Note
Click here to download the full example code
2.22. Kuramoto-Sivashinsky - Compiled methods¶
This example implements a scalar PDE using a custom class with a numba-compiled method for accelerated calculations. We here consider the Kuramoto–Sivashinsky equation, which for instance describes the dynamics of flame fronts:
\[\partial_t u = -\frac12 |\nabla u|^2 - \nabla^2 u - \nabla^4 u\]

0%| | 0/10.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/10.0 [00:00<?, ?it/s]
0%| | 0/10.0 [00:09<?, ?it/s]
0%| | 0.01/10.0 [00:10<2:54:42, 1049.33s/it]
0%| | 0.02/10.0 [00:10<1:27:16, 524.69s/it]
2%|1 | 0.16/10.0 [00:10<10:45, 65.59s/it]
60%|#####9 | 5.95/10.0 [00:10<00:07, 1.77s/it]
60%|#####9 | 5.95/10.0 [00:10<00:07, 1.77s/it]
100%|##########| 10.0/10.0 [00:10<00:00, 1.05s/it]
100%|##########| 10.0/10.0 [00:10<00:00, 1.05s/it]
import numba as nb
from pde import PDEBase, ScalarField, UnitGrid
class KuramotoSivashinskyPDE(PDEBase):
"""Implementation of the normalized Kuramoto–Sivashinsky equation"""
def __init__(self, bc="auto_periodic_neumann"):
super().__init__()
self.bc = bc
def evolution_rate(self, state, t=0):
"""implement the python version of the evolution equation"""
state_lap = state.laplace(bc=self.bc)
state_lap2 = state_lap.laplace(bc=self.bc)
state_grad_sq = state.gradient_squared(bc=self.bc)
return -state_grad_sq / 2 - state_lap - state_lap2
def _make_pde_rhs_numba(self, state):
"""nunmba-compiled implementation of the PDE"""
gradient_squared = state.grid.make_operator("gradient_squared", bc=self.bc)
laplace = state.grid.make_operator("laplace", bc=self.bc)
@nb.jit
def pde_rhs(data, t):
return -0.5 * gradient_squared(data) - laplace(data + laplace(data))
return pde_rhs
grid = UnitGrid([32, 32]) # generate grid
state = ScalarField.random_uniform(grid) # generate initial condition
eq = KuramotoSivashinskyPDE() # define the pde
result = eq.solve(state, t_range=10, dt=0.01)
result.plot()
Total running time of the script: ( 0 minutes 10.696 seconds)