# 2.18. Kuramoto-Sivashinsky - Using custom class¶

This example implements a scalar PDE using a custom class. We here consider the Kuramoto–Sivashinsky equation, which for instance describes the dynamics of flame fronts:

$\partial_t u = -\frac12 |\nabla u|^2 - \nabla^2 u - \nabla^4 u$
  0%|          | 0/10.0 [00:00<?, ?it/s]
Initializing:   0%|          | 0/10.0 [00:00<?, ?it/s]
0%|          | 0/10.0 [00:00<?, ?it/s]
2%|2         | 0.24/10.0 [00:00<00:15,  1.61s/it]
6%|6         | 0.62/10.0 [00:00<00:06,  1.42it/s]
23%|##2       | 2.28/10.0 [00:00<00:02,  3.46it/s]
58%|#####8    | 5.81/10.0 [00:01<00:00,  5.15it/s]
58%|#####8    | 5.81/10.0 [00:01<00:01,  3.45it/s]
100%|##########| 10.0/10.0 [00:01<00:00,  5.94it/s]
100%|##########| 10.0/10.0 [00:01<00:00,  5.93it/s]


from pde import PDEBase, ScalarField, UnitGrid

class KuramotoSivashinskyPDE(PDEBase):
"""Implementation of the normalized Kuramoto–Sivashinsky equation"""

def evolution_rate(self, state, t=0):
"""implement the python version of the evolution equation"""
state_lap = state.laplace(bc="auto_periodic_neumann")
state_lap2 = state_lap.laplace(bc="auto_periodic_neumann")
state_grad = state.gradient(bc="auto_periodic_neumann")
return -state_grad.to_scalar("squared_sum") / 2 - state_lap - state_lap2

grid = UnitGrid([32, 32])  # generate grid
state = ScalarField.random_uniform(grid)  # generate initial condition

eq = KuramotoSivashinskyPDE()  # define the pde
result = eq.solve(state, t_range=10, dt=0.01)
result.plot()


Total running time of the script: ( 0 minutes 1.862 seconds)