2.19. Custom Class for coupled PDEs

This example shows how to solve a set of coupled PDEs, the spatially coupled FitzHugh–Nagumo model, which is a simple model for the excitable dynamics of coupled Neurons:

\[\begin{split}\partial_t u &= \nabla^2 u + u (u - \alpha) (1 - u) + w \\ \partial_t w &= \epsilon u\end{split}\]

Here, \(\alpha\) denotes the external stimulus and \(\epsilon\) defines the recovery time scale. We implement this as a custom PDE class below.

pde coupled
  0%|          | 0/100.0 [00:00<?, ?it/s]
Initializing:   0%|          | 0/100.0 [00:00<?, ?it/s]
  0%|          | 0/100.0 [00:00<?, ?it/s]
  0%|          | 0.24/100.0 [00:00<01:28,  1.13it/s]
  1%|          | 0.74/100.0 [00:00<00:34,  2.86it/s]
  3%|3         | 3.08/100.0 [00:00<00:14,  6.71it/s]
  8%|8         | 8.32/100.0 [00:00<00:09,  9.33it/s]
 16%|#6        | 16.28/100.0 [00:01<00:07, 10.52it/s]
 26%|##6       | 26.1/100.0 [00:02<00:06, 11.06it/s]
 37%|###7      | 37.01/100.0 [00:03<00:05, 11.35it/s]
 48%|####8     | 48.5/100.0 [00:04<00:04, 11.52it/s]
 60%|######    | 60.3/100.0 [00:05<00:03, 11.63it/s]
 72%|#######2  | 72.25/100.0 [00:06<00:02, 11.71it/s]
 84%|########4 | 84.29/100.0 [00:07<00:01, 11.77it/s]
 96%|#########6| 96.37/100.0 [00:08<00:00, 11.82it/s]
 96%|#########6| 96.37/100.0 [00:08<00:00, 11.39it/s]
100%|##########| 100.0/100.0 [00:08<00:00, 11.82it/s]
100%|##########| 100.0/100.0 [00:08<00:00, 11.82it/s]

from pde import FieldCollection, PDEBase, UnitGrid


class FitzhughNagumoPDE(PDEBase):
    """FitzHugh–Nagumo model with diffusive coupling"""

    def __init__(self, stimulus=0.5, τ=10, a=0, b=0, bc="auto_periodic_neumann"):
        super().__init__()
        self.bc = bc
        self.stimulus = stimulus
        self.τ = τ
        self.a = a
        self.b = b

    def evolution_rate(self, state, t=0):
        v, w = state  # membrane potential and recovery variable

        v_t = v.laplace(bc=self.bc) + v - v**3 / 3 - w + self.stimulus
        w_t = (v + self.a - self.b * w) / self.τ

        return FieldCollection([v_t, w_t])


grid = UnitGrid([32, 32])
state = FieldCollection.scalar_random_uniform(2, grid)

eq = FitzhughNagumoPDE()
result = eq.solve(state, t_range=100, dt=0.01)
result.plot()

Total running time of the script: ( 0 minutes 8.800 seconds)