|######5 | 32.63/50.0 [00:07<00:03, 4.39it/s]
75%|#######4 | 37.41/50.0 [00:08<00:02, 4.51it/s]
85%|########5 | 42.58/50.0 [00:09<00:01, 4.49it/s]
95%|#########4| 47.33/50.0 [00:10<00:00, 4.58it/s]
95%|#########4| 47.33/50.0 [00:11<00:00, 4.29it/s]
100%|##########| 50.0/50.0 [00:11<00:00, 4.53it/s]
100%|##########| 50.0/50.0 [00:11<00:00, 4.53it/s]
from pde import FieldCollection, PDEBase, PlotTracker, ScalarField, UnitGrid
class SIRPDE(PDEBase):
"""SIR-model with diffusive mobility"""
def __init__(
self, beta=0.3, gamma=0.9, diffusivity=0.1, bc="auto_periodic_neumann"
):
super().__init__()
self.beta = beta # transmission rate
self.gamma = gamma # recovery rate
self.diffusivity = diffusivity # spatial mobility
self.bc = bc # boundary condition
def get_state(self, s, i):
"""generate a suitable initial state"""
norm = (s + i).data.max() # maximal density
if norm > 1:
s /= norm
i /= norm
s.label = "Susceptible"
i.label = "Infected"
# create recovered field
r = ScalarField(s.grid, data=1 - s - i, label="Recovered")
return FieldCollection([s, i, r])
def evolution_rate(self, state, t=0):
s, i, r = state
diff = self.diffusivity
ds_dt = diff * s.laplace(self.bc) - self.beta * i * s
di_dt = diff * i.laplace(self.bc) + self.beta * i * s - self.gamma * i
dr_dt = diff * r.laplace(self.bc) + self.gamma * i
return FieldCollection([ds_dt, di_dt, dr_dt])
eq = SIRPDE(beta=2, gamma=0.1)
# initialize state
grid = UnitGrid([32, 32])
s = ScalarField(grid, 1)
i = ScalarField(grid, 0)
i.data[0, 0] = 1
state = eq.get_state(s, i)
# simulate the pde
tracker = PlotTracker(interval=10, plot_args={"vmin": 0, "vmax": 1})
sol = eq.solve(state, t_range=50, dt=1e-2, tracker=["progress", tracker])
Total running time of the script: ( 0 minutes 11.384 seconds)