Note
Click here to download the full example code
2.19. Custom Class for coupled PDEs¶
This example shows how to solve a set of coupled PDEs, the spatially coupled FitzHugh–Nagumo model, which is a simple model for the excitable dynamics of coupled Neurons:
\[\begin{split}\partial_t u &= \nabla^2 u + u (u - \alpha) (1 - u) + w \\
\partial_t w &= \epsilon u\end{split}\]
Here, \(\alpha\) denotes the external stimulus and \(\epsilon\) defines the recovery time scale. We implement this as a custom PDE class below.

0%| | 0/100.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/100.0 [00:00<?, ?it/s]
0%| | 0/100.0 [00:00<?, ?it/s]
0%| | 0.23/100.0 [00:00<01:36, 1.03it/s]
1%| | 0.71/100.0 [00:00<00:37, 2.65it/s]
3%|3 | 3.0/100.0 [00:00<00:15, 6.27it/s]
8%|7 | 7.97/100.0 [00:00<00:10, 8.54it/s]
15%|#5 | 15.35/100.0 [00:01<00:08, 9.56it/s]
24%|##4 | 24.35/100.0 [00:02<00:07, 10.04it/s]
34%|###4 | 34.29/100.0 [00:03<00:06, 10.31it/s]
45%|####4 | 44.77/100.0 [00:04<00:05, 10.46it/s]
56%|#####5 | 55.5/100.0 [00:05<00:04, 10.56it/s]
66%|######6 | 66.36/100.0 [00:06<00:03, 10.64it/s]
77%|#######7 | 77.31/100.0 [00:07<00:02, 10.68it/s]
88%|########8 | 88.25/100.0 [00:08<00:01, 10.72it/s]
99%|#########9| 99.22/100.0 [00:09<00:00, 10.74it/s]
99%|#########9| 99.22/100.0 [00:09<00:00, 10.66it/s]
100%|##########| 100.0/100.0 [00:09<00:00, 10.74it/s]
100%|##########| 100.0/100.0 [00:09<00:00, 10.74it/s]
from pde import FieldCollection, PDEBase, UnitGrid
class FitzhughNagumoPDE(PDEBase):
"""FitzHugh–Nagumo model with diffusive coupling"""
def __init__(self, stimulus=0.5, τ=10, a=0, b=0, bc="auto_periodic_neumann"):
super().__init__()
self.bc = bc
self.stimulus = stimulus
self.τ = τ
self.a = a
self.b = b
def evolution_rate(self, state, t=0):
v, w = state # membrane potential and recovery variable
v_t = v.laplace(bc=self.bc) + v - v**3 / 3 - w + self.stimulus
w_t = (v + self.a - self.b * w) / self.τ
return FieldCollection([v_t, w_t])
grid = UnitGrid([32, 32])
state = FieldCollection.scalar_random_uniform(2, grid)
eq = FitzhughNagumoPDE()
result = eq.solve(state, t_range=100, dt=0.01)
result.plot()
Total running time of the script: ( 0 minutes 9.674 seconds)