py-pde Documentation

 Release 0.20.0David Zwicker

CONTENTS

1 Getting started 3
1.1 Install using pip 3
1.2 Install using conda 3
1.3 Install from source 3
1.4 Package overview 5
2 Examples 7
2.1 Plotting a vector field 7
2.2 Solving Laplace's equation in 2d 8
2.3 Plotting a scalar field in cylindrical coordinates 9
2.4 Solving Poisson's equation in 1d 10
2.5 Simple diffusion equation 11
2.6 Kuramoto-Sivashinsky - Using PDE class 12
2.7 Spherically symmetric PDE 13
2.8 Diffusion on a Cartesian grid 15
2.9 Stochastic simulation 16
2.10 Time-dependent boundary conditions 17
2.11 Setting boundary conditions 18
2.12 1D problem - Using PDE class 19
2.13 Brusselator - Using the PDE class 20
2.14 Writing and reading trajectory data 21
2.15 Diffusion equation with spatial dependence 22
2.16 Using simulation trackers 23
2.17 Schrödinger's Equation 24
2.18 Kuramoto-Sivashinsky - Using custom class 26
2.19 Custom Class for coupled PDEs 27
2.20 1D problem - Using custom class 29
2.21 Visualizing a scalar field 30
2.22 Kuramoto-Sivashinsky - Compiled methods 31
2.23 Solver comparison 33
2.24 Custom PDE class: SIR model 35
2.25 Brusselator - Using custom class 37
3 User manual 39
3.1 Mathematical basics 39
3.2 Basic usage 41
3.3 Advanced usage 43
3.4 Performance 49
3.5 Contributing code 51
3.6 Citing the package 52
3.7 Code of Conduct 53
4 Reference manual 55
4.1 pde.fields package 55
4.2 pde.grids package 84
4.3 pde.pdes package 142
4.4 pde.solvers package 158
4.5 pde.storage package 164
4.6 pde.tools package 171
4.7 pde.trackers package 207
4.8 pde.visualization package 221
Python Module Index 231
Index 233

The py-pde python package provides methods and classes useful for solving partial differential equations (PDEs) of the form

$$
\partial_{t} u(\boldsymbol{x}, t)=\mathcal{D}[u(\boldsymbol{x}, t)]+\eta(u, \boldsymbol{x}, t),
$$

where \mathcal{D} is a (non-linear) differential operator that defines the time evolution of a (set of) physical fields u with possibly tensorial character, which depend on spatial coordinates \boldsymbol{x} and time t. The framework also supports stochastic differential equations in the Itô representation, where the noise is represented by η above.

The main audience for the package are researchers and students who want to investigate the behavior of a PDE and get an intuitive understanding of the role of the different terms and the boundary conditions. To support this, py-pde evaluates PDEs using the methods of lines with a finite-difference approximation of the differential operators. Consequently, the mathematical operator \mathcal{D} can be naturally translated to a function evaluating the evolution rate of the PDE.

Contents

GETTING STARTED

This py-pde package is developed for python 3.7+ and should run on all common platforms. The code is tested under Linux, Windows, and macOS.

1.1 Install using pip

The package is available on pypi, so you should be able to install it by running

```
pip install py-pde
```

In order to have all features of the package available, you might also want to install the following optional packages:

```
pip install h5py pandas pyfftw tqdm
```

Moreover, \mathbf{f} fmpeg needs to be installed and for creating movies.

1.2 Install using conda

The py-pde package is also available on conda using the conda-forge channel. You can thus install it using
conda install -c conda-forge py-pde
This installation includes all required dependencies to have all features of $p y$-pde.

1.3 Install from source

Installing from source can be necessary if the pypi installation does not work or if the latest source code should be installed from github.

1.3.1 Required prerequisites

The code builds on other python packages, which need to be installed for $p y$-pde to function properly. The required packages are listed in the table below:

Package	Minimal version	Usage
matplotlib	3.1	Visualizing results
numba	0.50	Just-in-time compilation to accelerate numerics
numpy	1.18	Handling numerical data
scipy	1.4	Miscellaneous scientific functions
sympy	1.5	Dealing with user-defined mathematical expressions

The simplest way to install these packages is to use the requirements.txt in the base folder:

```
pip install -r requirements.txt
```

Alternatively, these package can be installed via your operating system's package manager, e.g. using macports, homebrew, or conda. The package versions given above are minimal requirements, although this is not tested systematically. Generally, it should help to install the latest version of the package.

1.3.2 Optional packages

The following packages should be installed to use some miscellaneous features:

Package	Usage
h5py	Storing data in the hierarchical file format
ipywidgets	Jupyter notebook support
napari	Displaying images interactively
pandas	Handling tabular data
pyfftw	Faster Fourier transforms
tqdm	Display progress bars during calculations

For making movies, the ffmpeg should be available. Additional packages might be required for running the tests in the folder tests and to build the documentation in the folder docs. These packages are listed in the files requirements.txt in the respective folders.

1.3.3 Downloading py-pde

The package can be simply checked out from github.com/zwicker-group/py-pde. To import the package from any python session, it might be convenient to include the root folder of the package into the PYTHONPATH environment variable.
This documentation can be built by calling the make html in the docs folder. The final documentation will be available in docs/build/html. Note that a LaTeX documentation can be build using make latexpdf.

1.4 Package overview

The main aim of the pde package is to simulate partial differential equations in simple geometries. Here, the time evolution of a PDE is determined using the method of lines by explicitly discretizing space using fixed grids. The differential operators are implemented using the finite difference method. For simplicity, we consider only regular, orthogonal grids, where each axis has a uniform discretization and all axes are (locally) orthogonal. Currently, we support simulations on CartesianGrid, PolarSymGrid, SphericalSymGrid, and CylindricalSymGrid, with and without periodic boundaries where applicable.
Fields are defined by specifying values at the grid points using the classes ScalarField, VectorField, and Tensor2Field. These classes provide methods for applying differential operators to the fields, e.g., the result of applying the Laplacian to a scalar field is returned by calling the method laplace (), which returns another instance of Scalarfield, whereas gradient () returns a Vectorfield. Combining these functions with ordinary arithmetics on fields allows to represent the right hand side of many partial differential equations that appear in physics. Importantly, the differential operators work with flexible boundary conditions.

The PDEs to solve are represented as a separate class inheriting from PDEBase. One example defined in this package is the diffusion equation implemented as DiffusionPDE, but more specific situations need to be implemented by the user. Most notably, PDEs can be specified by their expression using the convenient PDE class.
The PDEs are solved using solver classes, where a simple explicit solver is implemented by ExplicitSolver, but more advanced implementations can be done. To obtain more details during the simulation, trackers can be attached to the solver instance, which analyze intermediate states periodically. Typical trackers include ProgressTracker (display simulation progress), Plot Tracker (display images of the simulation), and SteadyStateTracker (aborting simulation when a stationary state is reached). Others can be found in the trackers module. Moreover, we provide MemoryStorage and FileStorage, which can be used as trackers to store the intermediate state to memory and to a file, respectively.

EXAMPLES

These are example scripts using the py-pde package, which illustrates some of the most important features of the package.

2.1 Plotting a vector field

This example shows how to initialize and visualize the vector field $\boldsymbol{u}=(\sin (x), \cos (x))$.


```
from pde import CartesianGrid, VectorField
grid = CartesianGrid([[-2, 2], [-2, 2]], 32)
```

field = VectorField.from_expression(grid, ["sin(x)", "cos(x)"])
field.plot(method="streamplot", title="Stream plot")

Total running time of the script: (0 minutes 0.814 seconds)

2.2 Solving Laplace's equation in 2d

This example shows how to solve a 2d Laplace equation with spatially varying boundary conditions.


```
import numpy as np
from pde import CartesianGrid, solve_laplace_equation
grid = CartesianGrid([[0, 2 * np.pi]] * 2, 64)
bcs = [{"value": "sin(y)"}, {"value": "sin(x)"}]
res = solve_laplace_equation(grid, bcs)
res.plot()
```

Total running time of the script: (0 minutes 1.185 seconds)

2.3 Plotting a scalar field in cylindrical coordinates

This example shows how to initialize and visualize the scalar field $u=\sqrt{z} \exp \left(-r^{2}\right)$ in cylindrical coordinates.


```
from pde import CylindricalSymGrid, ScalarField
grid = CylindricalSymGrid(radius=3, bounds_z=[0, 4], shape=16)
field = ScalarField.from_expression(grid, "sqrt(z) * exp(-r**2)")
field.plot(title="Scalar field in cylindrical coordinates")
```

Total running time of the script: (0 minutes 0.434 seconds)

2.4 Solving Poisson's equation in 1d

This example shows how to solve a 1d Poisson equation with boundary conditions.


```
from pde import CartesianGrid, ScalarField, solve_poisson_equation
grid = CartesianGrid([[0, 1]], 32, periodic=False)
field = ScalarField(grid, 1)
result = solve_poisson_equation(field, bc=[{"value": 0}, {"derivative": 1}])
result.plot()
```

Total running time of the script: (0 minutes 0.095 seconds)

2.5 Simple diffusion equation

This example solves a simple diffusion equation in two dimensions.

Out:

```
0%| | 0/10.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/10.0 [00:00<?, ?it/s]
    0%| | 0/10.0 [00:11<?, ?it/s]
    0%| | 0.00316/10.0 [00:11<10:22:50, 3738.28s/it]
    1%| | 0.0546/10.0 [00:11<35:52, 216.45s/it]
    8%|7 | 0.76946/10.0 [00:11<02:21, 15.36s/it]
    8%|7 | 0.76946/10.0 [00:11<02:21, 15.38s/it]
100%|##########| 10.0/10.0 [00:11<00:00, 1.18s/it]
100%|##########| 10.0/10.0 [00:11<00:00, 1.18s/it]
```

```
from pde import DiffusionPDE, ScalarField, UnitGrid
grid = UnitGrid([64, 64]) # generate grid
state = ScalarField.random_uniform(grid, 0.2, 0.3) # generate initial condition
```

(continues on next page)

```
eq = DiffusionPDE(diffusivity=0.1) # define the pde
result = eq.solve(state, t_range=10)
result.plot()
```

Total running time of the script: (0 minutes 12.051 seconds)

2.6 Kuramoto-Sivashinsky - Using PDE class

This example implements a scalar PDE using the $P D E$. We here consider the Kuramoto-Sivashinsky equation, which for instance describes the dynamics of flame fronts:

$$
\partial_{t} u=-\frac{1}{2}|\nabla u|^{2}-\nabla^{2} u-\nabla^{4} u
$$

Out:

```
| 0/10.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/10.0 [00:00<?, ?it/s]
    0%| | 0/10.0 [00:12<?, ?it/s]
    0%| | 0.01/10.0 [00:25<7:06:03, 2558.92s/it]
    0%| | 0.02/10.0 [00:28<3:55:57, 1418.62s/it]
```

```
    0%| | 0.03/10.0 [00:28<2:37:09, 945.76s/it]
    1%|1 | 0.1/10.0 [00:28<46:48, 283.73s/it]
45%|####5 | 4.55/10.0 [00:28<00:33, 6.24s/it]
45%|####5 | 4.55/10.0 [00:28<00:34, 6.24s/it]
100%|##########| 10.0/10.0 [00:28<00:00, 2.84s/it]
100%|##########| 10.0/10.0 [00:28<00:00, 2.84s/it]
```

```
from pde import PDE, ScalarField, UnitGrid
grid = UnitGrid([32, 32]) # generate grid
state = ScalarField.random_uniform(grid) # generate initial condition
eq = PDE({"u": "-gradient_squared(u) / 2 - laplace(u + laplace(u))"}) # define theь
\hookrightarrowpde
result = eq.solve(state, t_range=10, dt=0.01)
result.plot()
```

Total running time of the script: (0 minutes 28.571 seconds)

2.7 Spherically symmetric PDE

This example illustrates how to solve a PDE in a spherically symmetric geometry.

Out:


```
from pde import DiffusionPDE, ScalarField, SphericalSymGrid
grid = SphericalSymGrid(radius=[1, 5], shape=128) # generate grid
state = ScalarField.random_uniform(grid) # generate initial condition
eq = DiffusionPDE(0.1) # define the PDE
result = eq.solve(state, t_range=0.1, dt=0.001)
result.plot(kind="image")
```

Total running time of the script: (0 minutes 4.420 seconds)

2.8 Diffusion on a Cartesian grid

This example shows how to solve the diffusion equation on a Cartesian grid.

Out:

```
0%| | 0/1.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/1.0 [00:00<?, ?it/s]
    0%| | 0/1.0 [00:06<?, ?it/s]
    1%|1 | 0.01/1.0 [00:07<12:53, 780.94s/it]
    2%|2 | 0.02/1.0 [00:08<07:17, 445.93s/it]
    3%|3 | 0.03/1.0 [00:08<04:48, 297.30s/it]
    27%|##7 | 0.27/1.0 [00:08<00:24, 33.03s/it]
    27%|##7 | 0.27/1.0 [00:08<00:24, 33.04s/it]
100%|##########| 1.0/1.0 [00:08<00:00, 8.92s/it]
100%|##########| 1.0/1.0 [00:08<00:00, 8.92s/it]
```

```
from pde import CartesianGrid, DiffusionPDE, ScalarField
grid = CartesianGrid([[-1, 1], [0, 2]], [30, 16]) # generate grid
state = ScalarField(grid) # generate initial condition
state.insert([0, 1], 1)
eq = DiffusionPDE(0.1) # define the pde
result = eq.solve(state, t_range=1, dt=0.01)
result.plot(cmap="magma")
```

Total running time of the script: (0 minutes 9.071 seconds)

2.9 Stochastic simulation

This example illustrates how a stochastic simulation can be done.


```
from pde import KPZInterfacePDE, MemoryStorage, ScalarField, UnitGrid, plot_kymograph
grid = UnitGrid([64]) # generate grid
state = ScalarField.random_harmonic(grid) # generate initial condition
eq = KPZInterfacePDE(noise=1) # define the SDE
storage = MemoryStorage()
```

```
eq.solve(state, t_range=10, dt=0.01, tracker=storage.tracker(0.5))
```

plot_kymograph (storage)

Total running time of the script: (0 minutes 8.290 seconds)

2.10 Time-dependent boundary conditions

This example solves a simple diffusion equation in one dimensions with time-dependent boundary conditions.


```
from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph
grid = CartesianGrid([[0, 10]], [64]) # generate grid
state = ScalarField(grid) # generate initial condition
eq = PDE({"c": "laplace(c)"}, bc={"value_expression": "sin(t)"})
storage = MemoryStorage()
eq.solve(state, t_range=20, dt=1e-4, tracker=storage.tracker(0.1))
# plot the trajectory as a space-time plot
plot_kymograph(storage)
```

Total running time of the script: (0 minutes 5.978 seconds)

2.11 Setting boundary conditions

This example shows how different boundary conditions can be specified.

Out:

```
0%| | 0/10.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/10.0 [00:00<?, ?it/s]
    0%| | 0/10.0 [00:07<?, ?it/s]
    0%| | 0.005/10.0 [00:08<4:33:37, 1642.61s/it]
    0%| | 0.01/10.0 [00:09<2:32:54, 918.36s/it]
    0%| | 0.015/10.0 [00:09<1:41:53, 612.27s/it]
    2%|2 | 0.245/10.0 [00:09<06:05, 37.49s/it]
    2%|2 | 0.245/10.0 [00:09<06:06, 37.54s/it]
100%|##########| 10.0/10.0 [00:09<00:00, 1.09it/s]
100%|##########| 10.0/10.0 [00:09<00:00, 1.09it/s]
```

```
from pde import DiffusionPDE, ScalarField, UnitGrid
grid = UnitGrid([32, 32], periodic=[False, True]) # generate grid
```

(continues on next page)
(continued from previous page)

```
state = ScalarField.random_uniform(grid, 0.2, 0.3) # generate initial condition
# set boundary conditions `bc` for all axes
bc_x_left = {"derivative": 0.1}
bc_x_right = {"value": "sin(y / 2)"}
bc_x = [bc_x_left, bc_x_right]
bc_y = "periodic"
eq = DiffusionPDE(bc=[bc_x, bc_y])
result = eq.solve(state, t_range=10, dt=0.005)
result.plot()
```

Total running time of the script: (0 minutes 9.335 seconds)

2.12 1D problem - Using PDE class

This example implements a PDE that is only defined in one dimension. Here, we chose the Korteweg-de Vries equation, given by

$$
\partial_{t} \phi=6 \phi \partial_{x} \phi-\partial_{x}^{3} \phi
$$

which we implement using the $P D E$.


```
from math import pi
from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph
# initialize the equation and the space
eq = PDE({"\psi": "6 * \psi * d_dx(\psi) - laplace(d_dx(\psi))"})
grid = CartesianGrid([[0, 2 * pi]], [32], periodic=True)
state = ScalarField.from_expression(grid, "sin(x)")
# solve the equation and store the trajectory
storage = MemoryStorage()
eq.solve(state, t_range=3, tracker=storage.tracker(0.1))
# plot the trajectory as a space-time plot
plot_kymograph(storage)
```

Total running time of the script: (0 minutes 7.105 seconds)

2.13 Brusselator - Using the PDE class

This example uses the $P D E$ class to implement the Brusselator with spatial coupling,

$$
\begin{aligned}
\partial_{t} u & =D_{0} \nabla^{2} u+a-(1+b) u+v u^{2} \\
\partial_{t} v & =D_{1} \nabla^{2} v+b u-v u^{2}
\end{aligned}
$$

Here, D_{0} and D_{1} are the respective diffusivity and the parameters a and b are related to reaction rates.
Note that the same result can also be achieved with a full implementation of a custom class, which allows for more flexibility at the cost of code complexity.

Time: 20

Field u


```
from pde import PDE, FieldCollection, PlotTracker, ScalarField, UnitGrid
# define the PDE
a, b = 1, 3
d0, d1 = 1, 0.1
eq = PDE(
    {
    "u": f"{d0}* & aplace(u) + {a} - ({b} + 1) * u + u**2 * v",
```

```
        "v": f"{d1} * laplace(v) + {b} * u - u**2 * v",
    }
)
# initialize state
grid = UnitGrid([64, 64])
u = ScalarField(grid, a, label="Field $u$")
v = b / a + 0.1 * ScalarField.random_normal(grid, label="Field $v$")
state = FieldCollection([u, v])
# simulate the pde
tracker = PlotTracker(interval=1, plot_args={"vmin": 0, "vmax": 5})
sol = eq.solve(state, t_range=20, dt=1e-3, tracker=tracker)
```

Total running time of the script: (0 minutes 27.014 seconds)

2.14 Writing and reading trajectory data

This example illustrates how to store intermediate data to a file for later post-processing. The storage frequency is an argument to the tracker.


```
from tempfile import NamedTemporaryFile
import pde
# define grid, state and pde
grid = pde.UnitGrid([32])
state = pde.FieldCollection(
    [pde.ScalarField.random_uniform(grid), pde.VectorField.random_uniform(grid)]
)
eq = pde.PDE({"s": "-0.1 * s", "v": "-v"})
# get a temporary file to write data to
path = NamedTemporaryFile(suffix=".hdf5")
# run a simulation and write the results
writer = pde.FileStorage(path.name, write_mode="truncate")
```

```
eq.solve(state, t_range=32, dt=0.01, tracker=writer.tracker(1))
# read the simulation back in again
reader = pde.FileStorage(path.name, write_mode="read_only")
pde.plot_kymographs(reader)
```

Total running time of the script: (0 minutes 5.718 seconds)

2.15 Diffusion equation with spatial dependence

This example solve the Diffusion equation with a heterogeneous diffusivity:

$$
\partial_{t} c=\nabla(D(\boldsymbol{r}) \nabla c)
$$

using the $P D E$ class. In particular, we consider $D(x)=1.01+\tanh (x)$, which gives a low diffusivity on the left side of the domain.

Note that the naive implementation, $\operatorname{PDE}(\{" \mathrm{C"}: \quad$ "divergence ($1.01+\tanh (\mathrm{x})$) * gradient (c))" \}), has numerical instabilities. This is because two finite difference approximations are nested. To arrive at a more stable numerical scheme, it is advisable to expand the divergence,

$$
\partial_{t} c=D \nabla^{2} c+\nabla D \cdot \nabla c
$$


```
from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph
# Expanded definition of the PDE
diffusivity = "1.01 + tanh(x)"
term_1 = f"({diffusivity}) * laplace(c)"
term_2 = f"dot(gradient({diffusivity}), gradient(c))"
eq = PDE({"C": f"{term_1} + {term_2}"}, bc={"value": 0})
grid = CartesianGrid([[-5, 5]], 64) # generate grid
field = ScalarField(grid, 1) # generate initial condition
storage = MemoryStorage() # store intermediate information of the simulation
res = eq.solve(field, 100, dt=1e-3, tracker=storage.tracker(1)) # solve the PDE
plot_kymograph(storage) # visualize the result in a space-time plot
```

Total running time of the script: (0 minutes 11.488 seconds)

2.16 Using simulation trackers

This example illustrates how trackers can be used to analyze simulations.
Time: 3

Out:

```
    0%| | 0/3.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/3.0 [00:00<?, ?it/s]
    0%| | 0/3.0 [00:07<?, ?it/s]
    3%|3 | 0.1/3.0 [00:08<04:03, 83.92s/it]
    7%|6 | 0.2/3.0 [00:09<02:10, 46.46s/it]
    10%|9 | 0.3/3.0 [00:09<01:23, 30.98s/it]
    13%|#3 | 0.4/3.0 [00:09<01:00, 23.23s/it]
    13%|#3 | 0.4/3.0 [00:09<01:01, 23.69s/it]
100%|##########| 3.0/3.0 [00:09<00:00, 3.16s/it]
100%|##########| 3.0/3.0 [00:09<00:00, 3.16s/it]
509.7241540373601
509.7241540373601
509.72415403736017
509.7241540373601
```

```
import pde
grid = pde.UnitGrid([32, 32]) # generate grid
state = pde.ScalarField.random_uniform(grid) # generate initial condition
storage = pde.MemoryStorage()
trackers = [
    "progress", # show progress bar during simulation
    "steady_state", # abort when steady state is reached
    storage.tracker(interval=1), # store data every simulation time unit
    pde.PlotTracker(show=True), # show images during simulation
    # print some output every 5 real seconds:
    pde.PrintTracker(interval=pde.RealtimeIntervals(duration=5)),
]
eq = pde.DiffusionPDE(0.1) # define the PDE
eq.solve(state, 3, dt=0.1, tracker=trackers)
for field in storage:
    print(field.integral)
```

Total running time of the script: (0 minutes 9.539 seconds)

2.17 Schrödinger's Equation

This example implements a complex PDE using the $P D E$. We here chose the Schrödinger equation without a spatial potential in non-dimensional form:

$$
i \partial_{t} \psi=-\nabla^{2} \psi
$$

Note that the example imposes Neumann conditions at the wall, so the wave packet is expected to reflect off the wall.


```
from math import sqrt
from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph
grid = CartesianGrid([[0, 20]], 128, periodic=False) # generate grid
# create a (normalized) wave packet with a certain form as an initial condition
initial_state = ScalarField.from_expression(grid, "exp(I * 5 * x) * exp(-(x - 10)**2)
\hookrightarrow")
initial_state /= sqrt(initial_state.to_scalar("norm_squared").integral.real)
eq = PDE({"\psi": f"I * laplace(\psi)"}) # define the pde
# solve the pde and store intermediate data
storage = MemoryStorage()
eq.solve(initial_state, t_range=2.5, dt=1e-5, tracker=[storage.tracker(0.02)])
# visualize the results as a space-time plot
plot_kymograph(storage, scalar="norm_squared")
```

Total running time of the script: (0 minutes 5.276 seconds)

2.18 Kuramoto-Sivashinsky - Using custom class

This example implements a scalar PDE using a custom class. We here consider the Kuramoto-Sivashinsky equation, which for instance describes the dynamics of flame fronts:

$$
\partial_{t} u=-\frac{1}{2}|\nabla u|^{2}-\nabla^{2} u-\nabla^{4} u
$$

Out:

```
0%| | 0/10.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/10.0 [00:00<?, ?it/s]
    0%| | 0/10.0 [00:00<?, ?it/s]
    2%|2 | 0.24/10.0 [00:06<04:23, 27.00s/it]
    3%|3 | 0.33/10.0 [00:06<03:10, 19.65s/it]
    17%|#6 | 1.7/10.0 [00:06<00:31, 3.85s/it]
    72%|#######1 | 7.15/10.0 [00:06<00:02, 1.05it/s]
    72%|#######1 | 7.15/10.0 [00:06<00:02, 1.03it/s]
100%|##########| 10.0/10.0 [00:06<00:00, 1.45it/s]
100%|##########| 10.0/10.0 [00:06<00:00, 1.45it/s]
```

```
from pde import PDEBase, ScalarField, UnitGrid
class KuramotoSivashinskyPDE(PDEBase):
    """Implementation of the normalized Kuramoto-Sivashinsky equation"""
    def evolution_rate(self, state, t=0):
        """implement the python version of the evolution equation"""
        state_lap = state.laplace(bc="auto_periodic_neumann")
        state_lap2 = state_lap.laplace(bc="auto_periodic_neumann")
        state_grad = state.gradient(bc="auto_periodic_neumann")
        return -state_grad.to_scalar("squared_sum") / 2 - state_lap - state_lap2
grid = UnitGrid([32, 32]) # generate grid
state = ScalarField.random_uniform(grid) # generate initial condition
eq = KuramotoSivashinskyPDE() # define the pde
result = eq.solve(state, t_range=10, dt=0.01)
result.plot()
```

Total running time of the script: (0 minutes 7.046 seconds)

2.19 Custom Class for coupled PDEs

This example shows how to solve a set of coupled PDEs, the spatially coupled FitzHugh-Nagumo model, which is a simple model for the excitable dynamics of coupled Neurons:

$$
\begin{aligned}
\partial_{t} u & =\nabla^{2} u+u(u-\alpha)(1-u)+w \\
\partial_{t} w & =\epsilon u
\end{aligned}
$$

Here, α denotes the external stimulus and ϵ defines the recovery time scale. We implement this as a custom PDE class below.

Out:

```
0%| | 0/100.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/100.0 [00:00<?, ?it/s]
```

(continued from previous page)

0\% 1	0/100.0 [00:00<?, ?it/s]		
0\% 1	0.24/100.0 [00:03<21:33,	$12.96 \mathrm{~s} / \mathrm{it}]$	
0\% 1	0.38/100.0 [00:03<13:37,	8.21s/it]	
$2 \% 11$	1.84/100.0 [00:03<02:50,	$1.74 \mathrm{~s} / \mathrm{it}]$	
$7 \% 17$	7.01/100.0 [00:03<00:46,	$2.02 i t / s]$	
17\% \\| \# 6	16.83/100.0 [00:04<00:19,	4.20it/s]	
30\% \\| \# \# \#	30.32/100.0 [00:04<00:10,	$6.41 \mathrm{it} / \mathrm{s}]$	
46\% \| \#\#\#\#6	46.18/100.0 [00:05<00:06,	8.28it/s]	
63\% \| \# \#\#\#\#\#3	63.4/100.0 [00:06<00:03,	$9.76 i t / s]$	
81\% \| \#\#\#\#\#\#\#\#1		81.39/100.0 [00:07<00:01,	$10.90 i t / s]$
100\%\|\#\#\#\#\#\#\#\#\#9		99.61/100.0 [00:08<00:00,	11.81it/s]
100\%\|\#\#\#\#\#\#\#\#\#91	99.61/100.0 [00:08<00:00,	11.78it/s]	
100\% \| \#\#\#\#\#\#\#\#\#\#		100.0/100.0 [00:08<00:00,	11.83it/s]
100\%\| \#\#\#\#\#\#\#\#\#\#		100.0/100.0 [00:08<00:00,	11.83it/s]

```
from pde import FieldCollection, PDEBase, UnitGrid
class FitzhughNagumoPDE (PDEBase):
    """FitzHugh-Nagumo model with diffusive coupling"""
    def __init__(self, stimulus=0.5, \tau=10, a=0, b=0, bc="auto_periodic_neumann"):
        self.bc = bc
        self.stimulus = stimulus
        self.\tau = \tau
        self.a = a
        self.b = b
    def evolution_rate(self, state, t=0):
        v, w = state # membrane potential and recovery variable
        v_t = v.laplace(bc=self.bc) + v - v**3 / 3 - w + self.stimulus
        w_t = (v + self.a - self.b * w) / self.\tau
        return FieldCollection([v_t, w_t])
grid = UnitGrid([32, 32])
state = FieldCollection.scalar_random_uniform(2, grid)
eq = FitzhughNagumoPDE()
result = eq.solve(state, t_range=100, dt=0.01)
result.plot()
```

Total running time of the script: (0 minutes 8.745 seconds)

2.20 1D problem - Using custom class

This example implements a PDE that is only defined in one dimension. Here, we chose the Korteweg-de Vries equation, given by

$$
\partial_{t} \phi=6 \phi \partial_{x} \phi-\partial_{x}^{3} \phi
$$

which we implement using a custom PDE class below.


```
from math import pi
from pde import CartesianGrid, MemoryStorage, PDEBase, ScalarField, plot_kymograph
class KortewegDeVriesPDE (PDEBase):
    """Korteweg-de Vries equation"""
    def evolution_rate(self, state, t=0):
        """implement the python version of the evolution equation"""
        assert state.grid.dim == 1 # ensure the state is one-dimensional
        grad_x = state.gradient("auto_periodic_neumann") [0]
        return 6 * state * grad_x - grad_x.laplace("auto_periodic_neumann")
# initialize the equation and the space
```

```
grid = CartesianGrid([[0, 2 * pi]], [32], periodic=True)
state = ScalarField.from_expression(grid, "sin(x)")
# solve the equation and store the trajectory
storage = MemoryStorage()
eq = KortewegDeVriesPDE()
eq.solve(state, t_range=3, tracker=storage.tracker(0.1))
# plot the trajectory as a space-time plot
plot_kymograph(storage)
```

Total running time of the script: (0 minutes 4.231 seconds)

2.21 Visualizing a scalar field

This example displays methods for visualizing scalar fields.


```
import matplotlib.pyplot as plt
import numpy as np
from pde import CylindricalSymGrid, ScalarField
```

```
# create a scalar field with some noise
grid = CylindricalSymGrid(7, [0, 4 * np.pi], 64)
data = ScalarField.from_expression(grid, "sin(z) * exp(-r / 3)")
data += 0.05 * ScalarField.random_normal(grid)
# manipulate the field
smoothed = data.smooth() # Gaussian smoothing to get rid of the noise
projected = data.project("r") # integrate along the radial direction
sliced = smoothed.slice({"z": 1}) # slice the smoothed data
# create four plots of the field and the modifications
fig, axes = plt.subplots(nrows=2, ncols=2)
data.plot(ax=axes[0, 0], title="Original field")
smoothed.plot(ax=axes[1, 0], title="Smoothed field")
projected.plot(ax=axes[0, 1], title="Projection on axial coordinate")
sliced.plot(ax=axes[1, 1], title="Slice of smoothed field at $z=1$")
plt.subplots_adjust(hspace=0.8)
plt.show()
```

Total running time of the script: (0 minutes 0.515 seconds)

2.22 Kuramoto-Sivashinsky - Compiled methods

This example implements a scalar PDE using a custom class with a numba-compiled method for accelerated calculations. We here consider the Kuramoto-Sivashinsky equation, which for instance describes the dynamics of flame fronts:

$$
\partial_{t} u=-\frac{1}{2}|\nabla u|^{2}-\nabla^{2} u-\nabla^{4} u
$$

Out:

```
    0%| | 0/10.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/10.0 [00:00<?, ?it/s]
    0%| | 0/10.0 [00:15<?, ?it/s]
    0%| | 0.01/10.0 [00:19<5:20:33, 1925.28s/it]
    0%| | 0.02/10.0 [00:21<2:57:17, 1065.90s/it]
    0%| | 0.03/10.0 [00:21<1:58:04, 710.61s/it]
    1%|1 | 0.1/10.0 [00:21<35:10, 213.19s/it]
    46%|####6 | 4.6/10.0 [00:21<00:25, 4.64s/it]
    46%|####6 | 4.6/10.0 [00:21<00:25, 4.64s/it]
100%|##########| 10.0/10.0 [00:21<00:00, 2.13s/it]
100%|##########| 10.0/10.0 [00:21<00:00, 2.13s/it]
```

```
import numba as nb
from pde import PDEBase, ScalarField, UnitGrid
class KuramotoSivashinskyPDE(PDEBase) :
```

```
    """Implementation of the normalized Kuramoto-Sivashinsky equation"""
    def __init__(self, bc="auto_periodic_neumann"):
    self.bc = bc
    def evolution_rate(self, state, t=0):
    """implement the python version of the evolution equation"""
    state_lap = state.laplace(bc=self.bc)
    state_lap2 = state_lap.laplace(bc=self.bc)
    state_grad_sq = state.gradient_squared(bc=self.bc)
    return -state_grad_sq / 2 - state_lap - state_lap2
    def _make_pde_rhs_numba(self, state):
    """nunmba-compiled implementation of the PDE"""
    gradient_squared = state.grid.make_operator("gradient_squared", bc=self.bc)
    laplace = state.grid.make_operator("laplace", bc=self.bc)
    @nb.jit
    def pde_rhs(data, t):
        return -0.5 * gradient_squared(data) - laplace(data + laplace(data))
    return pde_rhs
grid = UnitGrid([32, 32]) # generate grid
state = ScalarField.random_uniform(grid) # generate initial condition
eq = KuramotoSivashinskyPDE() # define the pde
result = eq.solve(state, t_range=10, dt=0.01)
result.plot()
```

Total running time of the script: (0 minutes 21.491 seconds)

2.23 Solver comparison

This example shows how to set up solvers explicitly and how to extract diagnostic information.

Out:
Diagnostic information from first run:
\{'controller': \{'t_start': 0, 't_end': 1.0, 'solver_class': 'ExplicitSolver', 'solver_ \hookrightarrow start': '2022-07-06 10:12:36.197643', 'profiler': \{'solver': 1.4591466370000035, $\left.\hookrightarrow^{\prime} t r a c k e r ': ~ 3.57669999857535 e-05\right\}, ~ ' s u c c e s s f u l ': ~ T r u e, ~ ' s t o p _r e a s o n ': ~ ' R e a c h e d ~ f i n a l _~$ \hookrightarrow time', 'solver_duration': '0:00:01.459303', 't_final': 1.0\}, 'package_version'. '0.
 $\hookrightarrow 001,{ }^{\prime}$ steps': 1000, 'scheme': 'euler', 'state_modifications': 0.0, 'dt_adaptive':
2.23. Solvéracómpárisónumba', 'stochastic': False, 'adaptive': False\}, 'jit_count': \{

```
Diagnostic information from second run:
{'controller': {'t_start': 0, 't_end': 1.0, 'solver_class': 'ExplicitSolver', 'solver_
\hookrightarrowstart': '2022-07-06 10:12:38.402686', 'profiler': {'solver': 2.665837649999986,
\hookrightarrow'tracker': 3.635100003407388e-05}, 'successful': True, 'stop_reason': 'Reached
\hookrightarrowfinal time', 'solver_duration': '0:00:02.666077', 't_final': 1.08972255772386},
\hookrightarrow'package_version': '0.20.0', 'solver': {'class': 'ExplicitSolver', 'pde_class':
\hookrightarrow'DiffusionPDE', 'dt': 0.001, 'steps': 16, 'scheme': 'runge-kutta', 'state_
\hookrightarrowmodifications': 0.0, 'dt_adaptive': True, 'dt_last': 0.1635705137352299, 'backend':
\hookrightarrow'numba', 'stochastic': False, 'adaptive': True}, 'jit_count': {'make_stepper': 3,
\hookrightarrow'simulation': 0}}
Diagnostic information from third run:
{'controller': {'t_start': 0, 't_end': 1.0, 'solver_class': 'ScipySolver', 'solver_
\hookrightarrowstart': '2022-07-06 10:12:41.824565', 'profiler': {'solver': 0.003875641999997015,
\hookrightarrow'tracker': 3.7002000027541726e-05}, 'successful': True, 'stop_reason': 'Reached_
\hookrightarrowfinal time', 'solver_duration': '0:00:00.003939', 't_final': 1.0}, 'package_version
\hookrightarrow': '0.20.0', 'solver': {'class': 'ScipySolver', 'pde_class': 'DiffusionPDE', 'dt':\longleftarrow
\hookrightarrowNone, 'steps': 50, 'stochastic': False, 'backend': 'numba'}, 'jit_count': {'make_
\hookrightarrowstepper': 1, 'simulation': 0}}
```

```
import pde
# initialize the grid, an initial condition, and the PDE
grid = pde.UnitGrid([32, 32])
field = pde.ScalarField.random_uniform(grid, -1, 1)
eq = pde.DiffusionPDE()
# try the explicit solver
solver1 = pde.ExplicitSolver(eq)
controller1 = pde.Controller(solver1, t_range=1, tracker=None)
sol1 = controller1.run(field, dt=1e-3)
sol1.label = "explicit solver"
print("Diagnostic information from first run:")
print(controller1.diagnostics)
print()
# try an explicit solver with adaptive time steps
solver2 = pde.ExplicitSolver(eq, scheme="runge-kutta", adaptive=True)
controller2 = pde.Controller(solver2, t_range=1, tracker=None)
sol2 = controller2.run(field, dt=1e-3)
sol2.label = "explicit, adaptive solver"
print("Diagnostic information from second run:")
print(controller2.diagnostics)
print()
# try the standard scipy solver
solver3 = pde.ScipySolver(eq)
controller3 = pde.Controller(solver3, t_range=1, tracker=None)
sol3 = controller3.run(field)
sol3.label = "scipy solver"
```

(continues on next page)

```
print("Diagnostic information from third run:")
print(controller3.diagnostics)
print()
# plot both fields and give the deviation as the title
title = f"Deviation: {((sol1 - sol2)**2).average:.2g}, {((sol1 - sol3)**2).average:.
\hookrightarrow2g}"
pde.FieldCollection([sol1, sol2, sol3]).plot(title=title)
```

Total running time of the script: (0 minutes 13.042 seconds)

2.24 Custom PDE class: SIR model

This example implements a spatially coupled SIR model with the following dynamics for the density of susceptible, infected, and recovered individuals:

$$
\begin{aligned}
\partial_{t} s & =D \nabla^{2} s-\beta i s \\
\partial_{t} i & =D \nabla^{2} i+\beta i s-\gamma i \\
\partial_{t} r & =D \nabla^{2} r+\gamma i
\end{aligned}
$$

Here, D is the diffusivity, β the infection rate, and γ the recovery rate.

Out:

```
    0%| | 0/50.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/50.0 [00:00<?, ?it/s]
    0%| | 0/50.0 [00:00<?, ?it/s]
    0%| | 0.02/50.0 [00:03<2:33:05, 183.79s/it]
    0%| | 0.03/50.0 [00:03<1:42:04, 122.57s/it]
    1%| | 0.29/50.0 [00:03<10:33, 12.75s/it]
    4%|4 | 2.16/50.0 [00:03<01:24, 1.77s/it]
    15%|#4 | 7.27/50.0 [00:04<00:24, 1.74it/s]
    32%|###1 | 15.8/50.0 [00:04<00:10, 3.19it/s]
    51%|#####1 | 25.57/50.0 [00:05<00:05, 4.41it/s]
    72%|#######2 | 36.18/50.0 [00:06<00:02, 5.40it/s]
    95%|#########4| 47.33/50.0 [00:07<00:00, 6.19it/s]
    95%|#########4| 47.33/50.0 [00:08<00:00, 5.91it/s]
100%|##########| 50.0/50.0 [00:08<00:00, 6.25it/s]
100%|##########| 50.0/50.0 [00:08<00:00, 6.25it/s]
```

```
from pde import FieldCollection, PDEBase, PlotTracker, ScalarField, UnitGrid
class SIRPDE(PDEBase):
    """SIR-model with diffusive mobility"""
    def __init__(
        self, beta=0.3, gamma=0.9, diffusivity=0.1, bc="auto_periodic_neumann"
    ):
        self.beta = beta # transmission rate
        self.gamma = gamma # recovery rate
        self.diffusivity = diffusivity # spatial mobility
        self.bc = bc # boundary condition
    def get_state(self, s, i):
        """generate a suitable initial state"""
        norm = (s + i).data.max() # maximal density
        if norm > 1:
            s /= norm
            i /= norm
        s.label = "Susceptible"
        i.label = "Infected"
            # create recovered field
            r = ScalarField(s.grid, data=1 - s - i, label="Recovered")
            return FieldCollection([s, i, r])
    def evolution_rate(self, state, t=0):
        s, i, r = state
        diff = self.diffusivity
        ds_dt = diff * s.laplace(self.bc) - self.beta * i * s
        di_dt = diff * i.laplace(self.bc) + self.beta * i * s - self.gamma * i
        dr_dt = diff * r.laplace(self.bc) + self.gamma * i
        return FieldCollection([ds_dt, di_dt, dr_dt])
eq = SIRPDE(beta=2, gamma=0.1)
# initialize state
grid = UnitGrid([32, 32])
s = ScalarField(grid, 1)
i = ScalarField(grid, 0)
i.data[0, 0] = 1
state = eq.get_state(s, i)
# simulate the pode
tracker = PlotTracker(interval=10, plot_args={"vmin": 0, "vmax": 1})
sol = eq.solve(state, t_range=50, dt=1e-2, tracker=["progress", tracker])
```

Total running time of the script: (0 minutes 8.161 seconds)

2.25 Brusselator - Using custom class

This example implements the Brusselator with spatial coupling,

$$
\begin{aligned}
& \partial_{t} u=D_{0} \nabla^{2} u+a-(1+b) u+v u^{2} \\
& \partial_{t} v=D_{1} \nabla^{2} v+b u-v u^{2}
\end{aligned}
$$

Here, D_{0} and D_{1} are the respective diffusivity and the parameters a and b are related to reaction rates.
Note that the PDE can also be implemented using the PDE class; see the example. However, that implementation is less flexible and might be more difficult to extend later.

Time: 20


```
import numba as nb
import numpy as np
from pde import FieldCollection, PDEBase, PlotTracker, ScalarField, UnitGrid
class BrusselatorPDE(PDEBase):
    """Brusselator with diffusive mobility"""
    def__init__(self, a=1, b=3, diffusivity=[1, 0.1], bc="auto_periodic_neumann"):
        self.a = a
        self.b = b
        self.diffusivity = diffusivity # spatial mobility
        self.bc = bc # boundary condition
    def get_initial_state(self, grid):
        """prepare a useful initial state"""
        u = ScalarField(grid, self.a, label="Field $u$")
        v = self.b / self.a + 0.1 * ScalarField.random_normal(grid, label="Field $v$")
        return FieldCollection([u, v])
    def evolution_rate(self, state, t=0):
        """pure python implementation of the PDE"""
        u, v = state
        rhs = state.copy()
        d0, d1 = self.diffusivity
        rhs[0] = d0 * u.laplace(self.bc) + self.a - (self.b + 1) * u + u**2 * v
        rhs[1] = d1 * v.laplace(self.bc) + self.b * u - u**2 * v
```

```
    return rhs
    def _make_pde_rhs_numba(self, state):
    """nunmba-compiled implementation of the PDE"""
    d0, d1 = self.diffusivity
    a, b = self.a, self.b
    laplace = state.grid.make_operator("laplace", bc=self.bc)
    @nb.jit
    def pde_rhs(state_data, t):
        u = state_data[0]
        v = state_data[1]
        rate = np.empty_like(state_data)
        rate[0] = d0 * laplace(u) + a - (1 + b) * u + v * u**2
        rate[1] = d1 * laplace(v) + b * u - v * u**2
        return rate
    return pde_rhs
# initialize state
grid = UnitGrid([64, 64])
eq = BrusselatorPDE(diffusivity=[1, 0.1])
state = eq.get_initial_state(grid)
# simulate the pde
tracker = PlotTracker(interval=1, plot_args={"vmin": 0, "vmax": 5})
sol = eq.solve(state, t_range=20, dt=1e-3, tracker=tracker)
```

Total running time of the script: (0 minutes 16.167 seconds)

USER MANUAL

3.1 Mathematical basics

To solve partial differential equations (PDEs), the $p y$-pde package provides differential operators to express spatial derivatives. These operators are implemented using the finite difference method to support various boundary conditions. The time evolution of the PDE is then calculated using the method of lines by explicitly discretizing space using the grid classes. This reduces the PDEs to a set of ordinary differential equations, which can be solved using standard methods as described below.

3.1.1 Curvilinear coordinates

The package supports multiple curvilinear coordinate systems. They allow to exploit symmetries present in physical systems. Consequently, many grids implemented in $p y$-pde inherently assume symmetry of the described fields. However, a drawback of curvilinear coordinates are the fact that the basis vectors now depend on position, which makes tensor fields less intuitive and complicates the expression of differential operators. To avoid confusion, we here specify the used coordinate systems explictely:

Polar coordinates

Polar coordinates describe points by a radius r and an angle ϕ in a two-dimensional coordinates system. They are defined by the transformation

$$
\left\{\begin{array}{l}
x=r \cos (\phi) \\
y=r \sin (\phi)
\end{array} \quad \text { for } r \in[0, \infty] \text { and } \phi \in[0,2 \pi)\right.
$$

The associated symmetric grid PolarSymGrid assumes that fields only depend on the radial coordinate r. Note that vector and tensor fields can still have components in the polar direction. In particular, vector fields still have two components: $\vec{v}(r)=v_{r}(r) \vec{e}_{r}+v_{\phi}(r) \vec{e}_{\phi}$.

Spherical coordinates

Spherical coordinates describe points by a radius r, an azimuthal angle θ, and a polar angle ϕ. The conversion to ordinary Cartesian coordinates reads

$$
\left\{\begin{array}{l}
x=r \sin (\theta) \cos (\phi) \\
y=r \sin (\theta) \sin (\phi) \quad \text { for } r \in[0, \infty], \theta \in[0, \pi], \text { and } \phi \in[0,2 \pi) \\
z=r \cos (\theta)
\end{array}\right.
$$

The associated symmetric grid SphericalSymGrid assumes that fields only depend on the radial coordinate r. Note that vector and tensor fields can still have components in the two angular direction.

Warning: Not all results of differential operators on vectorial and tensorial fields can be expressed in terms of fields that only depend on the radial coordinate r. In particular, the gradient of a vector field can only be calculated if the azimuthal component of the vector field vanishes. Similarly, the divergence of a tensor field can only be taken in special situations.

Cylindrical coordinates

Cylindrical coordinates describe points by a radius r, an axial coordinate z, and a polar angle ϕ. The conversion to ordinary Cartesian coordinates reads

$$
\left\{\begin{array}{l}
x=r \cos (\phi) \\
y=r \sin (\phi) \quad \text { for } r \in[0, \infty], z \in \mathbb{R}, \text { and } \phi \in[0,2 \pi) \\
z=z
\end{array}\right.
$$

The associated symmetric grid CylindricalSymGrid assumes that fields only depend on the coordinates r and z. Vector and tensor fields still specify all components in the three-dimensional space.

Warning: The order of components in the vector and tensor fields defined on cylindrical grids is different than in ordinary math. While it is common to use (r, ϕ, z), we here use the order (r, z, ϕ). It might thus be best to access components by name instead of index.

3.1.2 Spatial discretization

The finite differences scheme used by py-pde is currently restricted to orthogonal coordinate systems with uniform discretization. Because of the orthogonality, each axis of the grid can be discretized independently. For simplicity, we only consider uniform grids, where the support points are spaced equidistantly along a given axis, i.e., the discretization Δx is constant. If a given axis covers values in a range $\left[x_{\min }, x_{\mathrm{max}}\right.$], a discretization with N support points can then be though of as covering the axis with N equal-sized boxes; see inset. Field values are then specified for each box, i.e., the support points lie at the centers of the box:

$$
\begin{aligned}
x_{i} & =x_{\min }+\left(i+\frac{1}{2}\right) \Delta x \quad \text { for } \quad i=0, \ldots, N-1 \\
\Delta x & =\frac{x_{\max }-x_{\min }}{N}
\end{aligned}
$$

which is also indicated in the inset. Differential operators are implemented using the usual second-order central difference. This requires the introducing of virtual support points at x_{-1} and x_{N}, which can be determined from the boundary conditions at $x=x_{\min }$ and $x=x_{\text {max }}$, respectively.

3.1.3 Temporal evolution

Once the fields have been discretized, the PDE reduces to a set of coupled ordinary differential equations (ODEs), which can be solved using standard methods. This reduction is also known as the method of lines. The py-pde package implements the simple Euler scheme and a more advanced Runge-Kutta scheme in the ExplicitSolver class. For the simple implementations of these explicit methods, the user needs to specify a time step, which will be kept fixed. One problem with explicit solvers is that they require small time steps for some PDEs, which are then often called 'stiff PDEs'. Stiff PDEs can sometimes be solved more efficiently by using implicit methods. This package provides a simple implementation of the Backward Euler method in the ImplicitSolver class. Finally, more advanced methods are available by wrapping the scipy.integrate.solve_ivp() in the ScipySolver class.

3.2 Basic usage

We here describe the typical workflow to solve a PDE using py-pde. Throughout this section, we assume that the package has been imported using import pde.

3.2.1 Defining the geometry

The state of the system is described in a discretized geometry, also known as a grid. The package focuses on simple geometries, which work well for the employed finite difference scheme. Grids are defined by instance of various classes that capture the symmetries of the underlying space. In particular, the package offers Cartesian grids of 1 to 3 dimensions via CartesianGrid, as well as curvilinear coordinate for spherically symmetric systems in two dimension (PolarSymGrid) and three dimensions (SphericalSymGrid), as well as the special class CylindricalSymGrid for a cylindrical geometry which is symmetric in the angle.

All grids allow to set the size of the underlying geometry and the number of support points along each axis, which determines the spatial resolution. Moreover, most grids support periodic boundary conditions. For example, a rectangular grid with one periodic boundary condition can be specified as

```
grid = pde.CartesianGrid([[0, 10], [0, 5]], [20, 10], periodic=[True, False])
```

This grid will have a rectangular shape of 10×5 with square unit cells of side length 0.5 . Note that the grid will only be periodic in the x-direction.

3.2.2 Initializing a field

Fields specifying the values at the discrete points of the grid defined in the previous section. Most PDEs discussed in the package describe a scalar variable, which can be encoded th class Scalarfield. However, tensors with rank 1 (vectors) and rank 2 are also supported using VectorField and Tensor2Field, respectively. In any case, a field is initialized using a pre-defined grid, e.g., field $=$ pde. ScalarField(grid). Optional values allow to set the value of the grid, as well as a label that is later used in plotting, e.g., field1 = pde. ScalarField (grid, data=1, label="Ones"). Moreover, fields can be initialized randomly (field2 = pde.ScalarField. random_normal (grid, mean=0.5)) or from a mathematical expression, which may depend on the coordinates of the grid (field3 = pde. ScalarField.from_expression (grid, "x * y")).

All field classes support basic arithmetic operations and can be used much like numpy arrays. Moreover, they have methods for applying differential operators, e.g., the result of applying the Laplacian to a scalar field is returned by calling the method laplace (), which returns another instance of Scalarfield, whereas gradient () returns a VectorField. Combining these functions with ordinary arithmetics on fields allows to represent the right hand side of many partial differential equations that appear in physics. Importantly, the differential operators work with flexible boundary conditions.

3.2.3 Specifying the PDE

PDEs are also instances of special classes and a number of classical PDEs are already pre-defined in the module pde. pdes. Moreover, the special class PDE allows defining PDEs by simply specifying the expression on their right hand side. To see how this works in practice, let us consider the Kuramoto-Sivashinsky equation, $\partial_{t} u=-\nabla^{4} u-\nabla^{2} u-\frac{1}{2}|\nabla u|^{2}$, which describes the time evolution of a scalar field u. A simple implementation of this equation reads

```
eq = pde.PDE({"u": "-gradient_squared(u) / 2 - laplace(u + laplace(u))"})
```

Here, the argument defines the evolution rate for all fields (in this case only u). The expression on the right hand side can contain typical mathematical functions and the operators defined by the package.

3.2.4 Running the simulation

To solve the PDE, we first need to generate an initial condition, i.e., the initial values of the fields that are evolved forward in time by the PDE. This field also defined the geometry on which the PDE is solved. In the simplest case, the solution is then obtain by running

```
result = eq.solve(field, t_range=10, dt=1e-2)
```

Here, t range specifies the duration over which the PDE is considered and $d t$ specifies the time step. The result field will be defined on the same grid as the initial condition field, but instead contain the data value at the final time. Note that all intermediate states are discarded in the simulation above and no information about the dynamical evolution is retained. To study the dynamics, one can either analyze the evolution on the fly or store its state for subsequent analysis. Both these tasks are achieved using trackers, which analyze the simulation periodically. For instance, to store the state for some time points in memory, one uses

```
storage = pde.MemoryStorage()
result = eq.solve(field, t_range=10, dt=1e-3, tracker=["progress", storage.
\hookrightarrowtracker(1)])
```

Note that we also included the special identifier "progress" in the list of trackers, which shows a progress bar during the simulation. Another useful tracker is "plot" which displays the state on the fly.

3.2.5 Analyzing the results

Sometimes is suffices to plot the final result, which can be done using result. plot (). The final result can of course also be analyzed quantitatively, e.g., using result. average to obtain its mean value. If the intermediate states have been saved as indicated above, they can be analyzed subsequently:

```
for time, field in storage.items():
    print(f"t={time}, field={field.magnitude}")
```

Moreover, a movie of the simulation can be created using pde.movie (storage, filename=FILE), where FILE determines where the movie is written.

3.3 Advanced usage

3.3.1 Boundary conditions

A crucial aspect of partial differential equations are boundary conditions, which need to be specified at the domain boundaries. For the simple domains contained in py-pde, all boundaries are orthogonal to one of the axes in the domain, so boundary conditions need to be applied to both sides of each axis. Here, the lower side of an axis can have a differnt condition than the upper side. For instance, one can enforce the value of a field to be 4 at the lower side and its derivative (in the outward direction) to be 2 on the upper side using the following code:

```
bc_lower = {"value": 4}
bc_upper = {"derivative": 2}
bc = [bc_lower, bc_upper]
grid = pde.UnitGrid([16])
field = pde.ScalarField(grid)
field.laplace(bc)
```

Here, the Laplace operator applied to the field in the last line will respect the boundary conditions. Note that it suffices to give one condition if both sides of the axis require the same condition. For instance, to enforce a value of 3 on both side, one could simply use bc $=$ \{'value': 3\}. Vectorial boundary conditions, e.g., to calculate the vector gradient or tensor divergence, can have vectorial values for the boundary condition. Generally, only the normal components at a boundary need to be specified if an operator reduces the rank of a field, e.g., for divergences. Otherwise, e.g., for gradients and Laplacians, the full field needs to be specified at the boundary.

Boundary values that depend on space can be set by specifying a mathematical expression, which may depend on the coordinates of all axes:

```
# two different conditions for lower and upper end of x-axis
bc_x = [{"derivative": 0.1}, {"value": "sin(y / 2)"}]
# the same condition on the lower and upper end of the y-axis
bc_y = {"value": "sqre(1 + cos(x))"}
grid = UnitGrid([32, 32])
field = pde.ScalarField(grid)
field.laplace(bc=[bc_x, bc_y])
```

Warning: To interpret arbitrary expressions, the package uses exec (). It should therefore not be used in a context where malicious input could occur.

Inhomogeneous values can also be specified by directly supplying an array, whose shape needs to be compatible with the boundary, i.e., it needs to have the same shape as the grid but with the dimension of the axis along which the boundary is specified removed.
There exist also special boundary conditions that impose a time-dependent value (bc='value_expression') of the field or its derivative ($\mathrm{bc}=$ ' derivative_expression'). Beyond the spatial coordinates that are already supported for the constant conditiosn above, the expressions of these boundary conditions can depend on the time variable t. Note that PDEs need to supply the current time when setting the boundary conditions, e.g., when applying the differential operators. The pre-defined PDEs and the general class PDE already support time-dependent boundary conditions.

One important aspect about boundary conditions is that they need to respect the periodicity of the underlying grid. For instance, in a 2 d grid with one periodic axis, the following boundary condition can be used:

```
grid = pde.UnitGrid([16, 16], periodic=[True, False])
field = pde.ScalarField(grid)
bc = ["periodic", {"derivative": 0}]
field.laplace(bc)
```

For convenience, this typical situation can be described with the special boundary condition natural, e.g., calling the Laplace operator using field.laplace ("natural") is identical to the example above. Alternatively, this condition can be called auto_periodic_neumann to stress that this chooses between periodic and Neumann boundary conditions automatically. Similarly, the special condition auto_periodic_dirichlet enforces periodic boundary conditions or Dirichlet boundary condition (vanishing value), depending on the periodicity of the underlying grid.

3.3.2 Expressions

Expressions are strings that describe mathematical expressions. They can be used in several places, most prominently in defining PDEs using $P D E$, in creating fields using from_expression (), and in defining boundary conditions; see section above. Expressions are parsed using sympy, so the expected syntax is defined by this python package. While we describe some common use cases below, it might be best to test the abilities using the evaluate () function.

Warning: To interpret arbitrary expressions, the package uses exec (). It should therefore not be used in a context where malicious input could occur.

Simple expressions can contain many standard mathematical functions, e.g., sin(a) $+b * * 2$ is a valid expression. $P D E$ and evaluate () furthermore accept differential operators defined in this package. Note that operators need to be specified with their full name, i.e., laplace for a scalar Laplacian and vector_laplace for a Laplacian operating on a vector field. Moreover, the dot product between two vector fields can be denoted by using dot (field1, field2) in the expression, and outer (field1, field2) calculates an outer product. In this case, boundary conditons for the operators can be specified using the $b c$ argument, in which case the same boundary conditions are applied to all operators. The additional argument bc_ops provides a more fine-grained control, where conditions for each individual operator can be specified.

Field expressions can also directly depend on spatial coordinates. For instance, if a field is defined on a two-dimensional Cartesian grid, the variables x and y denote the local coordinates. To initialize a step profile in the x-direction, one can use either ($\mathrm{x}>5$) or heaviside ($\mathrm{x}-5,0.5$), where the second argument denotes the returned value in case the first argument is 0 . Finally, expressions for equations in PDE can explicitely depend on time, which is denoted by the variable t.

Expressions also support user-defined functions via the user_funcs argument, which is a dictionary that maps the name of a function to an actual implementation. Finally, constants can be defined using the consts argument. Constants can either be individual numbers or spatially extended data, which provide values for each grid point. Note that in the latter case only the actual grid data should be supplied, i.e., the data attribute of a potential field class.

3.3.3 Custom PDE classes

To implement a new PDE in a way that all of the machinery of $p y$-pde can be used, one needs to subclass PDEBase and overwrite at least the evolution_rate () method. A simple implementation for the Kuramoto-Sivashinsky equation could read

```
class KuramotoSivashinskyPDE(PDEBase):
    def evolution_rate(self, state, t=0):
        """ numpy implementation of the evolution equation """
```

(continues on next page)
(continued from previous page)

```
state_lapacian = state.laplace(bc="auto_periodic_neumann")
state_gradient = state.gradient(bc="auto_periodic_neumann")
return (- state_lapacian.laplace(bc="auto_periodic_neumann")
    - state_lapacian
    - 0.5 * state_gradient.to_scalar("squared_sum"))
```

A slightly more advanced example would allow for attributes that for instance define the boundary conditions and the diffusivity:

```
class KuramotoSivashinskyPDE(PDEBase):
    def __init__(self, diffusivity=1, bc="auto_periodic_neumann", bc_laplace="auto_
\hookrightarrowperiodic_neumann") :
            """ initialize the class with a diffusivity and boundary conditions
            for the actual field and its second derivative """
            self.diffusivity = diffusivity
            self.bc = bc
            self.bc_laplace = bc_laplace
    def evolution_rate(self, state, t=0):
        """ numpy implementation of the evolution equation """
        state_lapacian = state.laplace(bc=self.bc)
        state_gradient = state.gradient(bc=self.bc)
        return (- state_lapacian.laplace(bc=self.bc_laplace)
            - state_lapacian
            - 0.5 * self.diffusivity * (state_gradient @ state_gradient))
```

We here replaced the call to to_scalar('squared_sum') by a dot product with itself (using the @ notation), which is equivalent. Note that the numpy implementation of the right hand side of the PDE is rather slow since it runs mostly in pure python and constructs a lot of intermediate field classes. While such an implementation is helpful for testing initial ideas, actual computations should be performed with compiled PDEs as described below.

3.3.4 Low-level operators

This section explains how to use the low-level version of the field operators. This is necessary for the numba-accelerated implementations described above and it might be necessary to use parts of the py-pde package in other packages.

Differential operators

Applying a differential operator to an instance of Scalarfield is a simple as calling field.laplace (bc), where $b c$ denotes the boundary conditions. Calling this method returns another ScalarField, which in this case contains the discretized Laplacian of the original field. The equivalent call using the low-level interface is

```
apply_laplace = field.grid.make_operator("laplace", bc)
laplace_data = apply_laplace(field.data)
```

Here, the first line creates a function apply_laplace for the given grid field.grid and the boundary conditions $b c$. This function can be applied to numpy. ndarray instances, e.g. field. data. Note that the result of this call is again a numpy . ndarray.

Similarly, a gradient operator can be defined

```
grid = UnitGrid([6, 8])
apply_gradient = grid.make_operator("gradient", bc="auto_periodic_neumann")
data = np.random.random((6, 8))
gradient_data = apply_gradient (data)
assert gradient_data.shape == (2, 6, 8)
```

Note that this example does not even use the field classes. Instead, it directly defines a grid and the respective gradient operator. This operator is then applied to a random field and the resulting numpy . ndarray represents the 2-dimensional vector field.

The make_operator method of the grids generally supports the following differential operators: 'laplacian', 'gradient', 'gradient_squared', 'divergence', 'vector_gradient', 'vector_laplace', and 'tensor_divergence'. However, a complete list of operators supported by a certain grid class can be obtained from the class property GridClass. operators. New operators can be added using the class method GridClass. register_operator().

Field integration

The integral of an instance of ScalarField is usually determined by accessing the property field.integral. Since the integral of a discretized field is basically a sum weighted by the cell volumes, calculating the integral using only numpy is easy:

```
cell_volumes = field.grid.cell_volumes
integral = (field.data * cell_volumes).sum()
```

Note that cell_volumes is a simple number for Cartesian grids, but is an array for more complicated grids, where the cell volume is not uniform.

Field interpolation

The fields defined in the py-pde package also support linear interpolation by calling field.interpolate (point). Similarly to the differential operators discussed above, this call can also be translated to code that does not use the full package:

```
grid = UnitGrid([6, 8])
interpolate = grid.make_interpolator_compiled(bc="auto_periodic_neumann")
data = np.random.random((6, 8))
value = interpolate(data, np.array([3.5, 7.9]))
```

We first create a function interpolate, which is then used to interpolate the field data at a certain point. Note that the coordinates of the point need to be supplied as a numpy. ndarray and that only the interpolation at single points is supported. However, iteration over multiple points can be fast when the loop is compiled with numba.

Inner products

For vector and tensor fields, py-pde defines inner products that can be accessed conveniently using the @-syntax: field1 @ field2 determines the scalar product between the two fields. The package also provides an implementation for an dot-operator:

```
grid = UnitGrid([6, 8])
field1 = VectorField.random_normal(grid)
field2 = VectorField.random_normal(grid)
dot_operator = field1.make_dot_operator()
result = dot_operator(field1.data, field2.data)
assert result.shape == (6, 8)
```

Here, result is the data of the scalar field resulting from the dot product.

3.3.5 Numba-accelerated PDEs

The compiled operators introduced in the previous section can be used to implement a compiled method for the evolution rate of PDEs. As an example, we now extend the class KuramotoSivashinskyPDE introduced above:

```
from pde.tools.numba import jit
class KuramotoSivashinskyPDE(PDEBase):
    def
```

\qquad

``` init (self,
    diffusivity=1, bc="auto_periodic_neumann", bc_laplace="auto__
\hookrightarrowperiodic_neumann") :
        """ initialize the class with a diffusivity and boundary conditions
        for the actual field and its second derivative """
        self.diffusivity = diffusivity
        self.bc = bc
        self.bc_laplace = bc_laplace
    def evolution_rate(self, state, t=0):
        """ numpy implementation of the evolution equation """
        state_lapacian = state.laplace(bc=self.bc)
        state_gradient = state.gradient(bc="auto_periodic_neumann")
        return (- state_lapacian.laplace(bc=self.bc_laplace)
            - state_lapacian
            - 0.5 * self.diffusivity * (state_gradient @ state_gradient))
    def _make_pde_rhs_numba(self, state):
    """ the numba-accelerated evolution equation """
    # make attributes locally available
    diffusivity = self.diffusivity
    # create operators
    laplace_u = state.grid.make_operator("laplace", bc=self.bc)
    gradient_u = state.grid.make_operator("gradient", bc=self.bc)
    laplace2_u = state.grid.make_operator("laplace", bc=self.bc_laplace)
    dot = VectorField(state.grid).make_dot_operator()
```

```
@jit
def pde_rhs(state_data, t=0):
    """ compiled helper function evaluating right hand side """
    state_lapacian = laplace_u(state_data)
    state_grad = gradient_u(state_data)
    return (- laplace2_u(state_lapacian)
        - state_lapacian
        - diffusivity / 2 * dot(state_grad, state_grad))
return pde_rhs
```

To activate the compiled implementation of the evolution rate, we simply have to overwrite the _make_pde_rhs_numba () method. This method expects an example of the state class (e.g., an instance of Scalarfield) and returns a function that calculates the evolution rate. The state argument is necessary to define the grid and the dimensionality of the data that the returned function is supposed to be handling. The implementation of the compiled function is split in several parts, where we first copy the attributes that are required by the implementation. This is necessary, since numba freezes the values when compiling the function, so that in the example above the diffusivity cannot be altered without recompiling. In the next step, we create all operators that we need subsequently. Here, we use the boundary conditions defined by the attributes, which requires two different laplace operators, since their boundary conditions might differ. In the last step, we define the actual implementation of the evolution rate as a local function that is compiled using the j it decorator. Here, we use the implementation shipped with py-pde, which sets some default values. However, we could have also used the usual numba implementation. It is important that the implementation of the evolution rate only uses python constructs that numba can compile.
One advantage of the numba compiled implementation is that we can now use loops, which will be much faster than their python equivalents. For instance, we could have written the dot product in the last line as an explicit loop:

```
[...]
    def _make_pde_rhs_numba(self, state):
    """ the numba-accelerated evolution equation """
    # make attributes locally available
    diffusivity = self.diffusivity
    # create operators
    laplace_u = state.grid.make_operator("laplace", bc=self.bc)
    gradient_u = state.grid.make_operator("gradient", bc=self.bc)
    laplace2_u = state.grid.make_operator("laplace", bc=self.bc_laplace)
    dot = VectorField(state.grid).make_dot_operator()
    dim = state.grid.dim
    @jit
    def pde_rhs(state_data, t=0):
        """ compiled helper function evaluating right hand side """
        state_lapacian = laplace_u(state_data)
        state_grad = gradient_u(state_data)
        result = - laplace2_u(state_lapacian) - state_lapacian
        for i in range(state_data.size):
            for j in range(dim):
                result.flat[i] -= diffusivity / 2 * state_grad[j].flat[i]**2
        return result
    return pde_rhs
```

Here, we extract the total number of elements in the state using its size attribute and we obtain the dimensionality
of the space from the grid attribute dim. Note that we access numpy arrays using their f lat attribute to provide an implementation that works for all dimensions.

3.3.6 Configuration parameters

Configuration parameters affect how the package behaves. They can be set using a dictionary-like interface of the configuration config, which can be imported from the base package. Here is a list of all configuration options that can be adjusted in the package:

numba.debug

Determines whether numba used the debug mode for compilation. If enabled, this emits extra information that might be useful for debugging. (Default value: False)

numba.fastmath

Determines whether the fastmath flag is set during compilation. This affects the precision of the mathematical calculations. (Default value: True)

numba.parallel

Determines whether multiple cores are used in numba-compiled code. (Default value: True)

numba.parallel_threshold

Minimal number of support points before multithreading or multiprocessing is enabled in the numba compilations. (Default value: 65536)

Tip: To disable parallel computing in the package, the following code could be added to the start of the script:

```
from pde import config
config['numba.parallel'] = False
# actual code using py-pde
```


3.4 Performance

3.4.1 Measuring performance

The performance of the py-pde package depends on many details and general statements are thus difficult to make. However, since the core operators are just-in-time compiled using numba, many operations of the package proceed at performances close to most compiled languages. For instance, a simple Laplace operator applied to fields defined on a Cartesian grid has performance that is similar to the operators supplied by the popular OpenCV package. The following figures illustrate this by showing the duration of evaluating the Laplacian on grids of increasing number of support points for two different boundary conditions (lower duration is better):

Note that the call overhead is lower in the py-pde package, so that the performance on small grids is particularly good. However, realistic use-cases probably need more complicated operations and it is thus always necessary to profile the respective code. This can be done using the function estimate_computation_speed() or the traditional timeit, profile, or even more sophisticated profilers like pyinstrument.

3.4.2 Improving performance

Factors influencing the performance of the package include the compiler used for numpy, scipy, and of course numba. Moreover, the BLAS and LAPACK libraries might make a difference. The package has some basic support for multithreading, which can be accelerated using the Threading Building Blocks library. Finally, it can help to install the intel short vector math library (SVML). However, this is not distributed with macports and might thus be more difficult to enable.

Using macports, one could for instance install the following variants of typical packages

```
port install py37-numpy +gcc8+openblas
port install py37-scipy +gcc8+openblas
port install py37-numba +tbb
```


3.5 Contributing code

3.5.1 Structure of the package

The functionality of the pde package is split into multiple sub-package. The domain, together with its symmetries, periodicities, and discretizations, is described by classes defined in grids. Discretized fields are represented by classes in fields, which have methods for differential operators with various boundary conditions collected in boundaries. The actual pdes are collected in pdes and the respective solvers are defined in solvers.

3.5.2 Extending functionality

All code is build on a modular basis, making it easy to introduce new classes that integrate with the rest of the package. For instance, it is simple to define a new partial differential equation by subclassing PDEBase. Alternatively, PDEs can be defined by specifying their evolution rates using mathematical expressions by creating instances of the class $P D E$. Moreover, new grids can be introduced by subclassing GridBase. It is also possible to only use parts of the package, e.g., the discretized differential operators from operators.

New operators can be associated with grids by registering them using register_operator (). For instance, to create a new operator for the cylindrical grid one needs to define a factory function that creates the operator. This factory function takes an instance of Boundaries as an argument and returns a function that takes as an argument the actual data array for the grid. Note that the grid itself is an attribute of Boundaries. This operator would be registered with the grid by calling CylindricalSymGrid.register_operator("operator", make_operator), where the first argument is the name of the operator and the second argument is the factory function.

3.5.3 Design choices

The data layout of field classes (subclasses of FieldBase) was chosen to allow for a simple decomposition of different fields and tensor components. Consequently, the data is laid out in memory such that spatial indices are last. For instance, the data of a vector field field defined on a 2d Cartesian grid will have three dimensions and can be accessed as field.data[vector_component, x, y], where vector_component is either 0 or 1 .

3.5.4 Coding style

The coding style is enforced using isort and black. Moreover, we use Google Style docstrings, which might be best learned by example. The documentation, including the docstrings, are written using reStructuredText, with examples in the following cheatsheet. To ensure the integrity of the code, we also try to provide many test functions, which are typically contained in separate modules in sub-packages called tests. These tests can be ran using scripts in the test subfolder in the root folder. This folder also contain a script tests_types. sh, which uses mypy to check the consistency of the python type annotations. We use these type annotations for additional documentation and they have also already been useful for finding some bugs.

We also have some conventions that should make the package more consistent and thus easier to use. For instance, we try to use properties instead of getter and setter methods as often as possible. Because we use a lot of numba just-in-time compilation to speed up computations, we need to pass around (compiled) functions regularly. The names of the methods and functions that make such functions, i.e. that return callables, should start with 'make_*' where the wildcard should describe the purpose of the function being created.

3.5.5 Running unit tests

The pde package contains several unit tests, typically contained in sub-module tests in the folder of a given module. These tests ensure that basic functions work as expected, in particular when code is changed in future versions. To run all tests, there are a few convenience scripts in the root directory tests. The most basic script is tests_run. sh, which uses pytest to run the tests in the sub-modules of the pde package. Clearly, the python package pytest needs to be installed. There are also additional scripts that for instance run tests in parallel (need the python package pytest-xdist installed), measure test coverage (need package pytest-cov installed), and make simple performance measurements. Moreover, there is a script test_types. sh, which uses mypy to check the consistency of the python type annotations and there is a script format_code.sh, which formats the code automatically to adhere to our style.

Before committing a change to the code repository, it is good practice to run the tests, check the type annotations, and the coding style with the scripts described above.

3.6 Citing the package

To cite or reference py-pde in other work, please refer to the publication in the Journal of Open Source Software. Here are the respective bibliographic records in Bibtex format:

```
@article{py-pde,
    Author = {David Zwicker},
    Doi = {10.21105/joss.02158},
    Journal = {Journal of Open Source Software},
    Number = {48},
    Pages = {2158},
    Publisher = {The Open Journal},
    Title = {py-pde: A Python package for solving partial differential equations},
    Url = {https://doi.org/10.21105/joss.02158},
    Volume = {5},
    Year = {2020}
}
```

and in RIS format:

```
TY - JOUR
AU - Zwicker, David
JO - Journal of Open Source Software
IS - 48
SP - 2158
PB - The Open Journal
T1 - py-pde: A Python package for solving partial differential equations
UR - https://doi.org/10.21105/joss.02158
VL - 5
PY - 2020
```


3.7 Code of Conduct

3.7.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

3.7.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

- Using welcoming and inclusive language
- Being respectful of differing viewpoints and experiences
- Gracefully accepting constructive criticism
- Focusing on what is best for the community
- Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

- The use of sexualized language or imagery and unwelcome sexual attention or advances
- Trolling, insulting/derogatory comments, and personal or political attacks
- Public or private harassment
- Publishing others' private information, such as a physical or electronic address, without explicit permission
- Other conduct which could reasonably be considered inappropriate in a professional setting

3.7.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

3.7.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

3.7.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at david.zwicker@ds.mpg.de. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership.

3.7.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www. contributor-covenant.org/version/1/4/code-of-conduct.html
For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

REFERENCE MANUAL

The py-pde package provides classes and methods for solving partial differential equations.

Subpackages:

4.1 pde.fields package

Defines fields, which contain the actual data stored on a discrete grid.

ScalarField	Scalar field discretized on a grid
VectorField	Vector field discretized on a grid
Tensor2Field	Tensor field of rank 2 discretized on a grid
FieldCollection	Collection of fields defined on the same grid

Inheritance structure of the classes:

The details of the classes are explained below:

4.1.1 pde.fields.base module

Defines base classes of fields, which are discretized on grids

```
class DataFieldBase (grid: GridBase, data: Optional[Union[int, float, complex, ndarray, Sequence[Union[int,
    float, complex, ndarray]], Sequence[Sequence[Any]], str]] = 'zeros', *, label: str = None,
    dtype=None, with_ghost_cells: bool \(=\) False)
```

 Bases: FieldBase
 abstract base class for describing fields of single entities

Parameters

- grid (GridBase) - Grid defining the space on which this field is defined.
- data (Number or ndarray, optional) - Field values at the support points of the grid. The flag with_ghost_cells determines whether this data array contains values for the ghost cells, too. The resulting field will contain real data unless the data argument contains complex values. Special values are "zeros" or None, initializing the field with zeros, and "empty", just allocating memory with unspecified values.
- label (str, optional) - Name of the field
- dtype (numpy dtype) - The data type of the field. If omitted, it will be determined from data automatically.
- with_ghost_cells (b○○l) - Indicates whether the ghost cells are included in data
add_interpolated (point: ndarray, amount: Union[int, float, complex, ndarray, Sequence[Union[int, float, complex, ndarray]], Sequence[Sequence[Any]]]) \rightarrow None
deprecated alias of method insert
property average: Union[int, float, complex, ndarray]
determine the average of data
This is calculated by integrating each component of the field over space and dividing by the grid volume
copy (*, label: str $=$ None, dtype $=$ None $) \rightarrow$ TDataField
return a copy of the data, but not of the grid

Parameters

- label (str, optional) - Name of the returned field
- dtype (numpy dtype) - The data type of the field. If omitted, it will be determined from data automatically or the dtype of the current field is used.
property data_shape: Tuple[int, ...]
the shape of the data at each grid point

Type

tuple
property fluctuations: Union[int, float, complex, ndarray]
fluctuations over the entire space.
The fluctuations are defined as the standard deviation of the data scaled by the cell volume. This definition makes the fluctuations independent of the discretization. It corresponds to the physical scaling available in the random_normal ().

Returns

A tensor with the same rank of the field, specifying the fluctuations of each component of the tensor field individually. Consequently, a simple scalar is returned for a ScalarField.

Return type

ndarray

Type

ndarray
classmethod from_state (attributes: Dict[str, Any], data: Optional[ndarray] $=$ None) \rightarrow TDataField create a field from given state.

Parameters

- attributes (dict) - The attributes that describe the current instance
- data (ndarray, optional) - Data values at the support points of the grid defining the field
get_boundary_values (axis: int, upper: bool, bc: Optional[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]]] = None) \rightarrow Union[int, float, complex, ndarray]
get the field values directly on the specified boundary

Parameters

- axis (int) - The axis perpendicular to the boundary
- upper (bo○l) - Whether the boundary is at the upper side of the axis
- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': $N U M f$) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation. If the special value None is given, no boundary conditions are enforced. The user then needs to ensure that the ghost cells are set accordingly.

Returns

The discretized values on the boundary

Return type

```
ndarray
classmethod get_class_by_rank (rank: int) \(\rightarrow\) Type[DataFieldBase]
return a DataFieldBase subclass describing a field with a given rank
```


Parameters

$\operatorname{rank}(i n t)-$ The rank of the tensor field
get_image_data (scalar: str = 'auto', transpose: bool $=$ False, $* * k w a r g s$) \rightarrow Dict[str, Any]
return data for plotting an image of the field

Parameters

- scalar (str or int) - The method for extracting scalars as described in DataFieldBase.to_scalar().
- transpose (bool) - Determines whether the transpose of the data should is plotted
- **kwargs - Additional parameters are forwarded to grid.get_image_data

Returns

Information useful for plotting an image of the field

Return type

dict
get_line_data (scalar: str = 'auto', extract: str = 'auto') \rightarrow Dict[str, Any]
return data for a line plot of the field

Parameters

- scalar (str or int) - The method for extracting scalars as described in DataFieldBase.to_scalar().
- extract (str) - The method used for extracting the line data. See the docstring of the grid method get_line_data to find supported values.

Returns

Information useful for performing a line plot of the field

Return type

dict
get_vector_data (**kwargs) \rightarrow Dict[str, Any]
return data for a vector plot of the field

Parameters

**kwargs - Additional parameters are forwarded to grid.get_image_data

Returns

Information useful for plotting an vector field

Return type

dict
insert (point: ndarray, amount: Union[int, float, complex, ndarray, Sequence[Union[int, float, complex, ndarray]], Sequence[Sequence[Any]]]) \rightarrow None
adds an (integrated) value to the field at an interpolated position

Parameters

- point (ndarray) - The point inside the grid where the value is added. This is given in grid coordinates.
- amount (Number or ndarray) - The amount that will be added to the field. The value describes an integrated quantity (given by the field value times the discretization volume). This is important for consistency with different discretizations and in particular grids with non-uniform discretizations.
abstract property integral: Union[int, float, complex, ndarray]
interpolate (point: ndarray, *, backend: str = 'numba', method: str = 'linear', fill: Optional[Number] = None, ${ }^{* *}$ kwargs) \rightarrow Union[int, float, complex, ndarray]
interpolate the field to points between support points

Parameters

- point (ndarray) - The points at which the values should be obtained. This is given in grid coordinates.
- backend (str) - The accepted values "scipy" and "numba" determine the backend that is used for the interpolation.
- method (str) - Determines the method being used for interpolation. Typical values that are "nearest" and "linear", but the supported values depend on the chosen backend.
- fill (Number, optional) - Determines how values out of bounds are handled. If None, a ValueError is raised when out-of-bounds points are requested. Otherwise, the given value is returned.
- **kwargs - Additional keyword arguments are forwarded to the method DataFieldBase.make_interpolator().

Returns

the values of the field

Return type

ndarray
interpolate_to_grid (grid: GridBase, *, backend: str = 'numba', method: str = 'linear', fill: Optional[Number] $=$ None, label: str $=$ None $) \rightarrow$ TDataField
interpolate the data of this field to another grid.

Parameters

- grid (GridBase) - The grid of the new field onto which the current field is interpolated.
- backend (str) - The accepted values "scipy" and "numba" determine the backend that is used for the interpolation.
- method (str) - Determines the method being used for interpolation. Typical values that are "nearest" and "linear", but the supported values depend on the chosen backend.
- fill (Number, optional) - Determines how values out of bounds are handled. If None, a ValueError is raised when out-of-bounds points are requested. Otherwise, the given value is returned.
- label (str, optional) - Name of the returned field

Returns

Field of the same rank as the current one.

```
property magnitude: float
```

determine the magnitude of the field.
This is calculated by getting a scalar field using the default arguments of the to_scalar() method, averaging the result over the whole grid, and taking the absolute value.

Type

float
make_interpolator (method: str = 'linear', *, fill: Number $=$ None, backend: str = 'numba', **kwargs) \rightarrow Callable[[ndarray, ndarray], Union[int, float, complex, ndarray]]
returns a function that can be used to interpolate values.

Parameters

- backend (str) - The accepted values scipy and numba determine the backend that is used for the interpolation.
- method (str) - Determines the method being used for interpolation. Typical values that are "nearest" and "linear", but the supported values depend on the chosen backend.
- fill (Number, optional) - Determines how values out of bounds are handled. If None, a ValueError is raised when out-of-bounds points are requested. Otherwise, the given value is returned.
- **kwargs - Additional keyword arguments are passed to the individual interpolator methods and can be used to further affect the behavior.

The scipy implementations use scipy.interpolate.RegularGridInterpolator and thus do not respect boundary conditions. Additional keyword arguments are directly forwarded to the constructor of RegularGridInterpolator.

The numba implementation respect boundary conditions, which can be set using the $b c$ keywords argument. Supported values are the same as for the operators, e.g., the Laplacian. If no boundary conditions are specified, natural boundary conditions are assumed, which are periodic conditions for periodic axes and Neumann conditions otherwise.

Returns

A function which returns interpolated values when called with arbitrary positions within the space of the grid.
plot (kind: str = 'auto', *args, title: str = None, filename: str = None, action: str = 'auto', ax_style:
Optional[Dict[str, Any]] = None, fig_style: Optional[Dict[str, Any]] = None, ax=None, ${ }^{* * k w a r g s) ~} \rightarrow$ PlotReference
visualize the field

Parameters

- kind (str) - Determines the visualizations. Supported values are image, line, vector, or interactive. Alternatively, auto determines the best visualization based on the field itself.
- title (str) - Title of the plot. If omitted, the title might be chosen automatically.
- filename (str, optional) - If given, the plot is written to the specified file.
- action (str) - Decides what to do with the final figure. If the argument is set to show, matplotlib.pyplot.show() will be called to show the plot. If the value is none, the figure will be created, but not necessarily shown. The value close closes the figure, after saving it to a file when filename is given. The default value auto implies that the plot is shown if it is not a nested plot call.
- ax_style (dict) - Dictionary with properties that will be changed on the axis after the plot has been drawn by calling matplotlib.pyplot. setp(). A special item in this dictionary is use_offset, which is flag that can be used to control whether offset are shown along the axes of the plot.
- fig_style (dict) - Dictionary with properties that will be changed on the figure after the plot has been drawn by calling matplotlib.pyplot.setp (). For instance, using fig_style $=\{$ 'dpi': 200 $\}$ increases the resolution of the figure.
- $\mathbf{a x}$ (matplotlib.axes.Axes) - Figure axes to be used for plotting. The special value "create" creates a new figure, while "reuse" attempts to reuse an existing figure, which is the default.
- **kwargs - All additional keyword arguments are forwarded to the actual plotting function.

Returns

Instance that contains information to update the plot with new data later.

Return type

PlotReference
classmethod random_colored (grid: GridBase, exponent: float $=0$, scale: float $=1, *$, label: str $=$ None, dtype=None, rng: Optional[Generator] $=$ None $) \rightarrow$ TDataField create a field of random values with colored noise

The spatially correlated values obey

$$
\left\langle c_{i}(\boldsymbol{k}) c_{j}\left(\boldsymbol{k}^{\prime}\right)\right\rangle=\Gamma^{2}|\boldsymbol{k}|^{\nu} \delta_{i j} \delta\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)
$$

in spectral space, where k is the wave vector. The special case $\nu=0$ corresponds to white noise. Note that the components of vector or tensor fields are uncorrelated.

Parameters

- grid (GridBase) - Grid defining the space on which this field is defined
- exponent (float) - Exponent ν of the power spectrum
- scale (float) - Scaling factor Γ determining noise strength
- label (str, optional) - Name of the field
- dtype (numpy dtype) - The data type of the field. If omitted, it defaults to double.
- rng (Generator) - Random number generator (default: default_rng ())
classmethod random_harmonic (grid: ~GridBase, modes: int $=3$, harmonic $=<u f u n c$ ' $\left.\cos ^{\prime}\right\rangle$, axis_combination $=<$ ufunc 'multiply'>, *, label: \sim str $=$ None, dtype $=$ None, rng: \sim Optional[\sim numpy.random._generator.Generator] $=$ None) \rightarrow TDataField
create a random field build from harmonics
The resulting fields will be highly correlated in space and can thus serve for testing differential operators.
With the default settings, the resulting field $c_{i}(\mathbf{x})$ is given by

$$
c_{i}(\mathbf{x})=\prod_{\alpha=1}^{N} \sum_{j=1}^{M} a_{i j \alpha} \cos \left(\frac{2 \pi x_{\alpha}}{j L_{\alpha}}\right)
$$

where N is the number of spatial dimensions, each with length L_{α}, M is the number of modes given by modes, and $a_{i j \alpha}$ are random amplitudes, chosen from a uniform distribution over the interval $[0,1]$.

Note that the product could be replaced by a sum when axis_combination $=$ numpy.add and the $\cos ()$ could be any other function given by the parameter harmonic.

Parameters

- grid (GridBase) - Grid defining the space on which this field is defined
- modes (int) - Number M of harmonic modes
- harmonic (callable) - Determines which harmonic function is used. Typical values are numpy.sin() and numpy.cos(), which basically relate to different boundary conditions applied at the grid boundaries.
- axis_combination (callable) - Determines how values from different axis are combined. Typical choices are numpy.multiply() and numpy.add() resulting in products and sums of the values along axes, respectively.
- label (str, optional) - Name of the field
- dtype (numpy dtype) - The data type of the field. If omitted, it defaults to double.
- rng (Generator) - Random number generator (default: default_rng ())
classmethod random_normal (grid: GridBase, mean: float $=0$, std: float $=1$, *, scaling: str $=$ 'none', label: str $=$ None, dtype $=$ None, rng: Optional[Generator] $=$ None $) \rightarrow$ TDataField
create field with normal distributed random values
These values are uncorrelated in space. A complex field is returned when either mean or std is a complex number. In this case, the real and imaginary parts of these arguments are used to determine the distribution of the real and imaginary parts of the resulting field. Consequently, ScalarField.random_normal (grid, $0,1+1 j)$ creates a complex field where the real and imaginary parts are chosen from a standard normal distribution.

Parameters

- grid (GridBase) - Grid defining the space on which this field is defined
- mean (float) - Mean of the Gaussian distribution
- std (float) - Standard deviation of the Gaussian distribution.
- scaling (str) - Determines how the values are scaled. Possible choices are 'none' (values are drawn from a normal distribution with given mean and standard deviation) or 'physical' (the variance of the random number is scaled by the inverse volume of the grid cell; this is for instance useful for concentration fields, which vary less in larger volumes).
- label (str, optional) - Name of the field
- dtype (numpy dtype) - The data type of the field. If omitted, it defaults to double if both mean and std are real, otherwise it is complex.
- rng (Generator) - Random number generator (default: default_rng ())
classmethod random_uniform (grid: GridBase, vmin: float $=0$, vmax: float $=1$, *, label: str $=$ None, dtype $=$ None, rng: Optional[Generator] $=$ None $) \rightarrow$ TDataField
create field with uniform distributed random values
These values are uncorrelated in space.

Parameters

- grid (GridBase) - Grid defining the space on which this field is defined
- vmin (float) - Smallest possible random value
- $\operatorname{vmax}(f l o a t)$ - Largest random value
- label (str, optional) - Name of the field
- dtype (numpy dtype) - The data type of the field. If omitted, it defaults to double if both vmin and vmax are real, otherwise it is complex.
- rng (Generator) - Random number generator (default: default_rng ())
rank: int
set_ghost_cells (bc: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase [III], *, normal: bool $=$ False, args=None) \rightarrow None
set the boundary values on virtual points for all boundaries

Parameters

- bc (str or list or tuple or dict) - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
- args - Additional arguments that might be supported by special boundary conditions.
smooth (sigma: float $=1, *$, out: Optional[TDataField] $=$ None, label: str $=$ None $) \rightarrow$ TDataField
applies Gaussian smoothing with the given standard deviation
This function respects periodic boundary conditions of the underlying grid, using reflection when no periodicity is specified.

sigma (float):

Gives the standard deviation of the smoothing in real length units (default: 1)
out (FieldBase, optional):
Optional field into which the smoothed data is stored. Setting this to the input field enables in-place smoothing.

label (str, optional):

Name of the returned field

Returns

Field with smoothed data. This is stored at out if given.
abstract to_scalar (scalar: str $=$ 'auto', *, label: str $=$ None $) \rightarrow$ ScalarField
classmethod unserialize_attributes (attributes: Dict[str, str]) \rightarrow Dict[str, Any]
unserializes the given attributes

Parameters

```
        attributes (dict) - The serialized attributes
```


Returns

The unserialized attributes

Return type

 dictclass FieldBase (grid: GridBase, data: ndarray, *, label: str $=$ None)

Bases: object

abstract base class for describing (discretized) fields

Parameters

- grid (GridBase) - Grid defining the space on which this field is defined
- data (ndarray, optional) - Field values at the support points of the grid and the ghost cells
- label (str, optional) - Name of the field
apply (func: Callable, out: Optional[TField] $=$ None, label: str $=$ None) \rightarrow TField applies a function to the data and returns it as a field

Parameters

- func (callable or str) - The (vectorized) function being applied to the data or the name of an operator that is defined for the grid of this field.
- out (FieldBase, optional)-Optional field into which the data is written
- label (str, optional) - Name of the returned field

Returns

Field with new data. This is stored at out if given.
assert_field_compatible (other: FieldBase, accept_scalar: bool = False)
checks whether other is compatible with the current field

Parameters

- other (FieldBase) - The other field this one is compared to
- accept_scalar (bool, optional)-Determines whether it is acceptable that other is an instance of ScalarField.
property attributes: Dict[str, Any]
describes the state of the instance (without the data)
Type
dict
property attributes_serialized: Dict[str, str]
serialized version of the attributes
Type
dict
conjugate () \rightarrow TField
returns complex conjugate of the field
abstract copy (*, label: str $=$ None, dtype $=$ None $) \rightarrow$ TField
property data: ndarray
discretized data at the support points
Type
ndarray
property dtype
returns the numpy dtype of the underlying data
classmethod from_file (filename: str) \rightarrow FieldBase
create field from data stored in a file
Field can be written to a file using FieldBase.to_file().

Example

Write a field to a file and then read it back:

```
field = pde.ScalarField(...)
field.write_to("test.hdf5")
field_copy = pde.FieldBase.from_file("test.hdf5")
```


Parameters

filename (str) - Path to the file being read

Returns

The field with the appropriate sub-class

Return type

FieldBase
classmethod from_state (attributes: Dict[str, Any], data: Optional[ndarray] $=$ None) \rightarrow FieldBase create a field from given state.

Parameters

- attributes (dict) - The attributes that describe the current instance
- data (ndarray, optional) - Data values at the support points of the grid defining the field
abstract get_image_data() \rightarrow Dict[str, Any]
abstract get_line_data (scalar: str = 'auto', extract: str = 'auto') \rightarrow Dict[str, Any]
property grid: GridBase
The grid on which the field is defined
Type
GridBase
property imag: TField
Imaginary part of the field
Type
FieldBase
property is_complex: bool
whether the field contains real or complex data
Type
bool
property label: Optional[str]
the name of the field
Type
str
abstract plot(*args, **kwargs)
plot_interactive (viewer_args: Optional[Dict[str, Any]] = None, **kwargs)
create an interactive plot of the field using napari
For a detailed description of the launched program, see the napari webpage.

Parameters

- viewer_args (dict) - Arguments passed to napari. viewer. Viewer to affect the viewer.
- **kwargs - Extra arguments passed to the plotting function
property real: TField
Real part of the field
Type
FieldBase
to_file (filename: str, **kwargs)
store field in a file
The extension of the filename determines what format is being used. If it ends in.$h 5$ or.$h d f$, the Hierarchical Data Format is used. The other supported format are images, where only the most typical formats are supported.

To load the field back from the file, you may use FieldBase.from_file().

Example

Write a field to a file and then read it back:

```
field = pde.ScalarField(...)
field.write_to("test.hdf5")
field_copy = pde.FieldBase.from_file("test.hdf5")
```


Parameters

- filename (str) - Path where the data is stored
- **kwargs - Additional parameters may be supported for some formats
classmethod unserialize_attributes (attributes: Dict[str, str]) \rightarrow Dict[str, Any] unserializes the given attributes

Parameters

attributes (dict) - The serialized attributes

Returns

The unserialized attributes

Return type

dict
property writeable: bool
whether the field data can be changed or not
Type
bool
exception RankError
Bases: TypeError
error indicating that the field has the wrong rank

4.1.2 pde.fields.collection module

Defines a collection of fields to represent multiple fields defined on a common grid.
class FieldCollection (fields: Sequence[DataFieldBase], *, copy_fields: bool = False, label: str = None, labels: Optional[List[str]] = None, dtype=None)
Bases: FieldBase
Collection of fields defined on the same grid
Note that all fields in the same collection must have the same data type. This might lead to upcasting, where for instance a combination of a real-valued and a complex-valued field will be both stored as complex fields.

Parameters

- fields - Sequence of the individual fields
- copy_fields (bool) - Flag determining whether the individual fields given in fields are copied. Note that fields are always copied if some of the supplied fields are identical.
- label (str) - Label of the field collection
- labels (list of str) - Labels of the individual fields. If omitted, the labels from the fields argument are used.
- dtype (numpy dtype) - The data type of the field. All the numpy dtypes are supported. If omitted, it will be determined from data automatically.

```
assert_field_compatible (other: FieldBase, accept_scalar: bool = False)
```

checks whether other is compatible with the current field

Parameters

- other (FieldBase) - Other field this is compared to
- accept_scalar (bool, optional) - Determines whether it is acceptable that other is an instance of ScalarField.
property attributes: Dict[str, Any]
describes the state of the instance (without the data)

Type

dict
property attributes_serialized: Dict[str, str]
serialized version of the attributes

Type

dict
property averages: List
averages of all fields
copy (*, label: str $=$ None, dtype $=$ None $) \rightarrow$ FieldCollection
return a copy of the data, but not of the grid

Parameters

- label (str, optional) - Name of the returned field
- dtype (numpy dtype) - The data type of the field. If omitted, it will be determined from data automatically.
property fields: List[DataFieldBase]
the fields of this collection
Type
list
classmethod from_scalar_expressions (grid: GridBase, expressions: Sequence[str], *, label: str = None, labels: Optional[Sequence[str]] = None, dtype=None) \rightarrow FieldCollection
create a field collection on a grid from given expressions

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

Parameters

- grid (GridBase) - Grid defining the space on which this field is defined
- expressions (list of str) - A list of mathematical expression, one for each field in the collection. The expressions determine the values as a function of the position on the grid. The expressions may contain standard mathematical functions and they may depend on the axes labels of the grid. More information can be found in the expression documentation.
- label (str, optional) - Name of the whole collection
- labels (list of str, optional)-Names of the individual fields
- dtype (numpy dtype) - The data type of the field. All the numpy dtypes are supported. If omitted, it will be determined from data automatically.
classmethod from_state (attributes: Dict[str, Any], data: Optional[ndarray] $=$ None) \rightarrow FieldCollection create a field collection from given state.

Parameters

- attributes (dict) - The attributes that describe the current instance
- data (ndarray, optional) - Data values at support points of the grid defining all fields
get_image_data (index: int $=0, * * k w a r g s) \rightarrow$ Dict[str, Any]
return data for plotting an image of the field

Parameters

- index (int) - Index of the field whose data is returned
- **kwargs - Arguments forwarded to the get_image_data method

Returns

Information useful for plotting an image of the field

Return type

dict
get_line_data (index: int $=0$, scalar: str $=$ 'auto', extract: str $=$ 'auto') \rightarrow Dict[str, Any] return data for a line plot of the field

Parameters

- index (int) - Index of the field whose data is returned
- scalar (str or int) - The method for extracting scalars as described in DataFieldBase.to_scalar().
- extract (str) - The method used for extracting the line data. See the docstring of the grid method get_line_data to find supported values.

Returns

Information useful for performing a line plot of the field

Return type

dict
property integrals: List
integrals of all fields
interpolate_to_grid (grid: GridBase, *, backend: str = 'numba', method: str = 'linear', fill: Optional[Number] = None, label: str $=$ None $) \rightarrow$ FieldCollection
interpolate the data of this field collection to another grid.

Parameters

- grid (GridBase) - The grid of the new field onto which the current field is interpolated.
- backend (str) - The accepted values "scipy" and "numba" determine the backend that is used for the interpolation.
- method (str) - Determines the method being used for interpolation. Typical values that are "nearest" and "linear", but the supported values depend on the chosen backend.
- fill (Number, optional) - Determines how values out of bounds are handled. If None, a ValueError is raised when out-of-bounds points are requested. Otherwise, the given value is returned.
- label (str, optional) - Name of the returned field collection

Returns

Interpolated data

Return type

FieldCollection

```
property labels: _FieldLabels
```

the labels of all fields

Note: The attribute returns a special class _FieldLabels to allow specific manipulations of the field labels. The returned object behaves much like a list, but assigning values will modify the labels of the fields in the collection.

Type

_FieldLabels
property magnitudes: ndarray
scalar magnitudes of all fields
Type
ndarray
plot (kind: Union[str, Sequence[str]] = 'auto', resize_fig=None, figsize='auto', arrangement='horizontal', subplot_args=None, *args, title: str = None, constrained_layout: bool $=$ True, filename: str $=$ None, action: str $=$ 'auto', fig_style: Optional[Dict[str, Any]] $=$ None, fig $=$ None, ${ }^{* * * w a r g s) ~} \rightarrow$ List[PlotReference]
visualize all the fields in the collection

Parameters

- kind (str or list of str) - Determines the kind of the visualizations. Supported values are image, line, vector, or interactive. Alternatively, auto determines the best visualization based on each field itself. Instead of a single value for all fields, a list with individual values can be given.
- resize_fig (bool) - Whether to resize the figure to adjust to the number of panels
- figsize (str or tuple of numbers) - Determines the figure size. The figure size is unchanged if the string default is passed. Conversely, the size is adjusted automatically when auto is passed. Finally, a specific figure size can be specified using two values, using matplotlib.figure.Figure.set_size_inches().
- arrangement (str) - Determines how the subpanels will be arranged. The default value horizontal places all subplots next to each other. The alternative value vertical puts them below each other.
- title (str) - Title of the plot. If omitted, the title might be chosen automatically. This is shown above all panels.
- constrained_layout (bool) - Whether to use constrained_layout in matplotlib.pyplot.figure() call to create a figure. This affects the layout of all plot elements. Generally, spacing might be better with this flag enabled, but it can also lead to problems when plotting multiple plots successively, e.g., when creating a movie.
- filename (str, optional) - If given, the figure is written to the specified file.
- action $(s t r)$ - Decides what to do with the final figure. If the argument is set to show, matplotlib.pyplot.show() will be called to show the plot. If the value is none, the figure will be created, but not necessarily shown. The value close closes the figure, after saving it to a file when filename is given. The default value auto implies that the plot is shown if it is not a nested plot call.
- fig_style (dict) - Dictionary with properties that will be changed on the figure after the plot has been drawn by calling matplotlib.pyplot. setp (). For instance, using fig_style $=\{$ 'dpi': 200 $\}$ increases the resolution of the figure.
- $\mathbf{f i g}$ (matplotlib.figures.Figure) - Figure that is used for plotting. If omitted, a new figure is created.
- subplot_args (list) - Additional arguments for the specific subplots. Should be a list with a dictionary of arguments for each subplot. Supplying an empty dict allows to keep the default setting of specific subplots.
- **kwargs - All additional keyword arguments are forwarded to the actual plotting function of all subplots.

Returns

Instances that contain information to update all the plots with new data later.

Return type

List of PlotReference
classmethod scalar_random_uniform (num_fields: int, grid: GridBase, vmin: float $=0$, vmax: float $=1, *$, label: str = None, labels: Optional[Sequence[str]] = None) \rightarrow FieldCollection
create scalar fields with random values between $v \min$ and $v \max$

Parameters

- num_fields (int) - The number of fields to create
- grid(GridBase) - Grid defining the space on which the fields are defined
- vmin (float) - Lower bound. Can be complex to create complex fields
- $\operatorname{vmax}(f l o a t)$ - Upper bound. Can be complex to create complex fields
- label (str, optional) - Name of the field collection
- labels (list of str, optional) - Names of the individual fields
smooth (sigma: float $=1$, , , out: Optional[FieldCollection] $=$ None, label: str $=$ None $) \rightarrow$ FieldCollection
applies Gaussian smoothing with the given standard deviation
This function respects periodic boundary conditions of the underlying grid, using reflection when no periodicity is specified.
sigma (float):
Gives the standard deviation of the smoothing in real length units (default: 1)
out (FieldCollection, optional):
Optional field into which the smoothed data is stored
label (str, optional):
Name of the returned field

Returns

Field collection with smoothed data, stored at out if given.
classmethod unserialize_attributes (attributes: Dict[str, str]) \rightarrow Dict[str, Any]
unserializes the given attributes

Parameters

attributes (dict) - The serialized attributes

Returns

The unserialized attributes

Return type

dict

4.1.3 pde.fields.scalar module

Defines a scalar field over a grid
class ScalarField (grid: GridBase, data: Optional[Union[int, float, complex, ndarray, Sequence[Union[int, float, complex, ndarray]], Sequence[Sequence[Any]], str]] = 'zeros', *, label: str = None, dtype=None, with_ghost_cells: bool = False)
Bases: DataFieldBase
Scalar field discretized on a grid

Parameters

- $\operatorname{grid}(G r i d B a s e)$ - Grid defining the space on which this field is defined.
- data (Number or ndarray, optional) - Field values at the support points of the grid. The flag with_ghost_cells determines whether this data array contains values for the ghost cells, too. The resulting field will contain real data unless the data argument contains complex values. Special values are "zeros" or None, initializing the field with zeros, and "empty", just allocating memory with unspecified values.
- label (str, optional) - Name of the field
- dtype (numpy dtype) - The data type of the field. If omitted, it will be determined from data automatically.
- with_ghost_cells (bool) - Indicates whether the ghost cells are included in data
classmethod from_expression (grid: GridBase, expression: str, *, label: str $=$ None, dtype $=$ None) \rightarrow ScalarField
create a scalar field on a grid from a given expression

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

Parameters

- grid (GridBase) - Grid defining the space on which this field is defined
- expression (str) - Mathematical expression for the scalar value as a function of the position on the grid. The expression may contain standard mathematical functions and it may depend on the axes labels of the grid. More information can be found in the expression documentation.
- label (str, optional) - Name of the field
- dtype (numpy dtype) - The data type of the field. If omitted, it will be determined from data automatically.
classmethod from_image (path: Union[Path, str], bounds=None, periodic=False, *, label: str = None) \rightarrow ScalarField
create a scalar field from an image

Parameters

- path (Path or str) - The path to the image file
- bounds (tuple, optional) - Gives the coordinate range for each axis. This should be two tuples of two numbers each, which mark the lower and upper bound for each axis.
- periodic (bool or list) - Specifies which axes possess periodic boundary conditions. This is either a list of booleans defining periodicity for each individual axis or a single boolean value specifying the same periodicity for all axes.
- label (str, optional) - Name of the field
gradient (bc: Optional[BoundariesData], out: Optional['VectorField'] $=$ None, ${ }^{* * * w a r g s) ~} \rightarrow$ VectorField apply gradient operator and return result as a field

Parameters

- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two
conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': $N U M \xi$) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation. If the special value None is given, no boundary conditions are enforced. The user then needs to ensure that the ghost cells are set accordingly.
- out (VectorField, optional) - Optional vector field to which the result is written.
- label (str, optional) - Name of the returned field

Returns

result of applying the operator

Return type

```
VectorField
gradient_squared (bc: Optional[BoundariesData], out: Optional[ScalarField] \(=\) None, \({ }^{* * * k w a r g s) ~} \rightarrow\) ScalarField
```

apply squared gradient operator and return result as a field
This evaluates $|\nabla \phi|^{2}$ for the scalar field ϕ

Parameters

- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': $N U M \xi$) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation. If the special value None is given, no boundary conditions are enforced. The user then needs to ensure that the ghost cells are set accordingly.
- out (ScalarField, optional) - Optional vector field to which the result is written.
- label (str, optional) - Name of the returned field
- central (bool) - Determines whether a central difference approximation is used for the gradient operator or not. If not, the squared gradient is calculated as the mean of the squared values of the forward and backward derivatives, which thus includes the value at a support point in the result at the same point.

Returns

the squared gradient of the field
Return type

```ScalarField
property integral: Union[int, float, complex]
    integral of the scalar field over space
        Type
            Number
laplace (bc: Optional[BoundariesData], out: Optional[ScalarField] = None, **kwargs) }->\mathrm{ ScalarField
    apply Laplace operator and return result as a field
```


Parameters

- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': $N U M f)$ and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation. If the special value None is given, no boundary conditions are enforced. The user then needs to ensure that the ghost cells are set accordingly.
- out (ScalarField, optional) - Optional scalar field to which the result is written.
- label (str, optional) - Name of the returned field
- backend (str) - The backend (e.g., 'numba' or 'scipy') used for this operator.

Returns

the Laplacian of the field

Return type

ScalarField
project (axes: Union[str, Sequence[str]], method: str $=$ 'integral', label: str $=$ None) \rightarrow ScalarField
project scalar field along given axes

Parameters

- axes (list of str) - The names of the axes that are removed by the projection operation. The valid names for a given grid are the ones in the GridBase. axes attribute.
- method (str) - The projection method. This can be either 'integral' to integrate over the removed axes or 'average' to perform an average instead.
- label (str, optional) - The label of the returned field

Returns

The projected data in a scalar field with a subgrid of the original grid.

Return type

Scalarfield
rank: int $=0$
slice (position: Dict[str, float], *, method: str = 'nearest', label: str = None) \rightarrow ScalarField
slice data at a given position

Parameters

- position (dict) - Determines the location of the slice using a dictionary supplying coordinate values for a subset of axes. Axes not mentioned in the dictionary are retained and form the slice. For instance, in a 2d Cartesian grid, position $=\left\{x^{\prime}: 1\right\}$ slices along the y direction at $\mathrm{x}=1$. Additionally, the special positions 'low', 'mid', and 'high' are supported to reference relative positions along the axis.
- method (str) - The method used for slicing. nearest takes data from cells defined on the grid.
- label (str, optional) - The label of the returned field

Returns

The sliced data in a scalar field with a subgrid of the original grid.

Return type

Scalarfield
to_scalar (scalar: Union[str, Callable] $=$ 'auto', ${ }^{*}$, label: str $=$ None $) \rightarrow$ ScalarField
return a modified scalar field by applying method scalar

Parameters

- scalar (str or callable) - Determines the method used for obtaining the scalar. If this is a callable, it is simply applied to self.data and a new scalar field with this data is returned. Alternatively, pre-defined methods can be selected using strings. Here, abs and norm denote the norm of each entry of the field, while norm_squared returns the squared norm. The default auto is to return a (unchanged) copy of a real field and the norm of a complex field.
- label (str, optional) - Name of the returned field

Returns

Scalar field after applying the operation

Return type

ScalarField

4.1.4 pde.fields.tensorial module

Defines a tensorial field of rank 2 over a grid
class Tensor2Field (grid: GridBase, data: Optional[Union[int, float, complex, ndarray, Sequence[Union[int, float, complex, ndarray]], Sequence[Sequence[Any]], str]] = 'zeros', *, label: str = None, dtype $=$ None, with_ghost_cells: bool $=$ False $)$
Bases: DataFieldBase
Tensor field of rank 2 discretized on a grid

Parameters

- grid (GridBase) - Grid defining the space on which this field is defined.
- data (Number or ndarray, optional) - Field values at the support points of the grid. The flag with_ghost_cells determines whether this data array contains values for the ghost cells, too. The resulting field will contain real data unless the data argument contains complex values. Special values are "zeros" or None, initializing the field with zeros, and "empty", just allocating memory with unspecified values.
- label (str, optional) - Name of the field
- dtype (numpy dtype) - The data type of the field. If omitted, it will be determined from data automatically.
- with_ghost_cells (bool) - Indicates whether the ghost cells are included in data
divergence (bc: Optional[BoundariesData], out: Optional[VectorField] $=$ None, ${ }^{* * k w a r g s}$) \rightarrow VectorField
apply tensor divergence and return result as a field
The tensor divergence is a vector field v_{α} resulting from a contracting of the derivative of the tensor field $t_{\alpha \beta}$:

$$
v_{\alpha}=\sum_{\beta} \frac{\partial t_{\alpha \beta}}{\partial x_{\beta}}
$$

Parameters

- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': $N U M f)$ and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation. If the special value None is given, no boundary conditions are enforced. The user then needs to ensure that the ghost cells are set accordingly.
- out (VectorField, optional) - Optional scalar field to which the result is written.
- label (str, optional) - Name of the returned field
- **kwargs - Additional arguments affecting how the operator behaves. For instance, the argument normal_bcs can be used to control whether boundary conditions only specify normal components or not.

Returns

result of applying the operator

Return type

VectorField
dot (other: Union[VectorField, Tensor2Field], out: Optional[Union[VectorField, Tensor2Field]] = None, *, conjugate: bool $=$ True, label: str $=$ 'dot product') \rightarrow Union[VectorField, Tensor2Field]
calculate the dot product involving a tensor field
This supports the dot product between two tensor fields as well as the product between a tensor and a vector. The resulting fields will be a tensor or vector, respectively.

Parameters

- other (VectorField or Tensor2Field) - the second field
- out (VectorField or Tensor2Field, optional) - Optional field to which the result is written.
- conjugate (bo०1) - Whether to use the complex conjugate for the second operand
- label (str, optional) - Name of the returned field

Returns

VectorField or Tensor2Field: result of applying the dot operator
classmethod from_expression (grid: GridBase, expressions: Sequence[Sequence[str]], *, label: str = None, dtype=None) \rightarrow Tensor2Field
create a tensor field on a grid from given expressions

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

Parameters

- grid (GridBase) - Grid defining the space on which this field is defined
- expressions (list of str) - A 2d list of mathematical expression, one for each component of the tensor field. The expressions determine the values as a function of the position on the grid. The expressions may contain standard mathematical functions and they may depend on the axes labels of the grid. More information can be found in the expression documentation.
- label (str, optional) - Name of the field
- dtype (numpy dtype) - The data type of the field. If omitted, it will be determined from data automatically.
property integral: ndarray
integral of each component over space
Type
ndarray
make_dot_operator (backend: str = 'numba', *, conjugate: bool $=$ True $) \rightarrow$ Callable[[ndarray, ndarray, Optional[ndarray]], ndarray]
return operator calculating the dot product involving vector fields
This supports both products between two vectors as well as products between a vector and a tensor.

Warning: This function does not check types or dimensions.

Parameters

conjugate (bool) - Whether to use the complex conjugate for the second operand

Returns

function that takes two instance of ndarray, which contain the discretized data of the two operands. An optional third argument can specify the output array to which the result is written. Note that the returned function is jitted with numba for speed.
plot_components (kind: str = 'auto', *args, title: str = None, constrained_layout: bool = True, filename: str = None, action: str = 'auto', fig_style: Optional[Dict[str, Any]] = None, fig=None,
**kwargs) \rightarrow List[List[PlotReference]]
visualize all the components of this tensor field

Parameters

- kind (str or list of str) - Determines the kind of the visualizations. Supported values are image or line. Alternatively, auto determines the best visualization based on the grid.
- title (str) - Title of the plot. If omitted, the title might be chosen automatically. This is shown above all panels.
- constrained_layout (bool) - Whether to use constrained_layout in matplotlib.pyplot.figure() call to create a figure. This affects the layout of all plot elements. Generally, spacing might be better with this flag enabled, but it can also lead to problems when plotting multiple plots successively, e.g., when creating a movie.
- filename (str, optional) - If given, the figure is written to the specified file.
- action (str) - Decides what to do with the final figure. If the argument is set to show, matplotlib.pyplot.show() will be called to show the plot. If the value is none, the figure will be created, but not necessarily shown. The value close closes the figure, after
saving it to a file when filename is given. The default value auto implies that the plot is shown if it is not a nested plot call.
- fig_style (dict) - Dictionary with properties that will be changed on the figure after the plot has been drawn by calling matplotlib.pyplot. setp (). For instance, using fig_style $=\{$ 'dpi': 200 increases the resolution of the figure.
- fig(matplotlib.figures.Figure) - Figure that is used for plotting. If omitted, a new figure is created.
- **kwargs - All additional keyword arguments are forwarded to the actual plotting function of all subplots.

Returns

Instances that contain information to update all the plots with new data later.

Return type

2d list of PlotReference
rank: int $=2$
symmetrize (make_traceless: bool = False, inplace: bool $=$ False $) \rightarrow$ Tensor2Field
symmetrize the tensor field in place

Parameters

- make_traceless (bool) - Determines whether the result is also traceless
- inplace (bool) - Flag determining whether to symmetrize the current field or return a new one

Returns

result of the operation

Return type

Tensor2Field

return a scalar field by applying method
The invariants of the tensor field \boldsymbol{A} are

$$
\begin{aligned}
& I_{1}=\operatorname{tr}(\boldsymbol{A}) \\
& I_{2}=\frac{1}{2}\left[\left(\operatorname{tr}(\boldsymbol{A})^{2}-\operatorname{tr}\left(\boldsymbol{A}^{2}\right)\right]\right. \\
& I_{3}=\operatorname{det}(A)
\end{aligned}
$$

where $t r$ denotes the trace and det denotes the determinant. Note that the three invariants can only be distinct and non-zero in three dimensions. In two dimensional spaces, we have the identity $2 I_{2}=I_{3}$ and in onedimensional spaces, we have $I_{1}=I_{3}$ as well as $I_{2}=0$.

Parameters

- scalar (str) - The method to calculate the scalar. Possible choices include norm (the default chosen when the value is auto), min, max, squared_sum, norm_squared, trace (or invariant1), invariant2, and determinant (or invariant3)
- label (str, optional) - Name of the returned field

Returns

the scalar field after applying the operation

Return type

Scalarfield
trace (label: str $=$ 'trace') \rightarrow ScalarField
return the trace of the tensor field as a scalar field

Parameters

label (str, optional) - Name of the returned field

Returns

scalar field of traces

Return type

Scalarfield
transpose (label: str $=$ 'transpose') \rightarrow Tensor 2 Field
return the transpose of the tensor field

Parameters

label (str, optional) - Name of the returned field

Returns

transpose of the tensor field

Return type

Tensor2Field

4.1.5 pde.fields.vectorial module

Defines a vectorial field over a grid
class VectorField (grid: GridBase, data: Optional[Union[int, float, complex, ndarray, Sequence[Union[int, float, complex, ndarray]], Sequence[Sequence[Any]], str]] = 'zeros', *, label: str = None, dtype=None, with_ghost_cells: bool = False)
Bases: DataFieldBase
Vector field discretized on a grid

Parameters

- grid (GridBase) - Grid defining the space on which this field is defined.
- data (Number or ndarray, optional) - Field values at the support points of the grid. The flag with_ghost_cells determines whether this data array contains values for the ghost cells, too. The resulting field will contain real data unless the data argument contains complex values. Special values are "zeros" or None, initializing the field with zeros, and "empty", just allocating memory with unspecified values.
- label (str, optional) - Name of the field
- dtype (numpy dtype) - The data type of the field. If omitted, it will be determined from data automatically.
- with_ghost_cells (b○○l) - Indicates whether the ghost cells are included in data
divergence (bc: Optional[BoundariesData], out: Optional[ScalarField] $=$ None, $* * k w a r g s$) \rightarrow ScalarField apply divergence operator and return result as a field

Parameters

- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': $N U M f$) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation. If the special value None is given, no boundary conditions are enforced. The user then needs to ensure that the ghost cells are set accordingly.
- out (ScalarField, optional) - Optional scalar field to which the result is written.
- label (str, optional) - Name of the returned field
- **kwargs - Additional arguments affecting how the operator behaves. For instance, the argument normal_bcs can be used to control whether boundary conditions only specify normal components or not.

Returns

result of applying the operator

Return type

ScalarField
dot (other: Union[VectorField, Tensor2Field], out: Optional[Union[ScalarField, VectorField]] = None, *, conjugate: bool $=$ True, label: str $=$ 'dot product') \rightarrow Union[ScalarField, VectorField]
calculate the dot product involving a vector field
This supports the dot product between two vectors fields as well as the product between a vector and a tensor. The resulting fields will be a scalar or vector, respectively.

Parameters

- other (VectorField or Tensor2Field) - the second field
- out (ScalarField or VectorField, optional) - Optional field to which the result is written.
- conjugate ($b \circ \circ 1$) - Whether to use the complex conjugate for the second operand
- label (str, optional) - Name of the returned field

Returns

Scalarfield or VectorField: result of applying the operator
classmethod from_expression (grid: GridBase, expressions: Sequence[str], *, label: str = None, dtype $=$ None) \rightarrow VectorField
create a vector field on a grid from given expressions

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

Parameters

- grid (GridBase) - Grid defining the space on which this field is defined
- expressions (list of str) - A list of mathematical expression, one for each component of the vector field. The expressions determine the values as a function of the position
on the grid. The expressions may contain standard mathematical functions and they may depend on the axes labels of the grid. More information can be found in the expression documentation.
- label (str, optional) - Name of the field
- dtype (numpy dtype) - The data type of the field. If omitted, it will be determined from data automatically.
classmethod from_scalars (fields: List[ScalarField], *, label: str $=$ None, dtype $=$ None) \rightarrow VectorField create a vector field from a list of ScalarFields
Note that the data of the scalar fields is copied in the process

Parameters

- fields (Iist) - The list of (compatible) scalar fields
- label (str, optional) - Name of the returned field
- dtype (numpy dtype) - The data type of the field. If omitted, it will be determined from data automatically.

Returns

the resulting vector field

Return type

Vectorfield
get_vector_data (transpose: bool = False, max_points: int $=$ None, ${ }^{* *}$ kwargs) \rightarrow Dict[str, Any]
return data for a vector plot of the field

Parameters

- transpose (bool) - Determines whether the transpose of the data should be plotted.
- max_points (int) - The maximal number of points that is used along each axis. This option can be used to sub-sample the data.
- **kwargs - Additional parameters are forwarded to grid.get_image_data

Returns

Information useful for plotting an vector field

Return type

dict
gradient (bc: Optional[BoundariesData], out: Optional['Tensor2Field'] $=$ None, ${ }^{* * * k w a r g s) ~} \rightarrow$ Tensor2Field apply vector gradient operator and return result as a field

The vector gradient field is a tensor field $t_{\alpha \beta}$ that specifies the derivatives of the vector field v_{α} with respect to all coordinates x_{β}.

Parameters

- bc - The boundary conditions applied to the field. Boundary conditions need to determine all components of the vector field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{ 'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction
(specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation. If the special value None is given, no boundary conditions are enforced. The user then needs to ensure that the ghost cells are set accordingly.
- out (VectorField, optional) - Optional vector field to which the result is written.
- label (str, optional) - Name of the returned field
- **kwargs - Additional arguments affecting how the operator behaves. For instance, the argument normal_bcs can be used to control whether boundary conditions only specify normal components or not.

Returns

result of applying the operator

Return type

Tensor2Field
property integral: ndarray
integral of each component over space
Type
ndarray
laplace (bc: Optional[BoundariesData], out: Optional[VectorField] $=$ None, $* * k w a r g s) ~ \rightarrow$ VectorField apply vector Laplace operator and return result as a field
The vector Laplacian is a vector field L_{α} containing the second derivatives of the vector field v_{α} with respect to the coordinates x_{β} :

$$
L_{\alpha}=\sum_{\beta} \frac{\partial^{2} v_{\alpha}}{\partial x_{\beta} \partial x_{\beta}}
$$

Parameters

- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': $N U M y)$ and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative’: DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation. If the special value None is given, no boundary conditions are enforced. The user then needs to ensure that the ghost cells are set accordingly.
- out (VectorField, optional) - Optional vector field to which the result is written.
- label (str, optional) - Name of the returned field
- **kwargs - Additional arguments affecting how the operator behaves. For instance, the argument normal_bcs can be used to control whether boundary conditions only specify normal components or not.

Returns

result of applying the operator

Return type

VectorField
make_dot_operator (backend: str = 'numba', *, conjugate: bool $=$ True $) \rightarrow$ Callable[[ndarray, ndarray, Optional[ndarray]], ndarray]
return operator calculating the dot product involving vector fields
This supports both products between two vectors as well as products between a vector and a tensor.

Warning: This function does not check types or dimensions.

Parameters

- backend (str) - The backend (e.g., 'numba' or 'scipy') used for this operator.
- conjugate (bool) - Whether to use the complex conjugate for the second operand

Returns

function that takes two instance of ndarray, which contain the discretized data of the two operands. An optional third argument can specify the output array to which the result is written. Note that the returned function is jitted with numba for speed.
make_outer_prod_operator (backend: str = 'numba') \rightarrow Callable[[ndarray, ndarray, Optional[ndarray]], ndarray]
return operator calculating the outer product of two vector fields

Warning: This function does not check types or dimensions.

Parameters

backend (str) - The backend (e.g., 'numba' or 'scipy') used for this operator.

Returns

function that takes two instance of ndarray, which contain the discretized data of the two operands. An optional third argument can specify the output array to which the result is written. Note that the returned function is jitted with numba for speed.

```
outer_product (other: VectorField, out: Optional[Tensor2Field] = None, *, label: str = None) }
            Tensor2Field
```

calculate the outer product of this vector field with another

Parameters

- other (VectorField) - The second vector field
- out (Tensor2Field, optional) - Optional tensorial field to which the result is written.
- label (str, optional) - Name of the returned field

Returns

result of the operation

Return type

Tensor2Field
rank: int = 1

return a scalar field by applying method

Parameters

- scalar (str) - Choose the method to use. Possible choices are norm, max, min, squared_sum, norm_squared, or an integer specifying which component is returned (indexing starts at 0). The default value auto picks the method automatically: The first (and only) component is returned for real fields on one-dimensional spaces, while the norm of the vector is returned otherwise.
- label (str, optional) - Name of the returned field

Returns

 the scalar field after applying the operation
Return type

```
pde.fields.scalar.ScalarField
```


4.2 pde.grids package

Grids define the domains on which PDEs will be solved. In particular, symmetries, periodicities, and the discretizations are defined by the underlying grid.

We only consider regular, orthogonal grids, which are constructed from orthogonal coordinate systems with equidistant discretizations along each axis. The dimension of the space that the grid describes is given by the attribute dim. Cartesian coordinates can be mapped to grid coordinates and the corresponding discretization cells using the method transform().

UnitGrid	d-dimensional Cartesian grid with unit discretization in all directions
CartesianGrid	d-dimensional Cartesian grid with uniform discretization for each axis
PolarSymGrid	2-dimensional polar grid assuming angular symmetry
SphericalSymGrid	3-dimensional spherical grid assuming spherical symme- try
CylindricalSymGrid	3-dimensional cylindrical grid assuming polar symmetry

Inheritance structure of the classes:

Subpackages:

4.2.1 pde.grids.boundaries package

This package contains classes for handling the boundary conditions of fields.

Boundary conditions

The mathematical details of boundary conditions for partial differential equations are treated in more detail in the documentation document. Since the pde package only supports orthogonal grids, boundary conditions need to be applied at the end of each axis. Consequently, methods expecting boundary conditions typically receive a list of conditions for each axes:

```
field = ScalarField(UnitGrid([16, 16], periodic=[True, False]))
```

field.laplace (bc=[bc_x, bc_y])

If an axis is periodic (like the first one in the example above), the only valid boundary conditions are 'periodic' and its cousin 'anti-periodic', which imposes opposite signs on both sides. For non-periodic axes (e.g., the second axis), different boundary conditions can be specified for the lower and upper end of the axis, which is done using a tuple of two conditions. Typical choices for individual conditions are Dirichlet conditions that enforce a value NUM (specified by \{'value': NUM\}) and Neumann conditions that enforce the value DERIV for the derivative in the normal direction (specified by f'derivative': DERIV $)$). The specific choices for the example above could be

```
bc_x = "periodic"
bc_y = ({"value": 2}, {"derivative": -1})
```

which enforces a value of 2 at the lower side of the y-axis and a derivative (in outward normal direction) of -1 on the upper side. Instead of plain numbers, which enforce the same condition along the whole boundary, expressions can be used to support inhomogeneous boundary conditions. These mathematical expressions are given as a string that can be parsed by sympy. They can depend on all coordinates of the grid. An alternative boundary condition to the example above could thus read

```
bc_y = ({"value": "y**2"}, {"derivative": "-sin(x)"})
```

Warning: To interpret arbitrary expressions, the package uses exec (). It should therefore not be used in a context where malicious input could occur.

Inhomogeneous values can also be specified by directly supplying an array, whose shape needs to be compatible with the boundary, i.e., it needs to have the same shape as the grid but with the dimension of the axis along which the boundary is specified removed.

The package also supports mixed boundary conditions (depending on both the value and the derivative of the field) and imposing a second derivative. An example is

```
bc_y = ({"type": "mixed", "value": 2, "const": 7},
    {"curvature": 2})
```

which enforces the condition $\partial_{n} c+2 c=7$ and $\partial_{n}^{2} c=2$ onto the field c on the lower and upper side of the axis, respectively.
Beside the full specification of the boundary conditions, various short-hand notations are supported. If both sides of an axis have the same boundary condition, only one needs to be specified (instead of the tuple). For instance, bc_y $=\{$ 'value': 2$\}$ imposes a value of 2 on both sides of the y-axis. Similarly, if all axes have the same boundary conditions, only one axis needs to be specified (instead of the list). For instance, the following example

```
field = ScalarField(UnitGrid([16, 16], periodic=False))
field.laplace(bc={"value": 2})
```

imposes a value of 2 on all sides of the grid. Finally, the special values 'auto_periodic_neumann' and 'auto_periodic_dirichlet' impose periodic boundary conditions for periodic axis and a vanishing derivative or value otherwise. For example,

```
field = ScalarField(UnitGrid([16, 16], periodic=[True, False]))
field.laplace(bc="auto_periodic_neumann")
```

enforces periodic boundary conditions on the first axis, while the second one has standard Neumann conditions.

Note: Derivatives are given relative to the outward normal vector, such that positive derivatives correspond to a function that increases across the boundary.

Boundaries overview

The boundaries package defines the following classes:

Local boundary conditions:

- Dirichlet $B C$: Imposing a constant value of the field at the boundary
- ExpressionValueBC: Imposing the value of the field at the boundary given by an expression
- Neumann $B C$: Imposing a constant derivative of the field in the outward normal direction at the boundary
- ExpressionDerivativeBC: Imposing the derivative of the field in the outward normal direction at the boundary given by an expression
- MixedBC: Imposing the derivative of the field in the outward normal direction proportional to its value at the boundary
- Curvature $B C$: Imposing a constant second derivative (curvature) of the field at the boundary

There are corresponding classes that only affect the normal component of a field, which can be useful when dealing with vector and tensor fields.

Boundaries for an axis:

- BoundaryPair: Uses the local boundary conditions to specify the two boundaries along an axis
- BoundaryPeriodic: Indicates that an axis has periodic boundary conditions

Boundaries for all axes of a grid:

- Boundaries: Collection of boundaries to describe conditions for all axes

Inheritance structure of the classes:

The details of the classes are explained below:

pde.grids.boundaries.axes module

This module handles the boundaries of all axes of a grid. It only defines Boundaries, which acts as a list of BoundaryAxisBase.

class Boundaries (boundaries)

Bases: list
class that bundles all boundary conditions for all axes
initialize with a list of boundaries

```
    check_value_rank (rank: int) \(\rightarrow\) None
```

check whether the values at the boundaries have the correct rank

Parameters

rank (int) - The tensorial rank of the field for this boundary condition

Throws:

RuntimeError: if any value does not have rank rank
copy () \rightarrow Boundaries
create a copy of the current boundaries
extract_component (*indices) \rightarrow Boundaries
extracts the boundary conditions of the given component of the tensor.

Parameters

*indices - One or two indices for vector or tensor fields, respectively
classmethod from_data (grid: GridBase, boundaries, rank: int $=0$, normal: bool $=$ False) \rightarrow Boundaries
Creates all boundaries from given data

Parameters

- grid (GridBase) - The grid with which the boundary condition is associated
- boundaries (str or list or tuple or dict) - Data that describes the boundaries. This can either be a list of specifications for each dimension or a single one, which is then applied to all dimensions. The boundary for a dimensions can be specified by one of the following formats:
- string specifying a single type for all boundaries
- dictionary specifying the type and values for all boundaries
- tuple pair specifying the low and high boundary individually
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.

```
classmethod get_help() }->\mathrm{ str
```

Return information on how boundary conditions can be set
get_mathematical_representation (field_name: str $={ }^{\prime} C^{\prime}$) \rightarrow str
return mathematical representation of the boundary condition

```
grid: GridBase
```

GridBase: The grid for which the boundaries are defined

```
make_ghost_cell_setter() }->\mathrm{ Callable[[...], None]
```

return function that sets the ghost cells on a full array

```
property periodic: List[bool]
```

a boolean array indicating which dimensions are periodic according to the boundary conditions

Type

ndarray
set_ghost_cells (data_full: ndarray, ${ }^{*}$, args $=$ None) \rightarrow None
set the ghost cells for all boundaries

Parameters

- data_full (ndarray) - The full field data including ghost points
- args - Additional arguments that might be supported by special boundary conditions.

pde.grids.boundaries.axis module

This module handles the boundaries of a single axis of a grid. There are generally only two options, depending on whether the axis of the underlying grid is defined as periodic or not. If it is periodic, the class BoundaryPeriodic should be used, while non-periodic axes have more option, which are represented by BoundaryPair.

```
class BoundaryAxisBase (low: BCBase, high: BCBase)
```

Bases: object
base class for defining boundaries of a single axis in a grid

Parameters

- low (BCBase) - Instance describing the lower boundary
- high (BCBase) - Instance describing the upper boundary

```
property axis: int
```

The axis along which the boundaries are defined
Type
int
get_data (idx: Tuple[int, ...]) \rightarrow Tuple[float, Dict[int, float]]
sets the elements of the sparse representation of this condition

Parameters

idx (tuple) - The index of the point that must lie on the boundary condition

Returns

A constant value and a dictionary with indices and factors that can be used to calculate this virtual point

Return type

float, dict
get_mathematical_representation (field_name: str $=$ ' C^{\prime}) \rightarrow Tuple[str, str]
return mathematical representation of the boundary condition
get_point_evaluator (fill: Optional[ndarray] = None) \rightarrow Callable[[ndarray, Tuple[int, ...]], Union[int, float, complex, ndarray]]
return a function to evaluate values at a given point
The point can either be a point inside the domain or a virtual point right outside the domain

Parameters

fill (ndarray, optional) - Determines how values out of bounds are handled. If None, a DomainError is raised when out-of-bounds points are requested. Otherwise, the given value is returned.

Returns

A function taking a 1d array and an index as an argument, returning the value of the array at this index.

Return type

function
property grid: GridBase
Underlying grid
Type
GridBase
high: BCBase
Boundary condition at upper end
Type
BCBase
low: BCBase
Boundary condition at lower end
Type
BCBase
make_derivative_evaluator (order: int = 1) \rightarrow Callable[[ndarray, Tuple[int, ...]], Union[int, float, complex, ndarray]]
return a function to evaluate the derivative at a point

Parameters

order (int) - The order of the derivative

Returns

A function that can be called with the data array and a tuple indicating around what point the derivative is evaluated. The function returns the central finite difference at the point. The function takes boundary conditions into account if the point lies on the boundary.

Return type

function
make_ghost_cell_setter ()\rightarrow Callable[[...], None]
return function that sets the ghost cells for this axis on a full array
make_region_evaluator () \rightarrow Callable[[ndarray, Tuple[int, ...]], Tuple[Union[int, float, complex, ndarray], Union[int, float, complex, ndarray], Union[int, float, complex, ndarray]]]
return a function to evaluate values in a neighborhood of a point

Returns

A function that can be called with the data array and a tuple indicating around what point the region is evaluated. The function returns the data values left of the point, at the point, and right of the point along the axis associated with this boundary condition. The function takes boundary conditions into account if the point lies on the boundary.

Return type

function
make_virtual_point_evaluators ()\rightarrow Tuple[Callable[[...], float], Callable[[...], float]]
returns two functions evaluating the value at virtual support points

Returns

Two functions that each take a 1d array as an argument and return the associated value at the virtual support point outside the lower and upper boundary, respectively.

Return type

tuple
property periodic: bool
whether the axis is periodic
Type
bool

```
set_ghost_cells (data_full: ndarray, *, args=None) }->\mathrm{ None
```

set the ghost cell values for all boundaries

Parameters

- data_full (ndarray) - The full field data including ghost points
- args - Additional arguments that might be supported by special boundary conditions.
class BoundaryPair (low: BCBase, high: BCBase)

Bases: BoundaryAxisBase

represents the two boundaries of an axis along a single dimension

Parameters

- low (BCBase) - Instance describing the lower boundary
- high (BCBase) - Instance describing the upper boundary
check_value_rank (rank: int) \rightarrow None
check whether the values at the boundaries have the correct rank

Parameters

rank (int) - The tensorial rank of the field for this boundary condition

Throws:

RuntimeError: if the value does not have rank rank

```
copy() }->\mathrm{ BoundaryPair
```

return a copy of itself, but with a reference to the same grid
extract_component (*indices) \rightarrow BoundaryPair
extracts the boundary pair of the given index.

Parameters

*indices - One or two indices for vector or tensor fields, respectively
classmethod from_data (grid: GridBase, axis: int, data, rank: int $=0$, normal: bool $=$ False) \rightarrow BoundaryPair
create boundary pair from some data

Parameters

- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- data (str or dict) - Data that describes the boundary pair
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.

Returns

the instance created from the data

Return type

BoundaryPair

Throws:

ValueError if data cannot be interpreted as a boundary pair
classmethod get_help() \rightarrow str
Return information on how boundary conditions can be set
high: BCBase
Boundary condition at upper end
Type
BCBase
low: BCBase
Boundary condition at lower end
Type
BCBase
class BoundaryPeriodic (grid: GridBase, axis: int, flip_sign: bool $=$ False)
Bases: BoundaryPair
represent a periodic axis

Parameters

- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- flip_sign (bool) - Impose different signs on the two sides of the boundary
check_value_rank (rank: int) \rightarrow None
check whether the values at the boundaries have the correct rank

Parameters

rank (int) - The tensorial rank of the field for this boundary condition
copy () \rightarrow BoundaryPeriodic
return a copy of itself, but with a reference to the same grid
extract_component (*indices) \rightarrow BoundaryPeriodic
extracts the boundary pair of the given extract_component.

Parameters

*indices - One or two indices for vector or tensor fields, respectively

```
property flip_sign
```

Whether different signs are imposed on the two sides of the boundary
Type
bool
high: BCBase
Boundary condition at upper end
Type
BCBase
low: BCBase
Boundary condition at lower end
Type
BCBase
get_boundary_axis (grid: GridBase, axis: int, data, rank: int $=0$, normal: bool $=$ False) \rightarrow BoundaryAxisBase return object representing the boundary condition for a single axis

Parameters

- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- data (str or tuple or dict) - Data describing the boundary conditions for this axis
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.

Returns

Appropriate boundary condition for the axis

Return type

BoundaryAxisBase

pde.grids.boundaries.local module

This module contains classes for handling a single boundary of a non-periodic axis. Since an axis has two boundary, we simply distinguish them by a boolean flag upper, which is True for the side of the axis with the larger coordinate.

The module currently supports different boundary conditions:

- Dirichlet $B C$: Imposing the value of a field at the boundary
- NeumannBC: Imposing the derivative of a field in the outward normal direction at the boundary
- MixedBC: Imposing the derivative of a field in the outward normal direction proportional to its value at the boundary
- Curvature $B C$: Imposing the second derivative (curvature) of a field at the boundary

Finally, there are more specialized classes, which offer greater flexibility, but might also require a slightly deeper understanding for proper use:

- ExpressionValueBC: Imposing the value of a field at the boundary based on a mathematical expression
- Neumann $B C$: Imposing the derivative of a field in the outward normal direction at the boundary based on a mathematical expression
- UserBC: Allows full control for setting virtual points, values, or derivatives. The boundary conditions are never enforced automatically. It is thus the user's responsibility to ensure virtual points are set correctly before operators are applied. To set boundary conditions a dictionary \{TARGET: value\} must be supplied as argument args to set_ghost_cells () or the numba equivalent. Here, TARGET determines how the value is interpreted and what boundary condition is actually enforced: the value of the virtual points directly (virtual_point), the value of the field at the boundary (value) or the outward derivative of the field at the boundary (derivative).

Note that derivatives are generally given in the direction of the outward normal vector, such that positive derivatives correspond to a function that increases across the boundary.
class BCBase (grid: GridBase, axis: int, upper: bool, *, rank: int $=0$, normal: bool $=$ False)
Bases: object
represents a single boundary in an BoundaryPair instance

Parameters

- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper (b००1) - Flag indicating whether this boundary condition is associated with the upper side of an axis or not. In essence, this determines the direction of the local normal vector of the boundary.
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.

```
property axis_coord: float
```

value of the coordinate that defines this boundary condition
Type
float
check_value_rank (rank: int) \rightarrow None
check whether the values at the boundaries have the correct rank

Parameters

rank (int) - The tensorial rank of the field for this boundary condition

Throws:

RuntimeError: if the value does not have rank rank
abstract copy (upper: Optional[bool] = None, rank: int $=$ None $) \rightarrow$ BCBase
extract_component (*indices)
extracts the boundary conditions for the given component

Parameters

*indices - One or two indices for vector or tensor fields, respectively
classmethod from_data (grid: GridBase, axis: int, upper: bool, data: Union[Dict, str, BCBase], *, rank: int $=0$, normal: bool $=$ False $) \rightarrow$ BCBase
create boundary from some data

Parameters

- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper ($b \circ \circ \mathrm{l})$ - Indicates whether this boundary condition is associated with the upper or lower side of the axis.
- data (str or dict) - Data that describes the boundary
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.

Returns

 the instance created from the data
Return type

```
                BCBase
```


Throws:

ValueError if data cannot be interpreted as a boundary condition
classmethod from_dict (grid: GridBase, axis: int, upper: bool, data: Dict[str, Any], *, rank: int $=0$, normal: bool $=$ False $) \rightarrow$ BCBase
create boundary from data given in dictionary

Parameters

- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper (b○○l) - Indicates whether this boundary condition is associated with the upper or lower side of the axis.
- data (dict) - The dictionary defining the boundary condition
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
classmethod from_str (grid: GridBase, axis: int, upper: bool, condition: str, *, rank: int $=0$, normal: bool $=$ False, ${ }^{* *}$ kwargs) \rightarrow BCBase
creates boundary from a given string identifier

Parameters

- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper ($b \circ \circ 1$) - Indicates whether this boundary condition is associated with the upper or lower side of the axis.
- condition (str) - Identifies the boundary condition
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
- **kwargs - Additional arguments passed to the constructor
get_data (idx: Tuple[int, ...]) \rightarrow Tuple[float, Dict[int, float]]
classmethod get_help() \rightarrow str
Return information on how boundary conditions can be set
get_mathematical_representation (field_name: str $=$ ' C^{\prime}) \rightarrow str
return mathematical representation of the boundary condition
get_virtual_point (arr, idx: Optional[Tuple[int, ...]] = None) \rightarrow float
homogeneous: bool
determines whether the boundary condition depends on space

Type

bool
make_adjacent_evaluator ()\rightarrow Callable[[ndarray, int, Tuple[int, ...]], float]
make_ghost_cell_setter () \rightarrow Callable[[...], None]
return function that sets the ghost cells for this boundary
abstract make_virtual_point_evaluator ()\rightarrow Callable[[...], float]
names: List[str]
identifiers used to specify the given boundary class
Type
list
property periodic: bool
whether the axis is periodic

Type

bool
abstract set_ghost_cells (data_full: ndarray, *, args=None) \rightarrow None
set the ghost cell values for this boundary
exception BCDataError
Bases: ValueError
exception that signals that incompatible data was supplied for the BC
class ConstBC1stOrderBase (grid: GridBase, axis: int, upper: bool, *, rank: int $=0$, normal: bool $=$ False, value: Union[float, ndarray, str] $=0$)
Bases: ConstBCBase
represents a single boundary in an BoundaryPair instance

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur. However, the function is safe when value cannot be an arbitrary string.

Parameters

- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper ($b \circ \circ \mathrm{l}$) - Flag indicating whether this boundary condition is associated with the upper side of an axis or not. In essence, this determines the direction of the local normal vector of the boundary.
- rank (int) - The tensorial rank of the field for this boundary condition
- normal ($b \circ \circ \mathrm{l})$ - Flag indicating whether the condition is only applied in the normal direction.
- value (float or str or ndarray) - a value stored with the boundary condition. The interpretation of this value depends on the type of boundary condition. If value is a single value (or tensor in case of tensorial boundary conditions), the same value is applied to all points. Inhomogeneous boundary conditions are possible by supplying an expression as a string, which then may depend on the axes names of the respective grid.
get_data (idx: Tuple[int, ...]) \rightarrow Tuple[float, Dict[int, float]]
sets the elements of the sparse representation of this condition

Parameters

idx (tuple) - The index of the point that must lie on the boundary condition

Returns

A constant value and a dictionary with indices and factors that can be used to calculate this virtual point

Return type

float, dict
get_virtual_point (arr, idx: Optional[Tuple[int, ...]] = None) \rightarrow float
calculate the value of the virtual point outside the boundary

Parameters

- arr (array) - The data values associated with the grid
- idx (tuple) - The index of the point to evaluate. This is a tuple of length grid.num_axes with the either -1 or dim as the entry for the axis associated with this boundary condition. Here, dim is the dimension of the axis. The index is optional if $\operatorname{dim}==1$.

Returns

Value at the virtual support point

Return type

float
abstract get_virtual_point_data (compiled: bool $=$ False) \rightarrow Tuple[Any, Any, int]
make_adjacent_evaluator () \rightarrow Callable[[ndarray, int, Tuple[int, ...]], float]
returns a function evaluating the value adjacent to a given point

Returns

A function with signature (arr_1d, i_point, bc_idx), where arr_ld is the one-dimensional data array (the data points along the axis perpendicular to the boundary), i_{1} point is the index into this array for the current point and bc_idx are the remaining indices of the current point, which indicate the location on the boundary plane. The result of the function is the data value at the adjacent point along the axis associated with this boundary condition in the upper (lower) direction when upper is True (False).

Return type

function
make_virtual_point_evaluator ()\rightarrow Callable[[...], float]
returns a function evaluating the value at the virtual support point

Returns

A function that takes the data array and an index marking the current point, which is assumed to be a virtual point. The result is the data value at this point, which is calculated using the boundary condition.

Return type

function

```
set_ghost_cells (data_full: ndarray, *, args=None) }->\mathrm{ None
```

set the ghost cell values for this boundary

Parameters

- data_full (ndarray) - The full field data including ghost points
- args - Additional arguments that might be supported by special boundary conditions.
value_is_linked: bool
flag that indicates whether the value associated with this boundary condition is linked to ndarray managed by external code.

Type

bool
class ConstBC2ndOrderBase (grid: GridBase, axis: int, upper: bool, *, rank: int $=0$, normal: bool $=$ False, value: Union[float, ndarray, str] $=0$)
Bases: ConstBCBase
abstract base class for boundary conditions of 2nd order

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur. However, the function is safe when value cannot be an arbitrary string.

Parameters

- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper ($b \circ \circ \mathrm{l}$) - Flag indicating whether this boundary condition is associated with the upper side of an axis or not. In essence, this determines the direction of the local normal vector of the boundary.
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
- value (float or str or ndarray) - a value stored with the boundary condition. The interpretation of this value depends on the type of boundary condition. If value is a single value (or tensor in case of tensorial boundary conditions), the same value is applied to all points. Inhomogeneous boundary conditions are possible by supplying an expression as a string, which then may depend on the axes names of the respective grid.
get_data (idx: Tuple[int, ...]) \rightarrow Tuple[float, Dict[int, float]]
sets the elements of the sparse representation of this condition

Parameters

idx (tuple) - The index of the point that must lie on the boundary condition

Returns

A constant value and a dictionary with indices and factors that can be used to calculate this virtual point

Return type

float, dict
get_virtual_point (arr, idx: Optional[Tuple[int, ...]] = None) \rightarrow float
calculate the value of the virtual point outside the boundary

Parameters

- arr (array) - The data values associated with the grid
- idx (tuple) - The index of the point to evaluate. This is a tuple of length grid.num_axes with the either -1 or dim as the entry for the axis associated with this boundary condition. Here, dim is the dimension of the axis. The index is optional if $\operatorname{dim}==1$.

Returns

Value at the virtual support point

Return type

float
abstract get_virtual_point_data() \rightarrow Tuple[Any, Any, int, Any, int]
return data suitable for calculating virtual points

Returns

the data associated with this virtual point

Return type

tuple

```
make_adjacent_evaluator () }->\mathrm{ Callable[[ndarray, int, Tuple[int, ...]], float]
```

returns a function evaluating the value adjacent to a given point

Returns

A function with signature (arr_1d, i_point, bc_idx), where arr_ld is the one-dimensional data array (the data points along the axis perpendicular to the boundary), i_point is the index into this array for the current point and bc_idx are the remaining indices of the current point, which indicate the location on the boundary plane. The result of the function is the data value at the adjacent point along the axis associated with this boundary condition in the upper (lower) direction when upper is True (False).

Return type

function
make_virtual_point_evaluator ()\rightarrow Callable[[...], float]
returns a function evaluating the value at the virtual support point

Returns

A function that takes the data array and an index marking the current point, which is assumed to be a virtual point. The result is the data value at this point, which is calculated using the boundary condition.

Return type

function

```
set_ghost_cells (data_full: ndarray, *, args=None) }->\mathrm{ None
```

set the ghost cell values for this boundary

Parameters

- data_full (ndarray) - The full field data including ghost points
- args - Additional arguments that might be supported by special boundary conditions.

```
value_is_linked: bool
```

flag that indicates whether the value associated with this boundary condition is linked to ndarray managed by external code.

Type
bool
class ConstBCBase (grid: GridBase, axis: int, upper: bool, *, rank: int $=0$, normal: bool $=$ False, value: Union[float, ndarray, str] = 0)
Bases: BCBase
base class representing a boundary whose virtual point is set from constants

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur. However, the function is safe when value cannot be an arbitrary string.

Parameters

- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper ($b \circ \circ \mathrm{l}$) - Flag indicating whether this boundary condition is associated with the upper side of an axis or not. In essence, this determines the direction of the local normal vector of the boundary.
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
- value (float or str or ndarray) - a value stored with the boundary condition. The interpretation of this value depends on the type of boundary condition. If value is a single value (or tensor in case of tensorial boundary conditions), the same value is applied to all points. Inhomogeneous boundary conditions are possible by supplying an expression as a string, which then may depend on the axes names of the respective grid.

```
copy (upper: Optional[bool] = None, rank: int = None, value: Optional[Union[float, ndarray, str]] = None) \(\rightarrow\)
``` ConstBCBase
return a copy of itself, but with a reference to the same grid
```

extract_component (*indices)

```
extracts the boundary conditions for the given component

\section*{Parameters}
*indices - One or two indices for vector or tensor fields, respectively
link_value (value: ndarray)
link value of this boundary condition to external array
property value: ndarray
value_is_linked: bool
flag that indicates whether the value associated with this boundary condition is linked to ndarray managed by external code.

\section*{Type}
bool
class CurvatureBC (grid: GridBase, axis: int, upper: bool, \({ }^{*}\), rank: int \(=0\), normal: bool \(=\) False, value:
Union[float, ndarray, str] =0)
Bases: ConstBC2ndOrderBase
represents a boundary condition imposing the 2 nd normal derivative at the boundary

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur. However, the function is safe when value cannot be an arbitrary string.

\section*{Parameters}
- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper \((b \circ \circ 1)\) - Flag indicating whether this boundary condition is associated with the upper side of an axis or not. In essence, this determines the direction of the local normal vector of the boundary.
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
- value (float or str or ndarray) - a value stored with the boundary condition. The interpretation of this value depends on the type of boundary condition. If value is a single value (or tensor in case of tensorial boundary conditions), the same value is applied to all points. Inhomogeneous boundary conditions are possible by supplying an expression as a string, which then may depend on the axes names of the respective grid.
get_mathematical_representation (field_name: str \(={ }^{\prime} C^{\prime}\)) \(\rightarrow\) str
return mathematical representation of the boundary condition
get_virtual_point_data() \(\rightarrow\) Tuple[ndarray, ndarray, int, ndarray, int]
return data suitable for calculating virtual points

\section*{Returns}
the data structure associated with this virtual point

\section*{Return type}
tuple
homogeneous: bool
determines whether the boundary condition depends on space
Type
bool
names: List[str] = ['curvature', 'second_derivative', 'extrapolate']
identifiers used to specify the given boundary class
Type
list
value_is_linked: bool
flag that indicates whether the value associated with this boundary condition is linked to ndarray managed by external code.

\section*{Type}
bool
class DirichletBC (grid: GridBase, axis: int, upper: bool, *, rank: int \(=0\), normal: bool \(=\) False, value:
Union[float, ndarray, str] \(=0\))
Bases: ConstBC1stOrderBase
represents a boundary condition imposing the value

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur. However, the function is safe when value cannot be an arbitrary string.

\section*{Parameters}
- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper \((b \circ \circ 1)\) - Flag indicating whether this boundary condition is associated with the upper side of an axis or not. In essence, this determines the direction of the local normal vector of the boundary.
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
- value (float or str or ndarray) - a value stored with the boundary condition. The interpretation of this value depends on the type of boundary condition. If value is a single value (or tensor in case of tensorial boundary conditions), the same value is applied to all points. Inhomogeneous boundary conditions are possible by supplying an expression as a string, which then may depend on the axes names of the respective grid.
get_mathematical_representation (field_name: str \(=\) ' \(C^{\prime}\)) \(\rightarrow\) str
return mathematical representation of the boundary condition
get_virtual_point_data (compiled: bool = False) \(\rightarrow\) Tuple[Any, Any, int]
return data suitable for calculating virtual points

\section*{Parameters}
compiled (bool) - Flag indicating whether a compiled version is required, which automatically takes updated values into account when it is used in numba-compiled code.

\section*{Returns}
the data structure associated with this virtual point

\section*{Return type}

BC1stOrderData

\section*{homogeneous: bool}
determines whether the boundary condition depends on space

\section*{Type}
bool
```

names: List[str] = ['value', 'dirichlet']

```
identifiers used to specify the given boundary class
Type
list
value_is_linked: bool
flag that indicates whether the value associated with this boundary condition is linked to ndarray managed by external code.

Type
bool
class ExpressionBC (grid: GridBase, axis: int, upper: bool, \({ }^{*}\), rank: int \(=0\), normal: bool \(=\) False, value: Union[float, str] \(=0\), target: str \(=\) 'virtual_point')
Bases: BCBase
represents a boundary whose virtual point is calculated from an expression

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

\section*{Parameters}
- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper (\(b \circ \circ \mathrm{l}\)) - Flag indicating whether this boundary condition is associated with the upper side of an axis or not. In essence, this determines the direction of the local normal vector of the boundary.
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
- value (float or str) - An expression that determines the value of the boundary condition.
- target (str) - Selects which value is actually set. Possible choices include value, derivative, and virtual_point.
copy (upper: Optional[bool] = None, rank: int \(=\) None \() \rightarrow\) ExpressionBC
return a copy of itself, but with a reference to the same grid
get_data (idx: Tuple[int, ...]) \(\rightarrow\) Tuple[float, Dict[int, float]]
get_mathematical_representation (field_name: str \(={ }^{\prime} C^{\prime}\)) \(\rightarrow\) str
return mathematical representation of the boundary condition
get_virtual_point (arr, idx: Optional[Tuple[int, ...]] = None) \(\rightarrow\) float
homogeneous: bool
determines whether the boundary condition depends on space
Type
bool
make_adjacent_evaluator ()\(\rightarrow\) Callable[[ndarray, int, Tuple[int, ...]], float]
make_virtual_point_evaluator ()\(\rightarrow\) Callable[[...], float]
returns a function evaluating the value at the virtual support point

\section*{Returns}

A function that takes the data array and an index marking the current point, which is assumed to be a virtual point. The result is the data value at this point, which is calculated using the boundary condition.

\section*{Return type}
function
names: List[str] = ['virtual_point']
identifiers used to specify the given boundary class
Type
list
set_ghost_cells (data_full: ndarray, \({ }^{*}\), args=None) \(\rightarrow\) None
set the ghost cell values for this boundary

\section*{Parameters}
- data_full (ndarray) - The full field data including ghost points
- args - Additional arguments that might be supported by special boundary conditions.
class ExpressionDerivativeBC (grid: GridBase, axis: int, upper: bool, *, rank: int \(=0\), normal: bool \(=\) False, value: Union[float, str] \(=0\), target: str \(=\) 'derivative')
Bases: ExpressionBC
represents a boundary whose outward derivative is calculated from an expression

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

\section*{Parameters}
- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper (\(b \circ \circ 1\)) - Flag indicating whether this boundary condition is associated with the upper side of an axis or not. In essence, this determines the direction of the local normal vector of the boundary.
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
- value (float or str) - An expression that determines the value of the boundary condition.
- target (str) - Selects which value is actually set. Possible choices include value, derivative, and virtual_point.
homogeneous: bool
determines whether the boundary condition depends on space
Type
bool
names: List[str] = ['derivative_expression', 'derivative_expr']
identifiers used to specify the given boundary class

\section*{Type}
list
class ExpressionValueBC (grid: GridBase, axis: int, upper: bool, *, rank: int \(=0\), normal: bool \(=\) False, value:
Union[float, str] \(=0\), target: str \(=\) 'value')
Bases: Expression \(B C\)
represents a boundary whose value is calculated from an expression

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

\section*{Parameters}
- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper (\(b \circ \circ 1\)) - Flag indicating whether this boundary condition is associated with the upper side of an axis or not. In essence, this determines the direction of the local normal vector of the boundary.
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
- value (float or str) - An expression that determines the value of the boundary condition.
- target (str) - Selects which value is actually set. Possible choices include value, derivative, and virtual_point.
homogeneous: bool
determines whether the boundary condition depends on space
Type
bool
names: List[str] = ['value_expression', 'value_expr']
identifiers used to specify the given boundary class
Type
list
class MixedBC (grid: GridBase, axis: int, upper: bool, *, rank: int \(=0\), normal: bool \(=\) False, value: Union[float, ndarray, str] \(=0\), const: Union[float, ndarray, str] \(=0\))
Bases: ConstBC1stOrderBase
represents a mixed (or Robin) boundary condition imposing a derivative in the outward normal direction of the boundary that is given by an affine function involving the actual value:
\[
\partial_{n} c+\gamma c=\beta
\]

Here, \(c\) is the field to which the condition is applied, \(\gamma\) quantifies the influence of the field and \(\beta\) is the constant term. Note that \(\gamma=0\) corresponds to Dirichlet conditions imposing \(\beta\) as the derivative. Conversely, \(\gamma \rightarrow \infty\) corresponds to imposing a zero value on \(c\).

This condition can be enforced by using one of the following variants
```

bc = {'mixed': VALUE}
bc = {'type': 'mixed', 'value': VALUE, 'const': CONST}

```
where VALUE corresponds to \(\gamma\) and CONST to \(\beta\).

\section*{Parameters}
- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper (b००1)-Flag indicating whether this boundary condition is associated with the upper side of an axis or not. In essence, this determines the direction of the local normal vector of the boundary.
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
- value (float or str or array) - The parameter \(\gamma\) quantifying the influence of the field onto its normal derivative. If value is a single value (or tensor in case of tensorial boundary conditions), the same value is applied to all points. Inhomogeneous boundary conditions are possible by supplying an expression as a string, which then may depend on the axes names of the respective grid.
- const (float or ndarray or str) - The parameter \(\beta\) determining the constant term for the boundary condition. Supports the same input as value.
copy (upper: Optional[bool] = None, rank: int = None, value: Optional[Union[float, ndarray, str]] = None, const: Optional[Union[float, ndarray, str]] \(=\) None) \(\rightarrow\) MixedBC
return a copy of itself, but with a reference to the same grid
```

get_mathematical_representation(field_name: str = 'C') }->\mathrm{ str

```
return mathematical representation of the boundary condition
get_virtual_point_data (compiled: bool \(=\) False) \(\rightarrow\) Tuple[Any, Any, int]
return data suitable for calculating virtual points

\section*{Parameters}
compiled (bool) - Flag indicating whether a compiled version is required, which automatically takes updated values into account when it is used in numba-compiled code.

\section*{Returns}
the data structure associated with this virtual point

\section*{Return type}

BC1stOrderData
homogeneous: bool
determines whether the boundary condition depends on space

\section*{Type}
bool
names: List[str] = ['mixed', 'robin']
identifiers used to specify the given boundary class

\section*{Type}

\section*{list}
value_is_linked: bool
flag that indicates whether the value associated with this boundary condition is linked to ndarray managed by external code.

\section*{Type}
bool
class NeumannBC (grid: GridBase, axis: int, upper: bool, *, rank: int \(=0\), normal: bool \(=\) False, value:
Union[float, ndarray, str] = 0)
Bases: ConstBC1stOrderBase
represents a boundary condition imposing the derivative in the outward normal direction of the boundary

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur. However, the function is safe when value cannot be an arbitrary string.

\section*{Parameters}
- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper (\(b \circ \circ 1\)) - Flag indicating whether this boundary condition is associated with the upper side of an axis or not. In essence, this determines the direction of the local normal vector of the boundary.
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
- value (float or str or ndarray) - a value stored with the boundary condition. The interpretation of this value depends on the type of boundary condition. If value is a single value (or tensor in case of tensorial boundary conditions), the same value is applied to all points. Inhomogeneous boundary conditions are possible by supplying an expression as a string, which then may depend on the axes names of the respective grid.
```

get_mathematical_representation(field_name: str = 'C')}->\mathrm{ str

```
return mathematical representation of the boundary condition
get_virtual_point_data (compiled: bool \(=\) False) \(\rightarrow\) Tuple[Any, Any, int]
return data suitable for calculating virtual points

\section*{Parameters}
compiled (\(b \circ \circ 1\)) - Flag indicating whether a compiled version is required, which automatically takes updated values into account when it is used in numba-compiled code.

\section*{Returns}
the data structure associated with this virtual point

\section*{Return type}

BC1stOrderData
homogeneous: bool
determines whether the boundary condition depends on space
Type
bool
names: List[str] = ['derivative', 'neumann']
identifiers used to specify the given boundary class
Type
list
value_is_linked: bool
flag that indicates whether the value associated with this boundary condition is linked to ndarray managed by external code.

\section*{Type}
bool
class UserBC (grid: GridBase, axis: int, upper: bool, *, rank: int \(=0\), normal: bool \(=\) False)
Bases: BCBase
represents a boundary whose virtual point are set by the user.
Boundary conditions will only be set when a dictionary \{TARGET: value\} is supplied as argument args to set_ghost_cells () or the numba equivalent. Here, TARGET determines how the value is interpreted and what boundary condition is actually enforced: the value of the virtual points directly (virtual_point), the value of the field at the boundary (value) or the outward derivative of the field at the boundary (derivative).

Warning: This implies that the boundary conditions are never enforced automatically, e.g., when evaluating an operator. It is thus the user's responsibility to ensure virtual points are set correctly before operators are applied.

\section*{Parameters}
- grid (GridBase) - The grid for which the boundary conditions are defined
- axis (int) - The axis to which this boundary condition is associated
- upper \((b \circ \circ 1)\) - Flag indicating whether this boundary condition is associated with the upper side of an axis or not. In essence, this determines the direction of the local normal vector of the boundary.
- rank (int) - The tensorial rank of the field for this boundary condition
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.
copy (upper: Optional[bool] \(=\) None, rank: int \(=\) None) \(\rightarrow\) UserBC
return a copy of itself, but with a reference to the same grid
get_mathematical_representation (field_name: str \(={ }^{\prime} C^{\prime}\)) \(\rightarrow\) str
return mathematical representation of the boundary condition
homogeneous: bool
determines whether the boundary condition depends on space

\section*{Type}
bool
make_ghost_cell_setter () \(\rightarrow\) Callable[[...], None]
return function that sets the ghost cells for this boundary
make_virtual_point_evaluator () \(\rightarrow\) Callable[[...], float]
returns a function evaluating the value at the virtual support point

\section*{Returns}

A function that takes the data array and an index marking the current point, which is assumed to be a virtual point. The result is the data value at this point, which is calculated using the boundary condition.

\section*{Return type}
function
names: List[str] = ['user']
identifiers used to specify the given boundary class

\section*{Type}
list
set_ghost_cells (data_full: ndarray, \({ }^{*}\), args=None) \(\rightarrow\) None set the ghost cell values for this boundary

\section*{Parameters}
- data_full (ndarray) - The full field data including ghost points
- values (ndarray) - The values determining the values of the ghost cell. The interpretation of this values is determined by self.target.
registered_boundary_condition_classes ()\(\rightarrow\) Dict[str, Type[BCBase]]
returns all boundary condition classes that are currently defined

\section*{Returns}
a dictionary with the names of the boundary condition classes

\section*{Return type}
dict
registered_boundary_condition_names () \(\rightarrow\) Dict[str, Type[BCBase]]
returns all named boundary conditions that are currently defined

\section*{Returns}
a dictionary with the names of the boundary conditions that can be used

\section*{Return type}
dict

\subsection*{4.2.2 pde.grids.operators package}

Package collecting modules defining discretized operators for different grids.
These operators can either be used directly or they are imported by the respective methods defined on fields and grids.
\begin{tabular}{ll}
\hline cartesian & \begin{tabular}{l}
This module implements differential operators on Carte- \\
sian grids
\end{tabular} \\
\hline cylindrical_sym & \begin{tabular}{l}
This module implements differential operators on cylin- \\
drical grids
\end{tabular} \\
\hline polar_sym & \begin{tabular}{l}
This module implements differential operators on polar \\
grids
\end{tabular} \\
\hline spherical_sym & \begin{tabular}{l}
This module implements differential operators on spher- \\
ical grids
\end{tabular} \\
\hline
\end{tabular}

\section*{pde.grids.operators.cartesian module}

This module implements differential operators on Cartesian grids
\begin{tabular}{ll}
\hline make_laplace & make a laplace operator on a Cartesian grid \\
\hline make_gradient & make a gradient operator on a Cartesian grid \\
\hline make_divergence & make a divergence operator on a Cartesian grid \\
\hline make_vector_gradient & make a vector gradient operator on a Cartesian grid \\
\hline make_vector_laplace & make a vector Laplacian on a Cartesian grid \\
\hline make_tensor_divergence & make a tensor divergence operator on a Cartesian grid \\
\hline make_poisson_solver & make a operator that solves Poisson's equation \\
\hline
\end{tabular}
make_divergence (grid: CartesianGrid, backend: str = 'auto') \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a divergence operator on a Cartesian grid

\section*{Parameters}
- grid (CartesianGrid) - The grid for which the operator is created
- backend (str) - Backend used for calculating the divergence operator. If backend='auto', a suitable backend is chosen automatically.

\section*{Returns}

A function that can be applied to an array of values
make_gradient (grid: CartesianGrid, backend: str = 'auto') \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a gradient operator on a Cartesian grid

\section*{Parameters}
- grid (CartesianGrid) - The grid for which the operator is created
- backend (str) - Backend used for calculating the gradient operator. If backend='auto', a suitable backend is chosen automatically.

\section*{Returns}

A function that can be applied to an array of values
make_laplace (grid: CartesianGrid, backend: str = 'auto') \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a laplace operator on a Cartesian grid

\section*{Parameters}
- grid (CartesianGrid) - The grid for which the operator is created
- backend (str) - Backend used for calculating the laplace operator. If backend='auto', a suitable backend is chosen automatically.

\section*{Returns}

A function that can be applied to an array of values
make_poisson_solver (bcs: Boundaries, method: str = 'auto') \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a operator that solves Poisson's equation

\section*{Parameters}
- bcs (Boundaries) - \{ARG_BOUNDARIES_INSTANCE \(\}\)
- method (str) - Method used for calculating the tensor divergence operator. If method='auto', a suitable method is chosen automatically.

\section*{Returns}

A function that can be applied to an array of values
make_tensor_divergence (grid: CartesianGrid, backend: str = 'numba') \(\rightarrow\) Callable[[ndarray, ndarray], None] make a tensor divergence operator on a Cartesian grid

\section*{Parameters}
- grid (CartesianGrid) - The grid for which the operator is created
- backend (str) - Backend used for calculating the tensor divergence operator.

\section*{Returns}

A function that can be applied to an array of values
make_vector_gradient (grid: CartesianGrid, backend: str = 'numba') \(\rightarrow\) Callable[[ndarray, ndarray], None] make a vector gradient operator on a Cartesian grid

\section*{Parameters}
- grid (CartesianGrid) - The grid for which the operator is created
- backend (str) - Backend used for calculating the vector gradient operator.

\section*{Returns}

A function that can be applied to an array of values
make_vector_laplace (grid: CartesianGrid, backend: str = 'numba') \(\rightarrow\) Callable[[ndarray, ndarray], None] make a vector Laplacian on a Cartesian grid

\section*{Parameters}
- grid (CartesianGrid) - The grid for which the operator is created
- backend (str) - Backend used for calculating the vector laplace operator.

\section*{Returns}

A function that can be applied to an array of values

\section*{pde.grids.operators.common module}

Common functions that are used by many operators
make_general_poisson_solver (matrix, vector, method: str = 'auto') \(\rightarrow\) Callable[[ndarray, ndarray], None] make an operator that solves Poisson's problem

\section*{Parameters}
- matrix - The (sparse) matrix representing the laplace operator on the given grid.
- vector - The constant part representing the boundary conditions of the Laplace operator.
- method (str) - The chosen method for implementing the operator

\section*{Returns}

A function that can be applied to an array of values to obtain the solution to Poisson's equation where the array is used as the right hand side
```

make_laplace_from_matrix(matrix, vector) }->\mathrm{ Callable[[ndarray, ndarray], None]

```
make a Laplace operator using matrix vector products

\section*{Parameters}
- matrix - The (sparse) matrix representing the laplace operator on the given grid.
- vector - The constant part representing the boundary conditions of the Laplace operator.

\section*{Returns}

A function that can be applied to an array of values to obtain the solution to Poisson's equation where the array is used as the right hand side
uniform_discretization (grid: GridBase) \(\rightarrow\) float
returns the uniform discretization or raises RuntimeError
pde.grids.operators.cylindrical_sym module
This module implements differential operators on cylindrical grids
\begin{tabular}{ll}
\hline make_laplace & make a discretized laplace operator for a cylindrical grid \\
\hline make_gradient & make a discretized gradient operator for a cylindrical grid \\
\hline make_divergence & \begin{tabular}{l}
make a discretized divergence operator for a cylindrical \\
grid
\end{tabular} \\
\hline make_vector_gradient & \begin{tabular}{l}
make a discretized vector gradient operator for a cylin- \\
drical grid
\end{tabular} \\
\hline make_vector_laplace & \begin{tabular}{l}
make a discretized vector laplace operator for a cylindri- \\
cal grid
\end{tabular} \\
\hline make_tensor_divergence & \begin{tabular}{l}
make a discretized tensor divergence operator for a cylin- \\
drical grid
\end{tabular} \\
\hline
\end{tabular}
make_divergence (grid: CylindricalSymGrid) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized divergence operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\) and the axial coordinate \(z\). Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The radial discretization is defined as \(r_{i}=\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\).

\section*{Parameters}
\(\operatorname{grid}(C y l i n d r i c a l S y m G r i d)\) - The grid for which the operator is created

\section*{Returns}

A function that can be applied to an array of values
make_gradient (grid: CylindricalSymGrid) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized gradient operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\) and the axial coordinate \(z\). Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The radial discretization is defined as \(r_{i}=\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\).

\section*{Parameters}
\(\operatorname{grid}(C y l i n d r i c a l\) SymGrid) - The grid for which the operator is created

\section*{Returns}

A function that can be applied to an array of values
make_gradient_squared (grid: CylindricalSymGrid, central: bool \(=\) True \() \rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized gradient squared operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\) and the axial coordinate \(z\). Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The radial discretization is defined as \(r_{i}=\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\).

\section*{Parameters}
- grid (CylindricalSymGrid) - The grid for which the operator is created
- central (bool) - Whether a central difference approximation is used for the gradient operator. If this is False, the squared gradient is calculated as the mean of the squared values of the forward and backward derivatives.

\section*{Returns}

A function that can be applied to an array of values
make_laplace (grid: CylindricalSymGrid) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized laplace operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\) and the axial coordinate \(z\). Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The radial discretization is defined as \(r_{i}=\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\).

\section*{Parameters}
\(\operatorname{grid}(C y l i n d r i c a l S y m G r i d)\) - The grid for which the operator is created

\section*{Returns}

A function that can be applied to an array of values
make_tensor_divergence (grid: CylindricalSymGrid) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized tensor divergence operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\) and the axial coordinate \(z\). Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The radial discretization is defined as \(r_{i}=\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\).

\section*{Parameters}
\(\operatorname{grid}(C y l i n d r i c a l S y m G r i d)\) - The grid for which the operator is created

\section*{Returns}

A function that can be applied to an array of values
make_vector_gradient (grid: CylindricalSymGrid) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized vector gradient operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\) and the axial coordinate \(z\). Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The radial discretization is defined as \(r_{i}=\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\).

\section*{Parameters}

\section*{Returns}

A function that can be applied to an array of values
make_vector_laplace (grid: CylindricalSymGrid) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized vector laplace operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\) and the axial coordinate \(z\). Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The radial discretization is defined as \(r_{i}=\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\).

\section*{Parameters}
\(\operatorname{grid}(C y l i n d r i c a l S y m G r i d)\) - The grid for which the operator is created

\section*{Returns}

A function that can be applied to an array of values

\section*{pde.grids.operators.polar_sym module}

This module implements differential operators on polar grids
\begin{tabular}{ll}
\hline make_laplace & make a discretized laplace operator for a polar grid \\
\hline make_gradient & make a discretized gradient operator for a polar grid \\
\hline make_divergence & make a discretized divergence operator for a polar grid \\
\hline make_vector_gradient & \begin{tabular}{l}
make a discretized vector gradient operator for a polar \\
grid
\end{tabular} \\
\hline make_tensor_divergence & \begin{tabular}{l}
make a discretized tensor divergence operator for a polar \\
grid
\end{tabular} \\
\hline
\end{tabular}
make_divergence (grid: PolarSymGrid) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized divergence operator for a polar grid
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\min }+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\min }\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
grid (PolarSymGrid) - The polar grid for which this operator will be defined

\section*{Returns}

A function that can be applied to an array of values
make_gradient (grid: PolarSymGrid) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized gradient operator for a polar grid
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\text {min }}+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\text {min }}\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
grid (PolarSymGrid) - The polar grid for which this operator will be defined

\section*{Returns}

A function that can be applied to an array of values
make_gradient_squared (grid: PolarSymGrid, central: bool \(=\) True) \(\rightarrow\) Callable[[ndarray, ndarray], None] make a discretized gradient squared operator for a polar grid
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\text {min }}+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\text {min }}\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
- grid (PolarSymGrid) - The polar grid for which this operator will be defined
- central (bool) - Whether a central difference approximation is used for the gradient operator. If this is False, the squared gradient is calculated as the mean of the squared values of the forward and backward derivatives.

\section*{Returns}

A function that can be applied to an array of values
make_laplace (grid: PolarSymGrid) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized laplace operator for a polar grid

The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\text {min }}+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\text {min }}\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
grid (PolarSymGrid) - The polar grid for which this operator will be defined

\section*{Returns}

A function that can be applied to an array of values
make_poisson_solver (bcs: Boundaries, method: str = 'auto') \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a operator that solves Poisson's equation
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\text {min }}+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\text {min }}\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
- bcs (Boundaries) - Specifies the boundary conditions applied to the field. This must be an instance of Boundaries, which can be created from various data formats using the class method from_data().
- method (str) - The chosen method for implementing the operator

\section*{Returns}

A function that can be applied to an array of values
make_tensor_divergence (grid: PolarSymGrid) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized tensor divergence operator for a polar grid
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\text {min }}+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\text {min }}\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
grid (PolarSymGrid) - The polar grid for which this operator will be defined

\section*{Returns}

A function that can be applied to an array of values
make_vector_gradient (grid: PolarSymGrid) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized vector gradient operator for a polar grid
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\text {min }}+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\text {min }}\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
grid (PolarSymGrid) - The polar grid for which this operator will be defined

\section*{Returns}

A function that can be applied to an array of values

\section*{pde.grids.operators.spherical_sym module}

This module implements differential operators on spherical grids
\begin{tabular}{ll}
\hline make_laplace & make a discretized laplace operator for a spherical grid \\
\hline make_gradient & make a discretized gradient operator for a spherical grid \\
\hline make_divergence & \begin{tabular}{l}
make a discretized divergence operator for a spherical \\
grid
\end{tabular} \\
\hline make_vector_gradient & \begin{tabular}{l}
make a discretized vector gradient operator for a spherical \\
grid
\end{tabular} \\
\hline make_tensor_divergence & \begin{tabular}{l}
make a discretized tensor divergence operator for a spher- \\
ical grid
\end{tabular} \\
\hline
\end{tabular}
make_divergence (grid: SphericalSymGrid, safe: bool = True) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized divergence operator for a spherical grid
The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\text {min }}+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\text {min }}\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

Warning: This operator ignores the \(\theta\)-component of the field when calculating the divergence. This is because the resulting scalar field could not be expressed on a SphericalSymGrid.

\section*{Parameters}
- grid (SphericalSymGrid) - The polar grid for which this operator will be defined
- safe (bool) - Add extra checks for the validity of the input

\section*{Returns}

A function that can be applied to an array of values
make_gradient (grid: SphericalSymGrid) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized gradient operator for a spherical grid
The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\text {min }}+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\text {min }}\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
grid (SphericalSymGrid) - The polar grid for which this operator will be defined

\section*{Returns}

A function that can be applied to an array of values
make_gradient_squared (grid: SphericalSymGrid, central: bool \(=\) True) \(\rightarrow\) Callable[[ndarray, ndarray], None] make a discretized gradient squared operator for a spherical grid
The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\text {min }}+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\text {min }}\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
- grid (SphericalSymGrid) - The polar grid for which this operator will be defined
- central (bool) - Whether a central difference approximation is used for the gradient operator. If this is False, the squared gradient is calculated as the mean of the squared values of the forward and backward derivatives.

\section*{Returns}

A function that can be applied to an array of values
make_laplace (grid: SphericalSymGrid, conservative: bool \(=\) True) \(\rightarrow\) Callable[[ndarray, ndarray], None] make a discretized laplace operator for a spherical grid

The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\min }+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\min }\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
- grid (SphericalSymGrid) - The polar grid for which this operator will be defined
- conservative (\(b \circ \circ 1\)) - Flag indicating whether the laplace operator should be conservative (which results in slightly slower computations).

\section*{Returns}

A function that can be applied to an array of values
make_poisson_solver (bcs: Boundaries, method: str = 'auto') \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a operator that solves Poisson's equation
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\text {min }}+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\text {min }}\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
- bcs (Boundaries) - Specifies the boundary conditions applied to the field. This must be an instance of Boundaries, which can be created from various data formats using the class method from_data().
- method (str) - The chosen method for implementing the operator

\section*{Returns}

A function that can be applied to an array of values
make_tensor_divergence (grid: SphericalSymGrid, safe: bool \(=\) True) \(\rightarrow\) Callable[[ndarray, ndarray], None] make a discretized tensor divergence operator for a spherical grid

The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\min }+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\min }\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
- grid (SphericalSymGrid) - The polar grid for which this operator will be defined
- safe (bool) - Add extra checks for the validity of the input

\section*{Returns}

A function that can be applied to an array of values
make_vector_gradient (grid: SphericalSymGrid, safe: bool = True) \(\rightarrow\) Callable[[ndarray, ndarray], None]
make a discretized vector gradient operator for a spherical grid

Warning: This operator ignores the two angular components of the field when calculating the gradient. This is because the resulting field could not be expressed on a SphericalSymGrid.

The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate \(r\). The radial discretization is defined as \(r_{i}=r_{\min }+\left(i+\frac{1}{2}\right) \Delta r\) for \(i=0, \ldots, N_{r}-1\), where \(r_{\min }\) is the radius of the inner boundary, which is zero by default. Note that the radius of the outer boundary is given by \(r_{\max }=r_{\min }+N_{r} \Delta r\).

\section*{Parameters}
- grid (SphericalSymGrid) - The polar grid for which this operator will be defined
- safe (bool) - Add extra checks for the validity of the input

\section*{Returns}

A function that can be applied to an array of values

\subsection*{4.2.3 pde.grids.base module}

Bases classes
```

exception DimensionError

```

Bases: ValueError
exception indicating that dimensions were inconsistent

\section*{exception DomainError}

Bases: ValueError
exception indicating that point lies outside domain
```

class GridBase

```

Bases: object
Base class for all grids defining common methods and interfaces
initialize the grid
```

    assert_grid_compatible (other: GridBase) }->\mathrm{ None
        checks whether other is compatible with the current grid
            Parameters
            other(GridBase) - The grid compared to this one
            Raises
            ValueError - if grids are not compatible
    axes: List[str]
    property axes_bounds: Tuple[Tuple[float, float], ...]
    ```
 lower and upper bounds of each axis
 Type
 tuple
 property axes_coords: Tuple[ndarray, ...]
 coordinates of the cells for each axis
 Type
 tuple
```

axes_symmetric: List[str] = []

```

The names of the additional axes that the fields do not depend on, e.g. along which they are constant.

\section*{Type}
list
cell_coords
coordinate values for all axes of each cell
Type
ndarray
cell_to_point (cells: ndarray, cartesian: bool \(=\) True \() \rightarrow\) ndarray
convert cell coordinates to real coordinates

\section*{Parameters}
- cells (ndarray) - Indices of the cells whose center coordinates are requested. This can be float values to indicate positions relative to the cell center.
- cartesian (bool) - Determines whether the point is returned in Cartesian coordinates or grid coordinates.

\section*{Returns}

The center points of the respective cells

\section*{Return type}
ndarray

Warning: This method is deprecated since 2022-03-14 and will be removed soon.
```

cell_volume_data: Sequence[Union[float, ndarray]]

```
cell_volumes
volume of each cell
Type
ndarray
compatible_with (other: GridBase) \(\rightarrow\) bool
tests whether this grid is compatible with other grids.
Grids are compatible when they cover the same area with the same discretization. The difference to equality is that compatible grids do not need to have the same periodicity in their boundaries.

\section*{Parameters}
other (GridBase) - The other grid to test against

\section*{Returns}

Whether the grid is compatible

\section*{Return type}
bool
contains_point (points: ndarray, *, coords: str = 'cartesian', wrap: bool \(=\) True) \(\rightarrow\) ndarray
check whether the point is contained in the grid

\section*{Parameters}
- point (ndarray) - Coordinates of the point
- coords (str) - The coordinate system in which the points are given

\section*{Returns}

A boolean array indicating which points lie within the grid

\section*{Return type}
ndarray

\section*{coordinate_arrays}
for each axes: coordinate values for all cells
Type
tuple
coordinate_constraints: List[int] = []
copy () \(\rightarrow\) GridBase
return a copy of the grid
difference_vector_real (p1: ndarray, \(p 2\) : ndarray) \(\rightarrow\) ndarray
return the vector pointing from p 1 to p 2
In case of periodic boundary conditions, the shortest vector is returned.

\section*{Parameters}
- p1 (ndarray) - First point(s)
- p2 (ndarray) - Second point(s)

\section*{Returns}

The difference vectors between the points with periodic boundary conditions applied.

\section*{Return type}
ndarray
dim: int
property discretization: ndarray
the linear size of a cell along each axis
Type
numpy.array
distance_real (p1: ndarray, p2: ndarray) \(\rightarrow\) float
Calculate the distance between two points given in real coordinates
This takes periodic boundary conditions into account if necessary.

\section*{Parameters}
- p1 (ndarray) - First position
- p2 (ndarray) - Second position

\section*{Returns}

Distance between the two positions

\section*{Return type}
float
classmethod from_state (state: Union[str, Dict[str, Any]]] \(\rightarrow\) GridBase
create a field from a stored state.

\section*{Parameters}
state (str or dict) - The state from which the grid is reconstructed. If state is a string, it is decoded as JSON, which should yield a dict.
get_axis_index (key: Union[int, str], allow_symmetric: bool \(=\) True) \(\rightarrow\) int return the index belonging to an axis

\section*{Parameters}
- key (int or str) - The index or name of an axis
- allow_symmetric (bool) - Whether axes with assumed symmetry are included

\section*{Returns}

The index of the axis

\section*{Return type}
int
abstract get_boundary_conditions (bc: BoundariesData = 'auto_periodic_neumann', rank: int = 0, normal: bool \(=\) False \() \rightarrow\) Boundaries
abstract get_image_data (data: ndarray) \(\rightarrow\) Dict[str, Any]
abstract get_line_data (data: ndarray, extract: str = 'auto') \(\rightarrow\) Dict[str, Any]
abstract get_random_point (*, boundary_distance: float \(=0\), coords: str \(=\) 'cartesian') \(\rightarrow\) ndarray
get_subgrid (indices: Sequence[int]) \(\rightarrow\) GridBase
return a subgrid of only the specified axes
integrate (data: Union[int, float, complex, ndarray], axes: Optional[Union[int, Sequence[int]]] \(=\) None) \(\rightarrow\) ndarray
Integrates the discretized data over the grid

\section*{Parameters}
- data (ndarray) - The values at the support points of the grid that need to be integrated.
- axes (list of int, optional) - The axes along which the integral is performed. If omitted, all axes are integrated over.

\section*{Returns}

The values integrated over the entire grid

\section*{Return type}
ndarray
abstract iter_mirror_points (point: ndarray, with_self: bool \(=\) False, only_periodic: bool \(=\) True)
\(\rightarrow\) Generator
make_cell_volume_compiled (flat_index: bool \(=\) False) \(\rightarrow\) Callable[[...], float]
return a compiled function returning the volume of a grid cell

\section*{Parameters}
flat_index (b○○l) - When True, cell_volumes are indexed by a single integer into the flattened array.

\section*{Returns}
returning the volume of the chosen cell

\section*{Return type}
function
make_inserter_compiled (*, full_data: bool = False) \(\rightarrow\) Callable[[ndarray, ndarray, Union[int, float, complex, ndarray]], None]
return a compiled function to insert values at interpolated positions

\section*{Parameters}
full_data (bool) - Flag indicating that the interpolator should work on the full data array that includes values for the grid points. If this is the case, the boundaries are not checked and the coordinates are used as is.

\section*{Returns}

A function with signature (data, position, amount), where data is the numpy array containing the field data, position is denotes the position in grid coordinates, and amount is the that is to be added to the field.
make_integrator ()\(\rightarrow\) Callable[[ndarray], ndarray]
Return function that can be used to integrates discretized data over the grid
Note that currently only scalar fields are supported.

\section*{Returns}

A function that takes a numpy array and returns the integral with the correct weights given by the cell volumes.

\section*{Return type}
callable
make_normalize_point_compiled (reflect: bool \(=\) True) \(\rightarrow\) Callable[[ndarray], None]
return a compiled function that normalizes a point
Here, the point is assumed to be specified by the physical values along the non-symmetric axes of the grid. Normalizing points is useful to make sure they lie within the domain of the grid. This function respects periodic boundary conditions and can also reflect points off the boundary.

\section*{Parameters}
reflect (bool) - Flag determining whether coordinates along non-periodic axes are reflected to lie in the valid range. If False, such coordinates are left unchanged and only periodic boundary conditions are enforced.

\section*{Returns}

A function that takes a ndarray as an argument, which describes the coordinates of the points. This array is modified in-place!

\section*{Return type}
callable
make_operator (operator: Union[str, OperatorInfo], bc: BoundariesData, *, normal_bcs: bool = None, **kwargs) \(\rightarrow\) Callable[..., np.ndarray]
return a compiled function applying an operator with boundary conditions
The returned function takes the discretized data on the grid as an input and returns the data to which the operator operator has been applied. The function only takes the valid grid points and allocates memory for the ghost points internally to apply the boundary conditions specified as \(b c\). Note that the function supports an optional argument out, which if given should provide space for the valid output array without the ghost cells. The result of the operator is then written into this output array. The function also accepts an optional parameter args, which is forwarded to set_ghost_cells.

\section*{Parameters}
- operator (str) - Identifier for the operator. Some examples are 'laplace', 'gradient', or 'divergence'. The registered operators for this grid can be obtained from the operators attribute.
- bc (str or list or tuple or dict) - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
- normal_bcs (bool) - Flag indicating whether the condition is only applied in the normal direction. This value normally determined automatically from the properties of the operator. Here, normal=True is assumed if the operator reduced the rank of the field, so that the output has lower rank than the input.
- **kwargs - Specifies extra arguments influencing how the operator is created.

\section*{Returns}
the function that applies the operator. This function has the signature (arr: np.ndarray, out: np.ndarray \(=\) None, args=None).
```

    Return type
    callable
    make_operator_no_bc (operator: Union[str, OperatorInfo], **kwargs) }->\mathrm{ Callable[[ndarray, ndarray],
None]

```
return a compiled function applying an operator without boundary conditions
A function that takes the discretized full data as an input and an array of valid data points to which the result of applying the operator is written.

\begin{abstract}
Note: The resulting function does not check whether the ghost cells of the input array have been supplied with sensible values. It is the responsibility of the user to set the values of the ghost cells beforehand. Use this function only if you absolutely know what you're doing. In all other cases, make_operator () is probably the better choice.
\end{abstract}

\section*{Parameters}
- operator (str) - Identifier for the operator. Some examples are 'laplace', 'gradient', or 'divergence'. The registered operators for this grid can be obtained from the operators attribute.
- **kwargs - Specifies extra arguments influencing how the operator is created.

\section*{Returns}
the function that applies the operator. This function has the signature (arr: np.ndarray, out: np.ndarray), so they out array need to be supplied explicitly.

\section*{Return type \\ callable}
normalize_point (point: ndarray, *, reflect: bool \(=\) False) \(\rightarrow\) ndarray
normalize grid coordinates by applying periodic boundary conditions
Here, the point is assumed to be specified by the physical values along the non-symmetric axes of the grid. Normalizing points is useful to make sure they lie within the domain of the grid. This function respects periodic boundary conditions and can also reflect points off the boundary.

\section*{Parameters}
- point (ndarray) - Coordinates of a single point
- reflect \((b \circ \circ 1)\) - Flag determining whether coordinates along non-periodic axes are reflected to lie in the valid range. If False, such coordinates are left unchanged and only periodic boundary conditions are enforced.

\section*{Returns}

The respective coordinates with periodic boundary conditions applied.

\section*{Return type}
ndarray
num_axes: int
```

property numba_type: str

```
represents type of the grid data in numba signatures
Type
str
```

operators: Set[str] = {}

```
 names of all operators defined for this grid
 Type
 set
periodic: List[bool]
plot()
 visualize the grid
abstract point_from_cartesian (points: ndarray) \(\rightarrow\) ndarray
abstract point_to_cartesian (points: ndarray, \({ }^{*}\), full: bool \(=\) False) \(\rightarrow\) ndarray
point_to_cell (points: ndarray) \(\rightarrow\) ndarray

Determine cell(s) corresponding to given point(s)

\section*{Parameters}
points (ndarray) - Real coordinates

\section*{Returns}

The indices of the respective cells

\section*{Return type}
ndarray

Warning: This method is deprecated since 2022-03-14 and will be removed soon.
```

abstract polar_coordinates_real (origin: ndarray, *, ret_angle: bool = False) }->\mathrm{ Union[ndarray,

``` Tuple[ndarray, ...]]
classmethod register_operator (name: str, factory_func: Optional[Callable] \(=\) None, rank_in: int \(=\) 0 , rank_out: int \(=0\))
register an operator for this grid

\section*{Example}

The method can either be used directly:
```

GridClass.register_operator("operator", make_operator)

```
or as a decorator for the factory function:
```

@GridClass.register_operator("operator")
def make_operator(bcs: Boundaries):
...

```

\section*{Parameters}
- name (str) - The name of the operator to register
- factory_func (callable) - A function with signature (bcs: Boundaries, **kwargs), which takes boundary conditions and optional keyword arguments and returns an implementation of the given operator. This implementation is a function that takes a ndarray of discretized values as arguments and returns the resulting discretized data in a ndarray after applying the operator.
- rank_in (int) - The rank of the input field for the operator
- rank_out (int) - The rank of the field that is returned by the operator
```

property shape: Tuple[int, ...]

```
the number of support points of each axis
Type
tuple of int
abstract property state: Dict[str, Any]
property state_serialized: str
JSON-serialized version of the state of this grid

\section*{Type}
str
transform (coordinates: ndarray, source: str, target: str) \(\rightarrow\) ndarray
converts coordinates from one coordinate system to another
Supported coordinate systems include
- cartesian: Cartesian coordinates where each point carries dim values
- cell: Grid coordinates based on indexing the discretization cells
- grid: Grid coordinates where each point carries num_axes values

Note: Some conversion might involve projections if the coordinate system imposes symmetries. For instance, converting 3d Cartesian coordinates to grid coordinates in a spherically symmetric grid will only return the radius from the origin. Conversely, converting these grid coordinates back to 3d Cartesian coordinates will only return coordinates along a particular ray originating at the origin.

\section*{Parameters}
- coordinates (ndarray) - The coordinates to convert
- source (str) - The source coordinate system
- target (str) - The target coordinate system

\section*{Returns}

The transformed coordinates

\section*{Return type}
ndarray
property typical_discretization: float
the average side length of the cells
Type
float
uniform_cell_volumes
returns True if all cell volumes are the same

\section*{Type}
bool
abstract property volume: float
class OperatorInfo (factory: Callable[..., OperatorType], rank_in: int, rank_out: int, name: str = ")

\section*{Bases: tuple}
stores information about an operator
Create new instance of OperatorInfo(factory, rank_in, rank_out, name)
```

property factory

```

Alias for field number 0
property name
Alias for field number 3
property rank_in
Alias for field number 1

\section*{property rank_out}

Alias for field number 2
```

exception PeriodicityError

```

Bases: RuntimeError
exception indicating that the grid periodicity is inconsistent
discretize_interval (x_min: float, \(x\) _max: float, num: int) \(\rightarrow\) Tuple[ndarray, float]
construct a list of equidistantly placed intervals
The discretization is defined as
\[
\begin{aligned}
x_{i} & =x_{\min }+\left(i+\frac{1}{2}\right) \Delta x \quad \text { for } \quad i=0, \ldots, N-1 \\
\Delta x & =\frac{x_{\max }-x_{\min }}{N}
\end{aligned}
\]
where \(N\) is the number of intervals given by num.

\section*{Parameters}
- \(\mathbf{x}\) _min \((f l o a t)\) - Minimal value of the axis
- \(\mathbf{x}\) _max \((f l o a t)\) - Maximal value of the axis
- num (int) - Number of intervals

\section*{Returns}
(midpoints, dx): the midpoints of the intervals and the used discretization \(d x\).

\section*{Return type}
tuple
registered_operators () \(\rightarrow\) Dict[str, List[str]]
returns all operators that are currently defined

\section*{Returns}
a dictionary with the names of the operators defined for each grid class

\section*{Return type}
dict

\subsection*{4.2.4 pde.grids.cartesian module}

Cartesian grids of arbitrary dimension.
class CartesianGrid (bounds: Sequence[Tuple[float, float]], shape: Union[int, Sequence[int]], periodic: Union[Sequence[bool], bool] \(=\) False)
Bases: GridBase
d-dimensional Cartesian grid with uniform discretization for each axis
The grids can be thought of as a collection of \(n\)-dimensional boxes, called cells, of equal length in each dimension. The bounds then defined the total volume covered by these cells, while the cell coordinates give the location of the box centers. We index the boxes starting from 0 along each dimension. Consequently, the cell \(i-\frac{1}{2}\) corresponds to the left edge of the covered interval and the index \(i+\frac{1}{2}\) corresponds to the right edge, when the dimension is covered by d boxes.

In particular, the discretization along dimension \(k\) is defined as
\[
\begin{aligned}
x_{i}^{(k)} & =x_{\min }^{(k)}+\left(i+\frac{1}{2}\right) \Delta x^{(k)} \text { for } i=0, \ldots, N^{(k)}-1 \\
\Delta x^{(k)} & =\frac{x_{\max }^{(k)}-x_{\min }^{(k)}}{N^{(k)}}
\end{aligned}
\]
where \(N^{(k)}\) is the number of cells along this dimension. Consequently, cells have dimension \(\Delta x^{(k)}\) and cover the interval \(\left[x_{\text {min }}^{(k)}, x_{\text {max }}^{(k)}\right]\).

\section*{Parameters}
- bounds (list of tuple) - Give the coordinate range for each axis. This should be a tuple of two number (lower and upper bound) for each axis. The length of bounds thus determines the grid dimension.
- shape (Iist) - The number of support points for each axis. The length of shape needs to match the grid dimension.
- periodic (bool or list) - Specifies which axes possess periodic boundary conditions. This is either a list of booleans defining periodicity for each individual axis or a single boolean value specifying the same periodicity for all axes.

\section*{property cell_volume_data}
size associated with each cell

\section*{cuboid: Cuboid}
from_polar_coordinates (distance: ndarray, angle: ndarray, origin: Optional[ndarray] \(=\) None) \(\rightarrow\) ndarray
convert polar coordinates to Cartesian coordinates
This function is currently only implemented for 1 d and 2 d systems.

\section*{Parameters}
- distance (ndarray) - The radial distance
- angle (ndarray) - The angle with respect to the origin
- origin (ndarray, optional) - Sets the origin of the coordinate system. If omitted, the zero point is assumed as the origin.

\section*{Returns}

The Cartesian coordinates corresponding to the given polar coordinates.

\section*{Return type}
ndarray
classmethod from_state (state: Dict[str, Any]) \(\rightarrow\) CartesianGrid
create a field from a stored state.

\section*{Parameters}
state (dict) - The state from which the grid is reconstructed.
get_boundary_conditions (bc: BoundariesData = 'auto_periodic_neumann', rank: int \(=0\), normal: bool \(=\) False \() \rightarrow\) Boundaries
constructs boundary conditions from a flexible data format

\section*{Parameters}
- bc (str or list or tuple or dict) - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
- rank (int) - The tensorial rank of the value associated with the boundary conditions.
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.

\section*{Raises}
- ValueError - If the data given in \(b c\) cannot be read
- PeriodicityError - If the boundaries are not compatible with the periodic axes of the grid.
get_image_data (data: ndarray) \(\rightarrow\) Dict[str, Any]
return a 2d-image of the data

\section*{Parameters}
data (ndarray) - The values at the grid points

\section*{Returns}

A dictionary with information about the image, which is convenient for plotting.
get_line_data (data: ndarray, extract: str = 'auto') \(\rightarrow\) Dict[str, Any]
return a line cut through the given data

\section*{Parameters}
- data (ndarray) - The values at the grid points
- extract (str) - Determines which cut is done through the grid. Possible choices are (default is cut_0):
- cut_\#: return values along the axis specified by \# and use the mid point along all other axes.
- project_\#: average values for all axes, except axis \#.

Here, \# can either be a zero-based index (from 0 to dim-1) or a letter denoting the axis.

\section*{Returns}

A dictionary with information about the line cut, which is convenient for plotting.
get_random_point (\({ }^{*}\), boundary_distance: float \(=0\), coords: str = 'cartesian', rng: Optional[Generator] = None, cartesian: Optional[bool] = None) \(\rightarrow\) ndarray
return a random point within the grid

\section*{Parameters}
- boundary_distance (float) - The minimal distance this point needs to have from all boundaries.
- coords (str) - Determines the coordinate system in which the point is specified. Valid values are cartesian, cell, and grid; see transform ().
- rng (Generator) - Random number generator (default: default_rng ())

\section*{Returns}

The coordinates of the point

\section*{Return type}
ndarray
get_subgrid (indices: Sequence[int]) \(\rightarrow\) CartesianGrid
return a subgrid of only the specified axes

\section*{Parameters}
indices (list) - Indices indicating the axes that are retained in the subgrid

\section*{Returns}

The subgrid

\section*{Return type}

CartesianGrid
iter_mirror_points (point: ndarray, with_self: bool \(=\) False, only_periodic: bool \(=\) True) \(\rightarrow\) Generator generates all mirror points corresponding to point

\section*{Parameters}
- point (ndarray) - the point within the grid
- with_self (bool) - whether to include the point itself
- only_periodic (bool) - whether to only mirror along periodic axes

\section*{Returns}

A generator yielding the coordinates that correspond to mirrors
plot (*args, title: str = None, filename: str = None, action: str = 'auto', ax_style: Optional[Dict[str, Any]] = None, fig_style: Optional[Dict[str, Any]] = None, ax=None, **kwargs)
visualize the grid

\section*{Parameters}
- title (str) - Title of the plot. If omitted, the title might be chosen automatically.
- filename (str, optional) - If given, the plot is written to the specified file.
- action (str) - Decides what to do with the final figure. If the argument is set to show, matplotlib.pyplot.show() will be called to show the plot. If the value is none, the figure will be created, but not necessarily shown. The value close closes the figure, after saving it to a file when filename is given. The default value auto implies that the plot is shown if it is not a nested plot call.
- ax_style (dict) - Dictionary with properties that will be changed on the axis after the plot has been drawn by calling matplotlib.pyplot. setp(). A special item in this dictionary is use_offset, which is flag that can be used to control whether offset are shown along the axes of the plot.
- fig_style (dict) - Dictionary with properties that will be changed on the figure after the plot has been drawn by calling matplotlib.pyplot. setp (). For instance, using fig_style=\{'dpi': 200\} increases the resolution of the figure.
- ax (matplotlib.axes.Axes) - Figure axes to be used for plotting. The special value "create" creates a new figure, while "reuse" attempts to reuse an existing figure, which is the default.
- **kwargs - Extra arguments are passed on the to the matplotlib plotting routines, e.g., to set the color of the lines
```

point_from_cartesian (coords: ndarray) -> ndarray

```
convert points given in Cartesian coordinates to this grid

\section*{Parameters}
coords (ndarray) - Points in Cartesian coordinates.

\section*{Returns}

Points given in the coordinates of the grid

\section*{Return type}
ndarray
point_to_cartesian (points: ndarray, *, full: bool \(=\) False) \(\rightarrow\) ndarray
convert coordinates of a point to Cartesian coordinates

\section*{Parameters}
- points (ndarray) - Points given in grid coordinates
- full (bool) - Compatibility option not used in this method

\section*{Returns}

The Cartesian coordinates of the point

\section*{Return type}
ndarray
polar_coordinates_real (origin: ndarray, *, ret_angle: bool \(=\) False) \(\rightarrow\) Union[ndarray, Tuple[ndarray, ndarray, ndarray]]
return polar coordinates associated with the grid

\section*{Parameters}
- origin (ndarray) - Coordinates of the origin at which the polar coordinate system is anchored.
- ret_angle (bool) - Determines whether angles are returned alongside the distance. If False only the distance to the origin is returned for each support point of the grid. If True, the distance and angles are returned. For a 1 d system system, the angle is defined as the sign of the difference between the point and the origin, so that angles can either be 1 or -1 . For 2d systems and 3d systems, polar coordinates and spherical coordinates are used, respectively.
property state: Dict[str, Any]
the state of the grid
Type
dict
property volume: float
total volume of the grid
Type
float

\section*{CartesianGridBase}
alias of CartesianGrid

\section*{class UnitGrid(shape: Sequence[int], periodic: Union[Sequence[bool], bool] = False)}

Bases: CartesianGrid
d-dimensional Cartesian grid with unit discretization in all directions
The grids can be thought of as a collection of d-dimensional cells of unit length. The shape parameter determines how many boxes there are in each direction. The cells are enumerated starting with 0 , so the last cell has index \(n-1\) if there are \(n\) cells along a dimension. A given cell \(i\) extends from coordinates \(i\) to \(i+1\), so the midpoint is at \(i+\frac{1}{2}\), which is the cell coordinate. Taken together, the cells covers the interval \([0, n]\) along this dimension.

\section*{Parameters}
- shape (list) - The number of support points for each axis. The dimension of the grid is given by len(shape).
- periodic (bool or list) - Specifies which axes possess periodic boundary conditions. This is either a list of booleans defining periodicity for each individual axis or a single boolean value specifying the same periodicity for all axes.
```

axes: List[str]
cuboid: Cuboid
dim: int
classmethod from_state (state: Dict[str, Any]) }->\mathrm{ UnitGrid

```
create a field from a stored state.

\section*{Parameters}
state (dict) - The state from which the grid is reconstructed.
get_subgrid (indices: Sequence[int]) \(\rightarrow\) UnitGrid
return a subgrid of only the specified axes

\section*{Parameters}
indices (list) - Indices indicating the axes that are retained in the subgrid

\section*{Returns}

The subgrid

\section*{Return type}

UnitGrid
num_axes: int
periodic: List[bool]
property state: Dict[str, Any]
the state of the grid
Type
dict
to_cartesian() \(\rightarrow\) CartesianGrid
convert unit grid to CartesianGrid

\subsection*{4.2.5 pde.grids.cylindrical module}

Cylindrical grids with azimuthal symmetry
class CylindricalSymGrid (radius: float, bounds_z: Tuple[float, float], shape: Tuple[int, int], periodic_z: bool \(=\) False)

\section*{Bases: GridBase}

3-dimensional cylindrical grid assuming polar symmetry
The polar symmetry implies that states only depend on the radial and axial coordinates \(r\) and \(z\), respectively. These are discretized uniformly as
\[
\begin{array}{lll}
r_{i}=\left(i+\frac{1}{2}\right) \Delta r & \text { for } \quad i=0, \ldots, N_{r}-1 & \text { with } \quad \Delta r=\frac{R}{N_{r}} \\
z_{j}=z_{\min }+\left(j+\frac{1}{2}\right) \Delta z & \text { for } \quad j=0, \ldots, N_{z}-1 & \text { with } \quad \Delta z=\frac{z_{\max }-z_{\min }}{N_{z}}
\end{array}
\]
where \(R\) is the radius of the cylindrical grid, \(z_{\min }\) and \(z_{\max }\) denote the respective lower and upper bounds of the axial direction, so that \(z_{\max }-z_{\min }\) is the total height. The two axes are discretized by \(N_{r}\) and \(N_{z}\) support points, respectively.

Warning: The order of components in the vector and tensor fields defined on this grid is different than in ordinary math. While it is common to use \((r, \phi, z)\), we here use the order \((r, z, \phi)\). It might thus be best to access components by name instead of index, e.g., use field['z'] instead of field[1].

\section*{Parameters}
- radius (float) - The radius of the cylinder
- bounds_z (tuple) - The lower and upper bound of the z-axis
- shape (tup le) - The number of support points in \(r\) and \(z\) direction, respectively. The same number is used for both if a single value is given.
- periodic_z (bool) - Determines whether the z-axis has periodic boundary conditions.
```

axes: List[str] = ['r', 'z']

```
```

axes_symmetric: List[str] = ['phi']

```

The names of the additional axes that the fields do not depend on, e.g. along which they are constant.

\section*{Type}
list
cell_volume_data: Sequence[FloatNumerical]
the volumes of all cells
Type
ndarray
coordinate_constraints: List[int] \(=[0,1]\)
dim: int \(=3\)
classmethod from_state (state: Dict[str, Any]) \(\rightarrow\) CylindricalSymGrid
create a field from a stored state.

\section*{Parameters}
state (dict) - The state from which the grid is reconstructed.
get_boundary_conditions (bc: BoundariesData = 'auto_periodic_neumann', rank: int = 0, normal: bool \(=\) False \() \rightarrow\) Boundaries
constructs boundary conditions from a flexible data format

\section*{Parameters}
- bc (str or list or tuple or dict) - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
- rank (int) - The tensorial rank of the value associated with the boundary conditions.
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.

\section*{Raises}
- ValueError - If the data given in \(b c\) cannot be read
- PeriodicityError - If the boundaries are not compatible with the periodic axes of the grid.
get_cartesian_grid (mode: str = 'valid') \(\rightarrow\) CartesianGrid
return a Cartesian grid for this Cylindrical one

\section*{Parameters}
mode (str) - Determines how the grid is determined. Setting it to 'valid' only returns points that are fully resolved in the cylindrical grid, e.g., the cylinder is circumscribed. Conversely, 'full' returns all data, so the cylinder is inscribed.

\section*{Returns}

The requested grid

\section*{Return type}
pde.grids.cartesian.CartesianGrid
get_image_data (data: ndarray) \(\rightarrow\) Dict[str, Any]
return a 2d-image of the data

\section*{Parameters}
data (ndarray) - The values at the grid points

\section*{Returns}

A dictionary with information about the image, which is convenient for plotting.
get_line_data (data: ndarray, extract: str = 'auto') \(\rightarrow\) Dict[str, Any]
return a line cut for the cylindrical grid

\section*{Parameters}
- data (ndarray) - The values at the grid points
- extract (str) - Determines which cut is done through the grid. Possible choices are (default is cut_axial):
- cut_z or cut_axial: values along the axial coordinate for \(r=0\).
- project_z or project_axial: average values for each axial position (radial average).
- project_r or project_radial: average values for each radial position (axial average)

\section*{Returns}

A dictionary with information about the line cut, which is convenient for plotting.
get_random_point (\({ }^{*}\), boundary_distance: float \(=0\), avoid_center: bool \(=\) False, coords: str = 'cartesian', rng: Optional[Generator] \(=\) None, cartesian: Optional[bool] \(=\) None \() \rightarrow\) ndarray
return a random point within the grid
Note that these points will be uniformly distributed on the radial axis, which implies that they are not uniformly distributed in the volume.

\section*{Parameters}
- boundary_distance (float) - The minimal distance this point needs to have from all boundaries.
- avoid_center (\(b \circ \circ 1\)) - Determines whether the boundary distance should also be kept from the center, i.e., whether points close to the center are returned.
- coords (str) - Determines the coordinate system in which the point is specified. Valid values are cartesian, cell, and grid; see trans form ().
- rng (Generator) - Random number generator (default: default_rng ())

\section*{Returns}

The coordinates of the point

\section*{Return type}
ndarray
get_subgrid (indices: Sequence[int]) \(\rightarrow\) Union[CartesianGrid, PolarSymGrid]
return a subgrid of only the specified axes

\section*{Parameters}
indices (list) - Indices indicating the axes that are retained in the subgrid

\section*{Returns}

CartesianGrid or PolarSymGrid: The subgrid
iter_mirror_points (point: ndarray, with_self: bool \(=\) False, only_periodic: bool \(=\) True) \(\rightarrow\) Generator generates all mirror points corresponding to point

\section*{Parameters}
- point (ndarray) - the point within the grid
- with_self (bool) - whether to include the point itself
- only_periodic (bool) - whether to only mirror along periodic axes

\section*{Returns}

A generator yielding the coordinates that correspond to mirrors
property length: float
length of the cylinder
Type
float
num_axes: int \(=2\)
periodic: List[bool]
point_from_cartesian (points: ndarray) \(\rightarrow\) ndarray
convert points given in Cartesian coordinates to this grid
This function returns points restricted to the \(\mathrm{x}-\mathrm{z}\) plane, i.e., the y -coordinate will be zero.

\section*{Parameters}
points (ndarray) - Points given in Cartesian coordinates.

\section*{Returns}

Points given in the coordinates of the grid

\section*{Return type}
ndarray
```

point_to_cartesian (points: ndarray, *, full: bool = False) $\rightarrow$ ndarray
convert coordinates of a point to Cartesian coordinates
Parameters
- points (ndarray) - The grid coordinates of the points
- full (bool) - Flag indicating whether angular coordinates are specified

```

\section*{Returns}
```

The Cartesian coordinates of the point

```

\section*{Return type}
```

ndarray
polar_coordinates_real (origin: ndarray, *, ret_angle: bool $=$ False) $\rightarrow$ Union[ndarray, Tuple[ndarray, ndarray]]
return spherical coordinates associated with the grid

```

\section*{Parameters}
- origin (ndarray) - Coordinates of the origin at which the polar coordinate system is anchored. Note that this must be of the form [\(0,0, z_{_}\)val], where only \(z_{-}\)val can be chosen freely.
- ret_angle (bool) - Determines whether the azimuthal angle is returned alongside the distance. If False only the distance to the origin is returned for each support point of the grid. If True, the distance and angles are returned.
```

property radius: float

```
radius of the cylinder
Type
float
property state: Dict[str, Any]
the state of the grid
Type
state
property volume: float
total volume of the grid
Type
float

\subsection*{4.2.6 pde.grids.spherical module}

Spherically-symmetric grids in 2 and 3 dimensions. These are grids that only discretize the radial direction, assuming symmetry with respect to all angles. This choice implies that differential operators might not be applicable to all fields. For instance, the divergence of a vector field on a spherical grid can only be represented as a scalar field on the same grid if the \(\theta\)-component of the vector field vanishes.
```

class PolarSymGrid (radius: Union[float, Tuple[float, float]], shape: Union[Tuple[int], int])

```

Bases: SphericalSymGridBase
2-dimensional polar grid assuming angular symmetry

The angular symmetry implies that states only depend on the radial coordinate \(r\), which is discretized uniformly as
\[
r_{i}=R_{\text {inner }}+\left(i+\frac{1}{2}\right) \Delta r \quad \text { for } \quad i=0, \ldots, N-1 \quad \text { with } \quad \Delta r=\frac{R_{\text {outer }}-R_{\text {inner }}}{N}
\]
where \(R_{\text {outer }}\) is the outer radius of the grid and \(R_{\text {inner }}\) corresponds to a possible inner radius, which is zero by default. The radial direction is discretized by \(N\) support points.

\section*{Parameters}
- radius (float or tuple of floats) - radius \(R_{\text {outer }}\) in case a simple float is given. If a tuple is supplied it is interpreted as the inner and outer radius, \(\left(R_{\text {inner }}, R_{\text {outer }}\right)\).
- shape (tuple or int) - A single number setting the number \(N\) of support points along the radial coordinate
axes: List[str] = ['r']
axes_symmetric: List[str] = ['phi']
The names of the additional axes that the fields do not depend on, e.g. along which they are constant.
Type
list
cell_volume_data: Sequence[FloatNumerical]
coordinate_constraints: List[int] \(=[0,1]\)
dim: int \(=2\)
point_to_cartesian (points: ndarray, *, full: bool \(=\) False) \(\rightarrow\) ndarray
convert coordinates of a point to Cartesian coordinates
This function returns points along the y -coordinate, i.e, the x coordinates will be zero.

\section*{Parameters}
- points (ndarray) - The grid coordinates of the points
- full (bool) - Flag indicating whether angular coordinates are specified

\section*{Returns}

The Cartesian coordinates of the point

\section*{Return type}
ndarray
class SphericalSymGrid (radius: Union[float, Tuple[float, float]], shape: Union[Tuple[int], int])
Bases: SphericalSymGridBase
3-dimensional spherical grid assuming spherical symmetry
The symmetry implies that states only depend on the radial coordinate \(r\), which is discretized as follows:
\[
r_{i}=R_{\mathrm{inner}}+\left(i+\frac{1}{2}\right) \Delta r \quad \text { for } \quad i=0, \ldots, N-1 \quad \text { with } \quad \Delta r=\frac{R_{\text {outer }}-R_{\mathrm{inner}}}{N}
\]
where \(R_{\text {outer }}\) is the outer radius of the grid and \(R_{\text {inner }}\) corresponds to a possible inner radius, which is zero by default. The radial direction is discretized by \(N\) support points.

Warning: Not all results of differential operators on vectorial and tensorial fields can be expressed in terms of fields that only depend on the radial coordinate \(r\). In particular, the gradient of a vector field can only be calculated if the azimuthal component of the vector field vanishes. Similarly, the divergence of a tensor field can only be taken in special situations.

\section*{Parameters}
- radius (float or tuple of floats) - radius \(R_{\text {outer }}\) in case a simple float is given. If a tuple is supplied it is interpreted as the inner and outer radius, \(\left(R_{\text {inner }}, R_{\text {outer }}\right)\).
- shape (tuple or int) - A single number setting the number \(N\) of support points along the radial coordinate
axes: List[str] = ['r']
axes_symmetric: List[str] = ['theta', 'phi']
The names of the additional axes that the fields do not depend on, e.g. along which they are constant.

\section*{Type}
list
cell_volume_data: Sequence[FloatNumerical]
coordinate_constraints: List[int] = [0, 1, 2]
dim: int \(=3\)
point_to_cartesian (points: ndarray, *, full: bool \(=\) False) \(\rightarrow\) ndarray
convert coordinates of a point to Cartesian coordinates
This function returns points along the z -coordinate, i.e, the x and y coordinates will be zero.

\section*{Parameters}
- points (ndarray) - The grid coordinates of the points
- full (bool) - Flag indicating whether angular coordinates are specified

\section*{Returns}

The Cartesian coordinates of the point

\section*{Return type}
ndarray
class SphericalSymGridBase (radius: Union[float, Tuple[float, float]], shape: Union[Tuple[int], int])

\section*{Bases: GridBase}

Base class for d-dimensional spherical grids with angular symmetry
The angular symmetry implies that states only depend on the radial coordinate \(r\), which is discretized uniformly as
\[
r_{i}=R_{\text {inner }}+\left(i+\frac{1}{2}\right) \Delta r \quad \text { for } \quad i=0, \ldots, N-1 \quad \text { with } \quad \Delta r=\frac{R_{\text {outer }}-R_{\text {inner }}}{N}
\]
where \(R_{\text {outer }}\) is the outer radius of the grid and \(R_{\text {inner }}\) corresponds to a possible inner radius, which is zero by default. The radial direction is discretized by \(N\) support points.

\section*{Parameters}
- radius (float or tuple of floats)-radius \(R_{\text {outer }}\) in case a simple float is given. If a tuple is supplied it is interpreted as the inner and outer radius, \(\left(R_{\text {inner }}, R_{\text {outer }}\right)\).
- shape (tuple or int) - A single number setting the number \(N\) of support points along the radial coordinate
axes: List[str]
cell_volume_data: Sequence[FloatNumerical]
the volumes of all cells
Type
tuple of ndarray
dim: int
classmethod from_state (state: Dict[str, Any]) \(\rightarrow\) SphericalSymGridBase
create a field from a stored state.

\section*{Parameters}
state (dict) - The state from which the grid is reconstructed.
get_boundary_conditions (bc='auto_periodic_neumann', rank: int \(=0\), normal: bool \(=\) False \() \rightarrow\) Boundaries
constructs boundary conditions from a flexible data format.
If the inner boundary condition for a grid without a hole is not specified, this condition is automatically set to a vanishing derivative at \(r=0\).

\section*{Parameters}
- bc (str or list or tuple or dict) - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
- rank (int) - The tensorial rank of the value associated with the boundary conditions.
- normal (bool) - Flag indicating whether the condition is only applied in the normal direction.

\section*{Raises}
- ValueError - If the data given in \(b c\) cannot be read
- PeriodicityError - If the boundaries are not compatible with the periodic axes of the grid.
get_cartesian_grid (mode: str = 'valid', num: int \(=\) None) \(\rightarrow\) CartesianGrid
return a Cartesian grid for this spherical one

\section*{Parameters}
- mode (str) - Determines how the grid is determined. Setting it to 'valid' (or 'inscribed') only returns points that are fully resolved in the spherical grid, e.g., the Cartesian grid is inscribed in the sphere. Conversely, 'full' (or 'circumscribed') returns all data, so the Cartesian grid is circumscribed.
- num (int) - Number of support points along each axis of the returned grid.

\section*{Returns}

The requested grid

\section*{Return type}
pde.grids. cartesian. CartesianGrid
get_image_data (data: ndarray, performance_goal: str = 'speed', fill_value: float \(=0\), masked: bool \(=\) True) \(\rightarrow\) Dict[str, Any]
return a 2d-image of the data

\section*{Parameters}
- data (ndarray) - The values at the grid points
- performance_goal (str) - Determines the method chosen for interpolation. Possible options are speed and quality.
- fill_value (float) - The value assigned to invalid positions (those inside the hole or outside the region).
- masked (bool) - Whether a numpy .ma. MaskedArray is returned for the data instead of the normal ndarray.

\section*{Returns}

A dictionary with information about the image, which is convenient for plotting.
get_line_data (data: ndarray, extract: str = 'auto') \(\rightarrow\) Dict[str, Any]
return a line cut along the radial axis

\section*{Parameters}
- data (ndarray) - The values at the grid points
- extract (str) - Determines which cut is done through the grid. This parameter is mainly supplied for a consistent interface and has no effect for polar grids.

\section*{Returns}

A dictionary with information about the line cut, which is convenient for plotting.
get_random_point (\({ }^{*}\), boundary_distance: float \(=0\), avoid_center: bool \(=\) False, coords: str \(=\) 'cartesian', rng: Optional[Generator] = None, cartesian: Optional[bool] \(=\) None) \(\rightarrow\) ndarray
return a random point within the grid
Note that these points will be uniformly distributed in the volume, implying they are not uniformly distributed on the radial axis.

\section*{Parameters}
- boundary_distance (float) - The minimal distance this point needs to have from all boundaries.
- avoid_center (bool) - Determines whether the boundary distance should also be kept from the center, i.e., whether points close to the center are returned.
- coords (str) - Determines the coordinate system in which the point is specified. Valid values are cartesian, cell, and grid; see transform().
- rng (Generator) - Random number generator (default: default_rng ())

\section*{Returns}

The coordinates of the point

\section*{Return type}
ndarray
property has_hole: bool
returns whether the inner radius is larger than zero
iter_mirror_points (point: ndarray, with_self: bool \(=\) False, only_periodic: bool \(=\) True) \(\rightarrow\) Generator generates all mirror points corresponding to point

\section*{Parameters}
- point (ndarray) - the point within the grid
- with_self (bool) - whether to include the point itself
- only_periodic (bo○l) - whether to only mirror along periodic axes

\section*{Returns}

A generator yielding the coordinates that correspond to mirrors
num_axes: int \(=1\)
periodic: List[bool] = [False]
plot (*args, title: str = None, filename: str = None, action: str = 'auto', ax_style: Optional[Dict[str, Any]] = None, fig_style: Optional[Dict[str, Any]] = None, ax=None, **kwargs)
visualize the spherically symmetric grid in two dimensions

\section*{Parameters}
- title (str) - Title of the plot. If omitted, the title might be chosen automatically.
- filename (str, optional) - If given, the plot is written to the specified file.
- action (str) - Decides what to do with the final figure. If the argument is set to show, matplotlib.pyplot.show() will be called to show the plot. If the value is none, the figure will be created, but not necessarily shown. The value close closes the figure, after saving it to a file when filename is given. The default value auto implies that the plot is shown if it is not a nested plot call.
- ax_style (dict) - Dictionary with properties that will be changed on the axis after the plot has been drawn by calling matplotlib.pyplot. setp(). A special item in this dictionary is use_offset, which is flag that can be used to control whether offset are shown along the axes of the plot.
- fig_style (dict) - Dictionary with properties that will be changed on the figure after the plot has been drawn by calling matplotlib.pyplot. setp (). For instance, using fig_style \(=\{\) 'dpi': 200\} increases the resolution of the figure.
- ax (matplotlib.axes.Axes) - Figure axes to be used for plotting. The special value "create" creates a new figure, while "reuse" attempts to reuse an existing figure, which is the default.
- **kwargs - Extra arguments are passed on the to the matplotlib plotting routines, e.g., to set the color of the lines
point_from_cartesian (points: ndarray) \(\rightarrow\) ndarray
convert points given in Cartesian coordinates to this grid

\section*{Parameters}
points (ndarray) - Points given in Cartesian coordinates.

\section*{Returns}

Points given in the coordinates of the grid

\section*{Return type}
ndarray
polar_coordinates_real (origin=None, *, ret_angle: bool = False, **kwargs) \(\rightarrow\) Union[ndarray, Tuple[ndarray, ...]]
return spherical coordinates associated with the grid

\section*{Parameters}
- origin - Place holder variable to comply with the interface
- ret_angle (b○○l) - Determines whether angles are returned alongside the distance. If False only the distance to the origin is returned for each support point of the grid. If True, the distance and angles are returned. Note that in the case of spherical grids, this angle is zero by convention.
property radius: Union[float, Tuple[float, float]]
radius of the sphere
Type
float
property state: Dict[str, Any]
the state of the grid

\section*{Type}
state
property volume: float
total volume of the grid

\section*{Type}
float
volume_from_radius (radius: TNumArr, dim: int) \(\rightarrow\) TNumArr
Return the volume of a sphere with a given radius

\section*{Parameters}
- radius (float or ndarray) - Radius of the sphere
- \(\operatorname{dim}(i n t)\) - Dimension of the space

\section*{Returns}

Volume of the sphere

\section*{Return type}
float or ndarray

\section*{4.3 pde.pdes package}

Package that defines PDEs describing physical systems.
The examples in this package are often simple version of classical PDEs to demonstrate various aspects of the py-pde package. Clearly, not all extensions to these PDEs can be covered here, but this should serve as a starting point for custom investigations.

Publicly available methods should take fields with grid information and also only return such methods. There might be corresponding private methods that deal with raw data for faster simulations.
\begin{tabular}{ll}
\hline PDE & PDE defined by mathematical expressions \\
\hline AllenCahnPDE & A simple Allen-Cahn equation \\
\hline CahnHilliardPDE & A simple Cahn-Hilliard equation \\
\hline DiffusionPDE & A simple diffusion equation \\
\hline KPZInterfacePDE & The Kardar-Parisi-Zhang (KPZ) equation \\
\hline KuramotoSivashinskyPDE & The Kuramoto-Sivashinsky equation \\
\hline SwiftHohenbergPDE & The Swift-Hohenberg equation \\
\hline WavePDE & A simple wave equation \\
\hline
\end{tabular}

Additionally, we offer two solvers for typical elliptical PDEs:
\begin{tabular}{ll}
\hline solve_laplace_equation & Solve Laplace's equation on a given grid. \\
\hline solve_poisson_equation & Solve Laplace's equation on a given grid \\
\hline
\end{tabular}

\subsection*{4.3.1 pde.pdes.allen_cahn module}

A Allen-Cahn equation
class AllenCahnPDE (interface_width: float \(=1\), bc: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase][]]] = 'auto_periodic_neumann')
Bases: PDEBase
A simple Allen-Cahn equation
The mathematical definition is
\[
\partial_{t} c=\gamma \nabla^{2} c-c^{3}+c
\]
where \(c\) is a scalar field and \(\gamma\) sets the interfacial width.

\section*{Parameters}
- interface_width (float) - The diffusivity of the described species
- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
```

evolution_rate (state: ScalarField, $t:$ float $=0$ ) $\rightarrow$ ScalarField

```
evaluate the right hand side of the PDE

\section*{Parameters}
- state (ScalarField) - The scalar field describing the concentration distribution
- \(\mathbf{t}\) (float) - The current time point

\section*{Returns}

Scalar field describing the evolution rate of the PDE
```

    Return type
    ScalarField
    explicit_time_dependence: Optional[bool] = False

```

Flag indicating whether the right hand side of the PDE has an explicit time dependence.

\section*{Type}
bool
property expression: str
the expression of the right hand side of this PDE

\section*{Type}
str
interface_width: float

\subsection*{4.3.2 pde.pdes.base module}

Base classes
class PDEBase (*, noise: Union[int, float, complex, ndarray, Sequence[Union[int, float, complex, ndarray]], Sequence[Sequence[Any]]] \(=0\), rng: Optional[Generator] \(=\) None)

Bases: object
base class for solving partial differential equations
Custom PDEs can be implemented by specifying their evolution rate. In the simple case of deterministic PDEs, the methods PDEBase.evolution_rate() and PDEBase._make_pde_rhs_numba() need to be overwritten for the numpy and numba backend, respectively.

\section*{Parameters}
- noise (float or ndarray) - Magnitude of the additive Gaussian white noise that is supported for all PDEs by default. If set to zero, a deterministic partial differential equation will be solved. Different noise magnitudes can be supplied for each field in coupled PDEs.
- rng (Generator) - Random number generator (default: default_rng ()). Note that this random number generator is only used for numpy function, while compiled numba code is unaffected.

\footnotetext{
Note: If more complicated noise structures are required, the methods PDEBase.noise_realization() and PDEBase._make_noise_realization_numba () need to be overwritten for the numpy and numba backend, respectively.
```

cache_rhs: bool = False

```

Flag indicating whether the right hand side of the equation should be cached. If True, the same implementation is used in subsequent calls to solve. Note that this might lead to wrong results if the parameters of the PDE were changed after the first call. This option is thus disabled by default and should be used with care.

\section*{Type}
bool
check_implementation: bool = True
Flag determining whether (some) numba-compiled functions should be checked against their numpy counterparts. This can help with implementing a correct compiled version for a PDE class.
}

\section*{Type}
bool
check_rhs_consistency (state: FieldBase, \(t:\) float \(=0,{ }^{*}\), tol: float \(=1 e-07\), rhs_numba:
Optional[Callable] \(=\) None)
check the numba compiled right hand side versus the numpy variant

\section*{Parameters}
- state (FieldBase) - The state for which the evolution rates should be compared
- t (float) - The associated time point
- tol (float) - Acceptance tolerance. The check passes if the evolution rates differ by less then this value
- rhs_numba (callable) - The implementation of the numba variant that is to be checked. If omitted, an implementation is obtained by calling PDEBase. _make_pde_rhs_numba_cached().
```

complex_valued: bool = False

```

Flag indicating whether the right hand side is a complex-valued PDE, which requires all involved variables to be of complex type

\section*{Type}
bool
abstract evolution_rate (state: FieldBase, \(t:\) float \(=0) \rightarrow\) FieldBase
explicit_time_dependence: Optional[bool] = None
Flag indicating whether the right hand side of the PDE has an explicit time dependence.

\section*{Type}
bool
property is_sde: bool
flag indicating whether this is a stochastic differential equation
The BasePDF class supports additive Gaussian white noise, whose magnitude is controlled by the noise property. In this case, is_sde is True if self.noise \(!=0\).
make_modify_after_step (state: FieldBase) \(\rightarrow\) Callable[[ndarray], float]
returns a function that can be called to modify a state
This function is applied to the state after each integration step when an explicit stepper is used. The default behavior is to not change the state.

\section*{Parameters}
state (FieldBase) - An example for the state from which the grid and other information can be extracted

\section*{Returns}

Function that can be applied to a state to modify it and which returns a measure for the corrections applied to the state
make_pde_rhs (state: FieldBase, backend: str = 'auto') \(\rightarrow\) Callable[[ndarray, float], ndarray]
return a function for evaluating the right hand side of the PDE

\section*{Parameters}
- state(FieldBase) - An example for the state from which the grid and other information can be extracted.
- backend (str) - Determines how the function is created. Accepted values are 'numpy' and 'numba'. Alternatively, 'auto' lets the code decide for the most optimal backend.

\section*{Returns}

Function determining the right hand side of the PDE

\section*{Return type}
callable
make_sde_rhs (state: FieldBase, backend: str = 'auto') \(\rightarrow\) Callable[[ndarray, float], Tuple[ndarray, ndarray]] return a function for evaluating the right hand side of the SDE

\section*{Parameters}
- state(FieldBase) - An example for the state from which the grid and other information can be extracted
- backend (str) - Determines how the function is created. Accepted values are 'python' and 'numba'. Alternatively, 'auto' lets the code decide for the most optimal backend.

\section*{Returns}

Function determining the deterministic part of the right hand side of the PDE together with a noise realization.
noise_realization (state: FieldBase, \(t\) : float \(=0\), label: str \(=\) 'Noise realization') \(\rightarrow\) FieldBase
returns a realization for the noise

\section*{Parameters}
- state (ScalarField) - The scalar field describing the concentration distribution
- t (float) - The current time point
- label (str) - The label for the returned field

\section*{Returns}

Scalar field describing the evolution rate of the PDE

\section*{Return type}

ScalarField
solve (state: FieldBase, t_range: TRangeType, dt: float = None, tracker:
Optional[Union[Sequence[Union[TrackerBase, str]], TrackerBase, str]] = 'auto', method: Union[str, SolverBase] = 'auto', ret_info: bool = False, **kwargs) \(\rightarrow\) Union[FieldBase, Tuple[FieldBase, Dict[str, Any]]]
convenience method for solving the partial differential equation
The method constructs a suitable solver (SolverBase) and controller (Controller) to advance the state over the temporal range specified by \(t\) range. To obtain full flexibility, it is advisable to construct these classes explicitly.

\section*{Parameters}
- state (FieldBase) - The initial state (which also defines the spatial grid)
- t_range (float or tuple) - Sets the time range for which the PDE is solved. This should typically be a tuple of two numbers, (t_start, t_end), specifying the initial and final time of the simulation. If only a single value is given, it is interpreted as \(t_{-} e n d\) and the time range is assumed to be (\(0, t_{-}\)end \()\).
- dt (float) - Time step of the chosen stepping scheme. If None, a default value based on the stepper will be chosen. In particular, if method == 'auto', ScipySolver with an automatic, adaptive time step provided by scipy is used. This is a flexible choice, but
can also result in unstable or slow simulations. If an adaptive stepper is used (supported by ScipySolver and ExplicitSolver), the value given here sets the initial time step.
- tracker - Defines a tracker that process the state of the simulation at specified time intervals. A tracker is either an instance of TrackerBase or a string, which identifies a tracker. All possible identifiers can be obtained by calling get_named_trackers (). Multiple trackers can be specified as a list. The default value auto checks the state for consistency (tracker 'consistency') and displays a progress bar (tracker 'progress') when tqdm is installed. More general trackers are defined in trackers, where all options are explained in detail. In particular, the interval at which the tracker is evaluated can be chosen when creating a tracker object explicitly.
- method (SolverBase or str) - Specifies the method for solving the differential equation. This can either be an instance of SolverBase or a descriptive name like 'explicit' or 'scipy'. The valid names are given by pde.solvers.base. SolverBase. registered_solvers (). The default value 'auto' selects ScipySolver if \(d t\) is not specified and ExplicitSolver otherwise. Details of the solvers and additional features (like adaptive time steps) are explained in their documentation.
- ret_info (bool) - Flag determining whether diagnostic information about the solver process should be returned.
- **kwargs - Additional keyword arguments are forwarded to the solver class chosen with the method argument. In particular, ExplicitSolver supports several schemes and an adaptive stepper can be enabled using adaptive=True. Conversely, ScipySolver accepts the additional arguments of scipy.integrate.solve_ivp ().

\section*{Returns}

The state at the final time point. If ret_info \(==T r u e\), a tuple with the final state and a dictionary with additional information is returned.

\section*{Return type}

FieldBase
expr_prod (factor: float, expression: str) \(\rightarrow\) str
helper function for building an expression with an (optional) pre-factor

\section*{Parameters}
- factor (float) - The value of the prefactor
- expression (str) - The remaining expression

\section*{Returns}

The expression with the factor appended if necessary

\section*{Return type}
str

\subsection*{4.3.3 pde.pdes.cahn_hilliard module}

A Cahn-Hilliard equation
class CahnHilliardPDE (interface_width: float = 1, bc_c: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]] = 'auto_periodic_neumann', bc_mu: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple [Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]] = 'auto_periodic_neumann')

Bases: PDEBase
A simple Cahn-Hilliard equation
The mathematical definition is
\[
\partial_{t} c=\nabla^{2}\left(c^{3}-c-\gamma \nabla^{2} c\right)
\]
where \(c\) is a scalar field taking values on the interval \([-1,1]\) and \(\gamma\) sets the interfacial width.

\section*{Parameters}
- interface_width (float) - The width of the interface between the separated phases. This defines a characteristic length in the simulation. The grid needs to resolve this length of a stable simulation.
- bc_c - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{ 'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
- bc_mu - The boundary conditions applied to the chemical potential associated with the scalar field \(c\). Supports the same options as \(b c_{-} c\).
evolution_rate (state: ScalarField, \(t:\) float \(=0\)) \(\rightarrow\) ScalarField
evaluate the right hand side of the PDE

\section*{Parameters}
- state (ScalarField) - The scalar field describing the concentration distribution
- t (float) - The current time point

\section*{Returns}

Scalar field describing the evolution rate of the PDE

\section*{Return type}

ScalarField
explicit_time_dependence: Optional[bool] = False
Flag indicating whether the right hand side of the PDE has an explicit time dependence.

\section*{Type}
bool
```

property expression: str

```
the expression of the right hand side of this PDE
Type
str

\subsection*{4.3.4 pde.pdes.diffusion module}

A simple diffusion equation
class DiffusionPDE (diffusivity: float \(=1\), noise: float \(=0\), bc: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]] = 'auto_periodic_neumann')
Bases: PDEBase
A simple diffusion equation
The mathematical definition is
\[
\partial_{t} c=D \nabla^{2} c
\]
where \(c\) is a scalar field that is distributed with diffusivity \(D\).

\section*{Parameters}
- diffusivity (float) - The diffusivity of the described species
- noise (float) - Strength of the (additive) noise term
- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
```

evolution_rate (state: ScalarField, t: float = 0) }->\mathrm{ ScalarField

```
evaluate the right hand side of the PDE

\section*{Parameters}
- state (ScalarField) - The scalar field describing the concentration distribution
- \(\boldsymbol{t}\) (float) - The current time point

\section*{Returns}

Scalar field describing the evolution rate of the PDE

\section*{Return type}

ScalarField
explicit_time_dependence: Optional[bool] = False
Flag indicating whether the right hand side of the PDE has an explicit time dependence.
Type
bool
property expression: str
the expression of the right hand side of this PDE
Type
str

\subsection*{4.3.5 pde.pdes.kpz_interface module}

The Kardar-Parisi-Zhang (KPZ) equation describing the evolution of an interface
class KPZInterfacePDE (nu: float \(=0.5\), lmbda: float \(=1\), \({ }^{*}\), noise: float \(=0\), bc: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dictlstr, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]l]l]] = 'auto_periodic_neumann')
Bases: PDEBase
The Kardar-Parisi-Zhang (KPZ) equation
The mathematical definition is
\[
\partial_{t} h=\nu \nabla^{2} h+\frac{\lambda}{2}(\nabla h)^{2}+\eta(\boldsymbol{r}, t)
\]
where \(h\) is the height of the interface in Monge parameterization. The dynamics are governed by the two parameters \(\nu\) and \(\lambda\), while \(\eta\) is Gaussian white noise, whose strength is controlled by the noise argument.

\section*{Parameters}
- nu (float) - Parameter \(\nu\) for the strength of the diffusive term
- lmbda (float) - Parameter \(\lambda\) for the strenth of the gradient term
- noise (float) - Strength of the (additive) noise term
- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by ('value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
evolution_rate (state: ScalarField, \(t\) : float \(=0\)) \(\rightarrow\) ScalarField
evaluate the right hand side of the PDE

\section*{Parameters}
- state (ScalarField) - The scalar field describing the concentration distribution
- t (float) - The current time point

\section*{Returns}

Scalar field describing the evolution rate of the PDE

\section*{Return type}

ScalarField
```

explicit_time_dependence: Optional[bool] = False

```

Flag indicating whether the right hand side of the PDE has an explicit time dependence.

\section*{Type}
bool
property expression: str
the expression of the right hand side of this PDE
Type
str

\subsection*{4.3.6 pde.pdes.kuramoto_sivashinsky module}

The Kardar-Parisi-Zhang (KPZ) equation describing the evolution of an interface
\[
\begin{aligned}
& \text { class KuramotoSivashinskyPDE (nu: float }=1, \text { *, noise: float }=0 \text {, bc: Union[Dict[str, Union[Dict, str, } \\
& \text { BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, } \\
& \text { str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, } \\
& \text { str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]] } \\
& \text { = 'auto_periodic_neumann', bc_lap: Union[Dict[str, Union[Dict, str, } \\
& \text { BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, } \\
& \text { str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, } \\
& \text { str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]] } \\
& \text { = None) }
\end{aligned}
\]

Bases: PDEBase
The Kuramoto-Sivashinsky equation
The mathematical definition is
\[
\partial_{t} u=-\nu \nabla^{4} u-\nabla^{2} u-\frac{1}{2}(\nabla h)^{2}+\eta(\boldsymbol{r}, t)
\]
where \(u\) is the height of the interface in Monge parameterization. The dynamics are governed by the parameters \(\nu\) , while \(\eta\) is Gaussian white noise, whose strength is controlled by the noise argument.

\section*{Parameters}
- nu (float) - Parameter \(\nu\) for the strength of the fourth-order term
- noise (float) - Strength of the (additive) noise term
- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
- bc_lap - The boundary conditions applied to the second derivative of the scalar field \(c\). If None, the same boundary condition as \(b c\) is chosen. Otherwise, this supports the same options as \(b c\).
```

evolution_rate (state: ScalarField, $t$ : float $=0$ ) $\rightarrow$ ScalarField

```
evaluate the right hand side of the PDE

\section*{Parameters}
- state (ScalarField) - The scalar field describing the concentration distribution
- \(\boldsymbol{t}(f l o a t)\) - The current time point

\section*{Returns}

Scalar field describing the evolution rate of the PDE

\section*{Return type}

ScalarField
explicit_time_dependence: Optional[bool] = False
Flag indicating whether the right hand side of the PDE has an explicit time dependence.
Type
bool
property expression: str
the expression of the right hand side of this PDE
Type
str

\subsection*{4.3.7 pde.pdes.laplace module}

Solvers for Poisson's and Laplace's equation
```

solve_laplace_equation (grid: GridBase, bc: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase,
Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase,
Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]], label: str = "Solution
to Laplace's equation") }->\mathrm{ ScalarField

```

Solve Laplace's equation on a given grid.
This is implemented by calling solve_poisson_equation() with a vanishing right hand side.

\section*{Parameters}
- grid (GridBase) - The grid on which the equation is solved
- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non- periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
- label (str) - The label of the returned field.

\section*{Returns}

The field that solves the equation. This field will be defined on the given grid.

\section*{Return type}

ScalarField
solve_poisson_equation (rhs: ScalarField, bc: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]], label: str = 'Solution to Poisson's equation", **kwargs) \(\rightarrow\) ScalarField
Solve Laplace's equation on a given grid
Denoting the current field by \(u\), we thus solve for \(f\), defined by the equation
\[
\nabla^{2} u(\boldsymbol{r})=-f(\boldsymbol{r})
\]
with boundary conditions specified by \(b c\).

Note: In case of periodic or Neumann boundary conditions, the right hand side \(f(\boldsymbol{r})\) needs to satisfy the following condition
\[
\int f \mathrm{~d} V=\oint g \mathrm{~d} S
\]
where \(g\) denotes the function specifying the outwards derivative for Neumann conditions. Note that for periodic boundaries \(g\) vanishes, so that this condition implies that the integral over \(f\) must vanish for neutral Neumann or periodic conditions.

\section*{Parameters}
- rhs (Scalarfield) - The scalar field \(f\) describing the right hand side
- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non- periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
- label (str) - The label of the returned field.

\section*{Returns}

The field \(u\) that solves the equation. This field will be defined on the same grid as \(r h s\).

\section*{Return type}

ScalarField

\subsection*{4.3.8 pde.pdes.pde module}

Defines a PDE class whose right hand side is given as a string

> class PDE (rhs: Dict[str, str], *, noise: Union[int, float, complex, ndarray, Sequence[Union[int, Aloat, complex, ndarray]], Sequence[Sequence[Any]]] = 0, bc: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]] = 'auto_periodic_neumann', bc_ops: Optional[Dict[str, Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]]]] = None, user_funcs: Optional[Dict[str, Callable]] = None, consts: Optional[Dict[str, Union[int, float, complex, ndarray]]] = None)

Bases: PDEBase
PDE defined by mathematical expressions

\section*{variables}

The name of the variables (i.e., fields) in the order they are expected to appear in the state.

\section*{Type}
tuple

\section*{diagnostics}

Additional diagnostic information that might help with analyzing problems, e.g., when sympy cannot parse or :mod`numba` cannot compile a function.

\section*{Type} dict

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

\section*{Parameters}
- rhs (dict) - The expressions defining the evolution rate. The dictionary keys define the name of the fields whose evolution is considered, while the values specify their evolution rate as a string that can be parsed by sympy. These expression may contain variables (i.e., the fields themselves, spatial coordinates of the grid, and \(t\) for the time), standard local mathematical operators defined by sympy, and the operators defined in the pole package. Note that operators need to be specified with their full name, i.e., laplace for a scalar Laplacian and vector_laplace for a Laplacian operating on a vector field. Moreover, the dot product between two vector fields can be denoted by using \(\operatorname{dot}\) (field1, field2) in the expression, an outer product is calculated using outer(field1, field2), and integral(field) denotes an integral over a field. More information can be found in the expression documentation.
- noise (float or ndarray) - Magnitude of additive Gaussian white noise. The default value of zero implies deterministic partial differential equations will be solved. Different noise magnitudes can be supplied for each field in coupled PDEs by either specifying a sequence of numbers or a dictionary with values for each field.
- bc - Boundary conditions for the operators used in the expression. The conditions here are applied to all operators that do not have a specialized condition given in \(b c _o p s\). Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
- bc_ops (dict) - Special boundary conditions for some operators. The keys in this dictionary specify where the boundary condition will be applied. The keys follow the format "VARIABLE:OPERATOR", where VARIABLE specifies the expression in \(r h s\) where the boundary condition is applied to the operator specified by OPERATOR. For both identifiers, the wildcard symbol "*" denotes that all fields and operators are affected, respectively. For instance, the identifier "c:*" allows specifying a condition for all operators of the field named \(c\).
- user_funcs (dict, optional)-A dictionary with user defined functions that can be used in the expressions in rhs.
- consts (dict, optional) - A dictionary with user defined constants that can be used in the expression. These can be either scalar numbers or fields defined on the same grid as the actual simulation.

\begin{abstract}
Note: The order in which the fields are given in rhs defines the order in which they need to appear in the state variable when the evolution rate is calculated. Note that dict keep the insertion order since Python version 3.7, so a normal dictionary can be used to define the equations.
\end{abstract}
```

evolution_rate (state: FieldBase, t: float = 0.0) }->\mathrm{ FieldBase

```
evaluate the right hand side of the PDE

\section*{Parameters}
- state (FieldBase) - The field describing the state of the PDE
- t (float) - The current time point

\section*{Returns}

Field describing the evolution rate of the PDE

\section*{Return type}

FieldBase
property expressions: Dict[str, str]
show the expressions of the PDE

\subsection*{4.3.9 pde.pdes.swift_hohenberg module}

The Swift-Hohenberg equation
class SwiftHohenbergPDE (rate: float \(=0.1, k c 2\) : float \(=1.0\), delta: float \(=1.0, *\), bc: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]] = 'auto_periodic_neumann', bc_lap: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple [Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]] = None)
Bases: PDEBase
The Swift-Hohenberg equation
The mathematical definition is
\[
\partial_{t} c=\left[\epsilon-\left(k_{c}^{2}+\nabla^{2}\right)^{2}\right] c+\delta c^{2}-c^{3}
\]
where \(c\) is a scalar field and \(\epsilon, k_{c}^{2}\), and \(\delta\) are parameters of the equation.

\section*{Parameters}
- rate (float) - The bifurcation parameter \(\epsilon\)
- \(\mathbf{k c}\) 2 (float) - Squared wave vector \(k_{c}^{2}\) of the linear instability
- delta (float) - Parameter \(\delta\) of the non-linearity
- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{ 'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
- bc_lap - The boundary conditions applied to the second derivative of the scalar field \(c\). If None, the same boundary condition as \(b c\) is chosen. Otherwise, this supports the same options as \(b c\).
evolution_rate (state: ScalarField, \(t\) : float \(=0\)) \(\rightarrow\) ScalarField
evaluate the right hand side of the PDE

\section*{Parameters}
- state (ScalarField) - The scalar field describing the concentration distribution
- t(float) - The current time point

\section*{Returns}

Scalar field describing the evolution rate of the PDE

\section*{Return type}

ScalarField
explicit_time_dependence: Optional[bool] = False
Flag indicating whether the right hand side of the PDE has an explicit time dependence.
Type
bool
property expression: str
the expression of the right hand side of this PDE
Type
str

\subsection*{4.3.10 pde.pdes.wave module}

A simple diffusion equation
class WavePDE (speed: float \(=1\), bc: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]l]]] = 'auto_periodic_neumann')

Bases: PDEBase
A simple wave equation
The mathematical definition,
\[
\partial_{t}^{2} u=c^{2} \nabla^{2} u
\]
is implemented as two first-order equations:
\[
\begin{aligned}
\partial_{t} u & =v \\
\partial_{t} v & =c^{2} \nabla^{2} u
\end{aligned}
\]
where \(u\) is the density field that and \(c\) sets the wave speed.

\section*{Parameters}
- speed (float) - The speed \(c\) of the wave
- bc - The boundary conditions applied to the field. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non-periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{ 'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
```

evolution_rate (state: FieldCollection, t: float = 0) }->\mathrm{ FieldCollection

```
evaluate the right hand side of the PDE

\section*{Parameters}
- state (FieldCollection) - The fields \(u\) and \(v\) distribution
- t (float) - The current time point

\section*{Returns}

Scalar field describing the evolution rate of the PDE

\section*{Return type}

FieldCollection
explicit_time_dependence: Optional[bool] = False
Flag indicating whether the right hand side of the PDE has an explicit time dependence.

\section*{Type}
bool
property expressions: Dict[str, str]
the expressions of the right hand side of this PDE

\section*{Type}
dict
get_initial_condition (\(u\) : ScalarField, \(v\) : Optional[ScalarField] = None)
create a suitable initial condition

\section*{Parameters}
- u (ScalarField) - The initial density on the grid
- \(\mathbf{v}\) (ScalarField, optional) - The initial rate of change. This is assumed to be zero if the value is omitted.

\section*{Returns}

The combined fields \(u\) and \(v\), suitable for the simulation

\section*{Return type}
```

FieldCollection

```

\section*{4.4 pde.solvers package}

Solvers define how a PDE is solved, i.e., how the initial state is advanced in time.
\begin{tabular}{ll}
\hline Controller & class controlling a simulation \\
\hline ExplicitSolver & class for solving partial differential equations explicitly \\
\hline ImplicitSolver & class for solving partial differential equations implicitly \\
\hline ScipySolver & class for solving partial differential equations using scipy \\
\hline registered_Solvers & returns all solvers that are currently registered \\
\hline
\end{tabular}
class Controller (solver: SolverBase, t_range: Union[float, Tuple[float, float]], tracker:
Optional[Union[Sequence[Union[TrackerBase, str]], TrackerBase, str]] = 'auto')
Bases: object
class controlling a simulation

\section*{Parameters}
- solver (SolverBase) - Solver instance that is used to advance the simulation in time
- t_range (float or tuple) - Sets the time range for which the simulation is run. If only a single value \(t_{-}\)end is given, the time range is assumed to be [0 , \(t_{-}\)end].
- tracker - Defines a tracker that process the state of the simulation at specified time intervals. A tracker is either an instance of TrackerBase or a string, which identifies a tracker. All possible identifiers can be obtained by calling get_named_trackers (). Multiple trackers can be specified as a list. The default value auto checks the state for consistency (tracker 'consistency') and displays a progress bar (tracker 'progress') when tqdm is installed. More general trackers are defined in trackers, where all options are explained in detail. In particular, the interval at which the tracker is evaluated can be chosen when creating a tracker object explicitly.
get_current_time ()
process_time() -> float
Process time for profiling: sum of the kernel and user-space CPU time.
run (state: TState, dt: float \(=\) None) \(\rightarrow\) TState
run the simulation
Diagnostic information about the solver procedure are available in the diagnostics property of the instance after this function has been called.

\section*{Parameters}
- state - The initial state of the simulation. This state will be copied and thus not modified by the simulation. Instead, the final state will be returned and trackers can be used to record intermediate states.
- dt (float) - Time step of the chosen stepping scheme. If None, a default value based on the stepper will be chosen.

\section*{Returns}

The state at the final time point.
property t_range: Tuple[float, float]
start and end time of the simulation

\section*{Type}
tuple
class ExplicitSolver (pde: PDEBase, scheme: str = 'euler', backend: str = 'auto', adaptive: bool = False, tolerance: float \(=1 e-05\))

Bases: SolverBase
class for solving partial differential equations explicitly

\section*{Parameters}
- pde (PDEBase) - The instance describing the pde that needs to be solved
- scheme (str) - Defines the explicit scheme to use. Supported values are 'euler' and 'rungekutta' (or 'rk' for short).
- backend (str) - Determines how the function is created. Accepted values are 'numpy` and 'numba'. Alternatively, 'auto' lets the code decide for the most optimal backend.
- adaptive (.bo○l) - When enabled, the time step is adjusted during the simulation using the error tolerance set with tolerance.
- tolerance (float) - The error tolerance used in adaptive time stepping. This is used in adaptive time stepping to choose a time step which is small enough so the truncation error of a single step is below tolerance.
\(d t _\max =10000000000.0\)
\(d t _\)min \(=1 e-10\)
make_stepper (state: FieldBase, \(d t=\) None \() \rightarrow\) Callable[[FieldBase, float, float], float]
return a stepper function using an explicit scheme

\section*{Parameters}
- state (FieldBase) - An example for the state from which the grid and other information can be extracted
- dt (float) - Time step of the explicit stepping. If None, this solver specifies 1e-3 as a default value.

\section*{Returns}

Function that can be called to advance the state from time \(t_{-}\)start to time \(t_{-}\)end. The function call signature is (state: numpy.ndarray, t_start: float, t_end: float)
name \(=\) 'explicit'
class ImplicitSolver (pde: PDEBase, maxiter: int \(=100\), maxerror: float \(=0.0001\), backend: str \(=\) 'auto')
Bases: SolverBase
class for solving partial differential equations implicitly

\section*{Parameters}
- pde (PDEBase) - The instance describing the pde that needs to be solved
- maxiter (int) - The maximal number of iterations per step
- maxerror (float) - The maximal error that is permitted in each step
- backend (str) - Determines how the function is created. Accepted values are 'numpy` and 'numba'. Alternatively, 'auto' lets the code decide for the most optimal backend.
make_stepper (state: FieldBase, \(d t=\) None \() \rightarrow\) Callable[[FieldBase, float, float], float]
return a stepper function using an implicit scheme

\section*{Parameters}
- state (FieldBase) - An example for the state from which the grid and other information can be extracted
- dt (float) - Time step of the explicit stepping. If None, this solver specifies 1e-3 as a default value.

\section*{Returns}

Function that can be called to advance the state from time \(t_{-}\)start to time \(t_{-}\)end. The function call signature is (state: numpy.ndarray, t_start: float, t_end: float)
name = 'implicit'
class ScipySolver (pde: PDEBase, backend: str = 'auto', \(* * * w a r g s\))
Bases: SolverBase
class for solving partial differential equations using scipy
This class is a thin wrapper around scipy.integrate.solve_ivp(). In particular, it supports all the methods implemented by this function.

\section*{Parameters}
- pde (PDEBase) - The instance describing the pde that needs to be solved
- backend (str) - Determines how the function is created. Accepted values are 'numpy` and 'numba'. Alternatively, 'auto' lets the code decide for the most optimal backend.
- **kwargs - All extra arguments are forwarded to scipy.integrate.solve_ivp ().
make_stepper (state: FieldBase, \(d t:\) float \(=\) None \() \rightarrow\) Callable[[FieldBase, float, float], float]
return a stepper function

\section*{Parameters}
- state (FieldBase) - An example for the state from which the grid and other information can be extracted.
- \(\mathrm{dt}(f l \circ a t)\) - Initial time step for the simulation. If None, the solver will choose a suitable initial value.

\section*{Returns}

Function that can be called to advance the state from time \(t_{-}\)start to time \(t_{-}\)end.
name \(=\) 'scipy'
registered_solvers () \(\rightarrow\) List[str]
returns all solvers that are currently registered

\section*{Returns}

List with the names of the solvers

\section*{Return type}
list of str

\subsection*{4.4.1 pde.solvers.base module}

Package that contains base classes for solvers
```

class SolverBase (pde: PDEBase)

```

\section*{Bases: object}
base class for solvers

\section*{Parameters}
pde (PDEBase) - The partial differential equation that should be solved
classmethod from_name (name: str, pde: PDEBase, \({ }^{* * k w a r g s) ~} \rightarrow\) SolverBase
create solver class based on its name
Solver classes are automatically registered when they inherit from SolverBase. Note that this also requires that the respective python module containing the solver has been loaded before it is attempted to be used.

\section*{Parameters}
- name (str) - The name of the solver to construct
- pde (PDEBASe) - The partial differential equation that should be solved
- **kwargs - Additional arguments for the constructor of the solver

\section*{Returns}

An instance of a subclass of SolverBase
abstract make_stepper (state, dt: float \(=\) None \() \rightarrow\) Callable[[FieldBase, float, float], float]
registered_solvers = ['ExplicitSolver', 'ImplicitSolver', 'ScipySolver',
'explicit', 'implicit', 'scipy']

\subsection*{4.4.2 pde.solvers.controller module}

Defines the Controller class for solving pdes.
class Controller (solver: SolverBase, t_range: Union[float, Tuple[float, float]], tracker:
Optional[Union[Sequence[Union[TrackerBase, str]], TrackerBase, str]] = 'auto')
Bases: ob ject
class controlling a simulation

\section*{Parameters}
- solver (SolverBase) - Solver instance that is used to advance the simulation in time
- t_range (float or tuple) - Sets the time range for which the simulation is run. If only a single value \(t_{-}\)end is given, the time range is assumed to be [0 , \(t_{-}\)end].
- tracker - Defines a tracker that process the state of the simulation at specified time intervals. A tracker is either an instance of TrackerBase or a string, which identifies a tracker. All possible identifiers can be obtained by calling get_named_trackers (). Multiple trackers can be specified as a list. The default value auto checks the state for consistency (tracker 'consistency') and displays a progress bar (tracker 'progress') when tqdm is installed. More general trackers are defined in trackers, where all options are explained in detail. In particular, the interval at which the tracker is evaluated can be chosen when creating a tracker object explicitly.
get_current_time ()
process_time() -> float
Process time for profiling: sum of the kernel and user-space CPU time.
run (state: TState, dt: float \(=\) None \() \rightarrow\) TState
run the simulation
Diagnostic information about the solver procedure are available in the diagnostics property of the instance after this function has been called.

\section*{Parameters}
- state - The initial state of the simulation. This state will be copied and thus not modified by the simulation. Instead, the final state will be returned and trackers can be used to record intermediate states.
- dt (float) - Time step of the chosen stepping scheme. If None, a default value based on the stepper will be chosen.

\section*{Returns}

The state at the final time point.
```

property t_range: Tuple[float, float]

```
start and end time of the simulation
Type tuple

\subsection*{4.4.3 pde.solvers.explicit module}

Defines an explicit solver supporting various methods
class ExplicitSolver (pde: PDEBase, scheme: str = 'euler', backend: str = 'auto', adaptive: bool = False, tolerance: float \(=1 e-05\))
Bases: SolverBase
class for solving partial differential equations explicitly

\section*{Parameters}
- pde (PDEBase) - The instance describing the pde that needs to be solved
- scheme (str) - Defines the explicit scheme to use. Supported values are 'euler' and 'rungekutta' (or 'rk' for short).
- backend (str) - Determines how the function is created. Accepted values are 'numpy` and 'numba'. Alternatively, 'auto' lets the code decide for the most optimal backend.
- adaptive (b○○l) - When enabled, the time step is adjusted during the simulation using the error tolerance set with tolerance.
- tolerance (float) - The error tolerance used in adaptive time stepping. This is used in adaptive time stepping to choose a time step which is small enough so the truncation error of a single step is below tolerance.
\(d t\) _max \(=10000000000.0\)
\(d t _\)min \(=1 e-10\)
info: Dict[str, Any]
make_stepper (state: FieldBase, \(d t=\) None \() \rightarrow\) Callable[[FieldBase, float, float], float]
return a stepper function using an explicit scheme

\section*{Parameters}
- state (FieldBase)-An example for the state from which the grid and other information can be extracted
- dt (float) - Time step of the explicit stepping. If None, this solver specifies 1e-3 as a default value.

\section*{Returns}

Function that can be called to advance the state from time \(t_{-}\)start to time \(t_{-}\)end. The function call signature is (state: numpy.ndarray, t_start: float, t_end: float)
```

name = 'explicit'

```

\subsection*{4.4.4 pde.solvers.implicit module}

Defines an implicit solver

\section*{exception ConvergenceError}

Bases: RuntimeError
class ImplicitSolver (pde: PDEBase, maxiter: int \(=100\), maxerror: float \(=0.0001\), backend: str \(=\) 'auto')
Bases: SolverBase
class for solving partial differential equations implicitly

\section*{Parameters}
- pde (PDEBase) - The instance describing the pde that needs to be solved
- maxiter (int) - The maximal number of iterations per step
- maxerror (float) - The maximal error that is permitted in each step
- backend (str) - Determines how the function is created. Accepted values are 'numpy` and 'numba'. Alternatively, 'auto' lets the code decide for the most optimal backend.
```

    info: Dict[str, Any]
    ```
 make_stepper (state: FieldBase, \(d t=\) None) \(\rightarrow\) Callable[[FieldBase, float, float], float]
return a stepper function using an implicit scheme

\section*{Parameters}
- state (FieldBase) - An example for the state from which the grid and other information can be extracted
- dt (float) - Time step of the explicit stepping. If None, this solver specifies \(1 \mathrm{e}-3\) as a default value.

\section*{Returns}

Function that can be called to advance the state from time \(t_{-}\)start to time \(t_{-}\)end. The function call signature is (state: numpy.ndarray, \(t\) _start: float, t_end: float)
name = 'implicit'

\subsection*{4.4.5 pde.solvers.scipy module}

Defines a solver using scipy.integrate
class ScipySolver (pde: PDEBase, backend: str = 'auto', \(* * * w a r g s\))
Bases: SolverBase
class for solving partial differential equations using scipy
This class is a thin wrapper around scipy.integrate.solve_ivp(). In particular, it supports all the methods implemented by this function.

\section*{Parameters}
- pde (PDEBase) - The instance describing the pde that needs to be solved
- backend (str) - Determines how the function is created. Accepted values are 'numpy` and 'numba'. Alternatively, 'auto' lets the code decide for the most optimal backend.
- **kwargs - All extra arguments are forwarded to scipy.integrate.solve_ivp ().
info: Dict[str, Any]
make_stepper (state: FieldBase, dt: float \(=\) None \() \rightarrow\) Callable[[FieldBase, float, float], float]
return a stepper function

\section*{Parameters}
- state (FieldBase) - An example for the state from which the grid and other information can be extracted.
- \(\operatorname{dt}(f l \circ a t)\) - Initial time step for the simulation. If None, the solver will choose a suitable initial value.

\section*{Returns}

Function that can be called to advance the state from time \(t_{-}\)start to time \(t_{-}\)end.
```

name = 'scipy'

```

\section*{4.5 pde.storage package}

Module defining classes for storing simulation data.
\begin{tabular}{ll}
\hline get_memory_storage & \begin{tabular}{l}
a context manager that can be used to create a MemoryS- \\
torage
\end{tabular} \\
\hline MemoryStorage & store discretized fields in memory \\
\hline FileStorage & store discretized fields in a hdf5 file \\
\hline
\end{tabular}

\subsection*{4.5.1 pde.storage.base module}

Base classes for storing data
```

class StorageBase (info: Optional[Dict[str, Any]] = None, write_mode: str = 'truncate_once')

```

Bases: object
base class for storing time series of discretized fields
These classes store time series of FieldBase, i.e., they store the values of the fields at particular time points. Iterating of the storage will return the fields in order and individual time points can also be accessed.

\section*{Parameters}
- info (dict) - Supplies extra information that is stored in the storage
- write_mode (str) - Determines how new data is added to already existing one. Possible values are: 'append' (data is always appended), 'truncate' (data is cleared every time this storage is used for writing), or 'truncate_once' (data is cleared for the first writing, but subsequent data using the same instances are appended). Alternatively, specifying 'readonly' will disable writing completely.
append (field: FieldBase, time: float \(=\) None) \(\rightarrow\) None
add field to the storage

\section*{Parameters}
- field (FieldBase) - The field that is added to the storage
- time (float, optional)- The time point
apply (func: Callable, out: Optional[StorageBase] = None, *, progress: bool \(=\) False) \(\rightarrow\) StorageBase applies function to each field in a storage

\section*{Parameters}
- func (callable) - The function to apply to each stored field. The function must either take as a single argument the field or as two arguments the field and the associated time point. In both cases, it should return a field.
- out (StorageBase) - Storage to which the output is written. If omitted, a new MemoryStorage is used and returned
- progress (bool) - Flag indicating whether the progress is shown during the calculation

\section*{Returns}

The new storage that contains the data after the function func has been applied

\section*{Return type}

StorageBase
clear (clear_data_shape: bool \(=\) False) \(\rightarrow\) None
truncate the storage by removing all stored data.

\section*{Parameters}
clear_data_shape (bool) - Flag determining whether the data shape is also deleted.
copy (out: Optional[StorageBase] = None, *, progress: bool \(=\) False) \(\rightarrow\) StorageBase
copies all fields in a storage to a new one

\section*{Parameters}
- out (StorageBase) - Storage to which the output is written. If omitted, a new MemoryStorage is used and returned
- progress (bool) - Flag indicating whether the progress is shown during the calculation

\section*{Returns}

The new storage that contains the copied data

\section*{Return type}

StorageBase
data: Any
property data_shape: Tuple[int, ...]
the current data shape.

\section*{Raises}

RuntimeError - if data_shape was not set
property dtype: Tuple[int, ...]
the current data type.

\section*{Raises}

RuntimeError - if data_type was not set
end_writing () \(\rightarrow\) None
finalize the storage after writing
extract_field (field_id: Union[int, str], label: str \(=\) None) \(\rightarrow\) MemoryStorage
extract the time course of a single field from a collection

Note: This might return a view into the original data, so modifying the returned data can also change the underlying original data.

\section*{Parameters}
- field_id (int or str) - The index into the field collection. This determines which field of the collection is returned. Instead of a numerical index, the field label can also be supplied. If there are multiple fields with the same label, only the first field is returned.
- label (str) - The label of the returned field. If omitted, the stored label is used.

\section*{Returns}
a storage instance that contains the data for the single field

\section*{Return type}

MemoryStorage
extract_time_range (t_range: Union[float, Tuple[float, float]] \(=\) None \() \rightarrow\) MemoryStorage
extract a particular time interval

Note: This might return a view into the original data, so modifying the returned data can also change the underlying original data.

\section*{Parameters}
t_range (float or tuple) - Determines the range of time points included in the result.
If only a single number is given, all data up to this time point are included.

\section*{Returns}
a storage instance that contains the extracted data.

\section*{Return type}

MemoryStorage
property grid: Optional[GridBase]
the grid associated with this storage
This returns None if grid was not stored in self.info.

\section*{Type}

GridBase
property has_collection: bool
whether the storage is storing a collection
Type
bool
items () \(\rightarrow\) Iterator[Tuple[float, FieldBase]]
iterate over all times and stored fields, returning pairs
property shape: Optional[Tuple[int, ...]]
the shape of the stored data
start_writing (field: FieldBase, info: Optional[Dict[str, Any]] \(=\) None \() \rightarrow\) None
initialize the storage for writing data

\section*{Parameters}
- field (FieldBase) - An example of the data that will be written to extract the grid and the data_shape
- info (dict) - Supplies extra information that is stored in the storage
times: Sequence[float]
tracker (interval: Union[int, float, ConstantIntervals] =1) \(\rightarrow\) StorageTracker create object that can be used as a tracker to fill this storage

\section*{Parameters}
interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control.

\section*{Returns}

The tracker that fills the current storage

\section*{Return type}

StorageTracker
write_mode: str
class StorageTracker (storage, interval: Union[ConstantIntervals, float, int, str] = 1)
Bases: TrackerBase
Tracker that stores data in special storage classes
storage
The underlying storage class through which the data can be accessed
Type
StorageBase

\section*{Parameters}
- storage (StorageBase) - Storage instance to which the data is written
- interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control.
finalize (info: Optional[Dict[str, Any]] \(=\) None) \(\rightarrow\) None
finalize the tracker, supplying additional information
Parameters
info (dict) - Extra information from the simulation
handle (field: FieldBase, \(t\) : float) \(\rightarrow\) None
handle data supplied to this tracker

\section*{Parameters}
- field (FieldBase) - The current state of the simulation
- t (float) - The associated time
initialize (field: FieldBase, info: Optional[Dict[str, Any]] \(=\) None) \(\rightarrow\) float

\section*{Parameters}
- field (FieldBase) - An example of the data that will be analyzed by the tracker
- info (dict) - Extra information from the simulation

\section*{Returns}

The first time the tracker needs to handle data

\section*{Return type}
float

\subsection*{4.5.2 pde.storage.file module}

Defines a class storing data on the file system using the hierarchical data format (hdf).
class FileStorage (filename: str, info: Optional[Dict[str, Any]] = None, write_mode: str = 'truncate_once', max_length: int = None, compression: bool = True, keep_opened: bool = True)
Bases: StorageBase store discretized fields in a hdf5 file

\section*{Parameters}
- filename (str) - The path to the hdf5-file where the data is stored
- info (dict) - Supplies extra information that is stored in the storage
- write_mode (str) - Determines how new data is added to already existing data. Possible values are: 'append' (data is always appended), 'truncate' (data is cleared every time this storage is used for writing), or 'truncate_once' (data is cleared for the first writing, but appended subsequently). Alternatively, specifying 'readonly' will disable writing completely.
- max_length (int, optional) - Maximal number of entries that will be stored in the file. This can be used to preallocate data, which can lead to smaller files, but is also less flexible. Giving max_length \(=\) None, allows for arbitrarily large data, which might lead to larger files.
- compression (\(b \circ \circ 1\)) - Whether to store the data in compressed form. Automatically enabled chunked storage.
- keep_opened (bool) - Flag indicating whether the file should be kept opened after each writing. If False, the file will be closed after writing a dataset. This keeps the file in a consistent state, but also requires more work before data can be written.
clear (clear_data_shape: bool = False)
truncate the storage by removing all stored data.

\section*{Parameters}
clear_data_shape \((b \circ \circ 1)\) - Flag determining whether the data shape is also deleted.
close () \(\rightarrow\) None
close the currently opened file
property data
The actual data for all time

\section*{Type}
ndarray
end_writing () \(\rightarrow\) None
finalize the storage after writing.
This makes sure the data is actually written to a file when self.keep_opened \(==\) False
start_writing (field: FieldBase, info: Optional[Dict[str, Any]] \(=\) None) \(\rightarrow\) None
initialize the storage for writing data

\section*{Parameters}
- field (FieldBase) - An example of the data that will be written to extract the grid and the data_shape
- info (dict) - Supplies extra information that is stored in the storage
property times
The times at which data is available
Type
ndarray
write_mode: str

\subsection*{4.5.3 pde.storage.memory module}

Defines a class storing data in memory.
class MemoryStorage (times: Optional[Sequence[float]] = None, data: Optional[List[ndarray]] = None, field_obj: Optional[FieldBase] = None, info: Optional[Dict[str, Any]] = None, write_mode: str = 'truncate_once')

Bases: StorageBase
store discretized fields in memory

\section*{Parameters}
- times (ndarray) - Sequence of times for which data is known
- data (list of ndarray) - The field data at the given times
- field_obj (FieldBase) - An instance of the field class store data for a single time point.
- info (dict) - Supplies extra information that is stored in the storage
- write_mode (str) - Determines how new data is added to already existing data. Possible values are: 'append' (data is always appended), 'truncate' (data is cleared every time this storage is used for writing), or 'truncate_once' (data is cleared for the first writing, but appended subsequently). Alternatively, specifying 'readonly' will disable writing completely.
clear (clear_data_shape: bool \(=\) False \() \rightarrow\) None
truncate the storage by removing all stored data.

\section*{Parameters}
clear_data_shape \((b \circ \circ 1)\) - Flag determining whether the data shape is also deleted.
data: Any
classmethod from_collection (storages: Sequence[StorageBase], label: str \(=\) None, \({ }^{*}\), rtol: float \(=\) le-05, atol: float \(=1 e-08) \rightarrow\) MemoryStorage
combine multiple memory storages into one
This method can be used to combine multiple time series of different fields into a single representation. This requires that all time series contain data at the same time points.

\section*{Parameters}
- storages (Iist) - A collection of instances of StorageBase whose data will be concatenated into a single MemoryStorage
- label (str, optional) - The label of the instances of FieldCollection that represent the concatenated data
- rtol (float) - Relative tolerance used when checking times for merging
- atol (float) - Absolute tolerance used when checking times for merging

\section*{Returns}

Storage containing all the data.

\section*{Return type}

MemoryStorage
classmethod from_fields (times: Optional[Sequence[float]] = None, fields: Optional[Sequence[FieldBase]] = None, info: Optional[Dict[str, Any]] = None, write_mode: str = 'truncate_once') \(\rightarrow\) MemoryStorage
create MemoryStorage from a list of fields

\section*{Parameters}
- times (ndarray) - Sequence of times for which data is known
- fields (list of FieldBase) - The fields at all given time points
- info (dict) - Supplies extra information that is stored in the storage
- write_mode (str) - Determines how new data is added to already existing data. Possible values are: 'append' (data is always appended), 'truncate' (data is cleared every time this storage is used for writing), or 'truncate_once' (data is cleared for the first writing, but appended subsequently). Alternatively, specifying 'readonly' will disable writing completely.
start_writing (field: FieldBase, info: Optional[Dict[str, Any]] \(=\) None) \(\rightarrow\) None
initialize the storage for writing data
Parameters
- field (FieldBase) - An instance of the field class store data for a single time point.
- info (dict) - Supplies extra information that is stored in the storage
```

times: Sequence[float]
write_mode: str
get_memory_storage (field: FieldBase, info: Optional[Dict[str, Any]] = None)

```
a context manager that can be used to create a MemoryStorage

\section*{Example}

This can be used to quickly store data:
```

with get_memory_storage(field_class) as storage:
storage.append(numpy_array0, 0)
storage.append(numpy_array1, 1)

# use storage thereafter

```

\section*{Parameters}
- field (FieldBase) - An instance of the field class store data for a single time point.
- info (dict) - Supplies extra information that is stored in the storage

Yields
MemoryStorage

\section*{4.6 pde.tools package}

Package containing several tools required in py-pde
\begin{tabular}{ll}
\hline cache & Functions, classes, and decorators for managing caches \\
\hline config & Handles configuration variables of the package \\
\hline cuboid & An n-dimensional, axes-aligned cuboid \\
\hline docstrings & Methods for automatic transformation of docstrings \\
\hline expressions & Handling mathematical expressions with sympy \\
\hline math & Auxiliary mathematical functions \\
\hline misc & Miscellaneous python functions \\
\hline numba & Helper functions for just-in-time compilation with numba \\
\hline output & Python functions for handling output \\
\hline parameters & Infrastructure for managing classes with parameters \\
\hline parse_duration & Parsing time durations from strings \\
\hline plotting & Tools for plotting and controlling plot output using con- \\
text managers \\
\hline spectral & Functions making use of spectral decompositions \\
\hline spherical & \begin{tabular}{l}
Module collecting functions for handling spherical geom- \\
etry
\end{tabular} \\
\hline typing & Provides support for mypy type checking of the package \\
\hline
\end{tabular}

\subsection*{4.6.1 pde.tools.cache module}

Functions, classes, and decorators for managing caches
\begin{tabular}{ll}
\hline cached_property & Decorator to use a method as a cached property \\
\hline cached_method & Decorator to enable caching of a method \\
\hline hash_mutable & return hash also for (nested) mutable objects. \\
\hline hash_readable & \begin{tabular}{l}
return human readable hash also for (nested) mutable ob- \\
jects.
\end{tabular} \\
\hline make_serializer & \begin{tabular}{l}
returns a function that serialize data with the given \\
method.
\end{tabular} \\
\hline make_unserializer & \begin{tabular}{l}
returns a function that unserialize data with the given \\
method
\end{tabular} \\
\hline DictFiniteCapacity & cache with a limited number of items \\
\hline SerializedDict & \begin{tabular}{l}
a key value database which is stored on the disk This class \\
provides hooks for converting arbitrary keys and values to \\
strings, which are then stored in the database.
\end{tabular} \\
\hline
\end{tabular}

\section*{class DictFiniteCapacity(*args, **kwargs)}

Bases: OrderedDict
cache with a limited number of items
```

check_length()

```
ensures that the dictionary does not grow beyond its capacity
default_capacity: int \(=100\)
update \(([E], * * F) \rightarrow\) None. Update \(D\) from dict/iterable E and F.
If E is present and has a. \(\operatorname{keys}()\) method, then does: for k in \(\mathrm{E}: \mathrm{D}[\mathrm{k}]=\mathrm{E}[\mathrm{k}]\) If E is present and lacks a \(\cdot \mathrm{keys}()\) method, then does: for \(\mathrm{k}, \mathrm{v}\) in \(\mathrm{E}: \mathrm{D}[\mathrm{k}]=\mathrm{v}\) In either case, this is followed by: for k in \(\mathrm{F}: \mathrm{D}[\mathrm{k}]=\mathrm{F}[\mathrm{k}]\)
class SerializedDict (key_serialization: str = 'pickle', value_serialization: str = 'pickle', storage_dict:
Optional[Dict] = None)
Bases: MutableMapping
a key value database which is stored on the disk This class provides hooks for converting arbitrary keys and values to strings, which are then stored in the database.
provides a dictionary whose keys and values are serialized

\section*{Parameters}
- key_serialization (str) - Determines the serialization method for keys
- value_serialization (str) - Determines the serialization method for values
- storage_dict (dict) - Can be used to chose a different dictionary for the underlying storage mechanism, e.g., storage_dict \(=\) PersistentDict()
class cached_method (factory=None, extra_args=None, ignore_args=None, hash_function='hash_mutable', \(d o c=\) None, name \(=\) None)

Bases: _class_cache
Decorator to enable caching of a method
The function is only called the first time and each successive call returns the cached result of the first call.

\section*{Example}

The decorator can be used like so:
```

Class FOO:
@cached_method
def bar(self):
return "Cached"
fOO = FOO()
result = foo.bar()

```

The data is stored in a dictionary named _cache_methods attached to the instance of each object. The cache can thus be cleared by setting self._cache_methods \(=\{ \}\). The cache of specific property can be cleared using self._cache_methods[property_name] \(=\{ \}\), where property_name is the name of the property
decorator that caches calls in a dictionary attached to the instances. This can be used with most classes

\section*{Example}

An example for using the class is:
```

class FOO():
@cached_property()
def property(self):
return "Cached property"
@cached_method()
def method(self):
return "Cached method"
fOO = FOO()
foo.property
foo.method()

```

The cache can be cleared by setting foo._cache_methods \(=\{ \}\) if the cache factory is a simple dict, i.e, if factory \(==\) None. Alternatively, each cached method has a clear_cache_of_obj () method, which clears the cache of this particular method. In the example above we could thus call foo.bar.clear_cache_of_obj(foo) to clear the cache. Note that the object instance has to be passed as a parameter, since the method bar () is defined on the class, not the instance, i.e., we could also call Foo.bar.clear_cache_of_obj(foo). To clear the cache from within a method, one can thus call self.method_name.clear_cache_of_obj(self), where method_name is the name of the method whose cache is cleared

\section*{Example}

An advanced example is:
```

class FOO():
def get_cache(self, name):

```
```

    # `name` is the name of the method to cache
    return DictFiniteCapacity()
    @cached_method(factory='get_cache')
def foo(self):
return "Cached"

```

\section*{Parameters}
- factory (callable) - Function/class creating an empty cache. dict by default. This can be used with user-supplied storage backends by. The cache factory should return a dict-like object that handles the cache for the given method.
- extra_args (Iist) - List of attributes of the class that are included in the cache key. They are then treated as if they are supplied as arguments to the method. This is important to include when the result of a method depends not only on method arguments but also on instance attributes.
- ignore_args (list) - List of keyword arguments that are not included in the cache key. These should be arguments that do not influence the result of a method, e.g., because they only affect how intermediate results are displayed.
- hash_function (str) - An identifier determining what hash function is used on the argument list.
- doc (str) - Optional string giving the docstring of the decorated method
- name (str) - Optional string giving the name of the decorated method
class cached_property (factory=None, extra_args=None, ignore_args=None, hash_function='hash_mutable', doc=None, name=None)
Bases: _class_cache
Decorator to use a method as a cached property
The function is only called the first time and each successive call returns the cached result of the first call.

\section*{Example}

Here is an example for how to use the decorator:
```

class FOO():
@cached_property
def bar(self):
return "Cached"
foo = FOO()
result = foo.bar

```

The data is stored in a dictionary named _cache_methods attached to the instance of each object. The cache can thus be cleared by setting self._cache_methods \(=\{ \}\). The cache of specific property can be cleared using self._cache_methods[property_name] = \{\}, where property_name is the name of the property

Adapted from <https://wiki.python.org/moin/PythonDecoratorLibrary>.
decorator that caches calls in a dictionary attached to the instances. This can be used with most classes

\section*{Example}

An example for using the class is:
```

class FOO():
@cached_property()
def property(self):
return "Cached property"
@cached_method()
def method(self):
return "Cached method"
fOO = FOO()
foo.property
foo.method()

```

The cache can be cleared by setting foo._cache_methods \(=\{ \}\) if the cache factory is a simple dict, i.e, if factory \(==\) None. Alternatively, each cached method has a clear_cache_of_obj () method, which clears the cache of this particular method. In the example above we could thus call foo.bar.clear_cache_of_obj(foo) to clear the cache. Note that the object instance has to be passed as a parameter, since the method bar () is defined on the class, not the instance, i.e., we could also call Foo.bar.clear_cache_of_obj(foo). To clear the cache from within a method, one can thus call self.method_name.clear_cache_of_obj(self), where method_name is the name of the method whose cache is cleared

\section*{Example}

An advanced example is:
```

class FOO():
def get_cache(self, name):
\# 'name` is the name of the method to cache
return DictFiniteCapacity()
@cached_method(factory='get_cache')
def foo(self):
return "Cached"

```

\section*{Parameters}
- factory (callable) - Function/class creating an empty cache. dict by default. This can be used with user-supplied storage backends by. The cache factory should return a dict-like object that handles the cache for the given method.
- extra_args (list) - List of attributes of the class that are included in the cache key. They are then treated as if they are supplied as arguments to the method. This is important to include when the result of a method depends not only on method arguments but also on instance attributes.
- ignore_args (list) - List of keyword arguments that are not included in the cache key.

These should be arguments that do not influence the result of a method, e.g., because they only affect how intermediate results are displayed.
- hash_function (str) - An identifier determining what hash function is used on the argument list.
- doc (str) - Optional string giving the docstring of the decorated method
- name (str) - Optional string giving the name of the decorated method
hash_mutable \((o b j) \rightarrow\) int
return hash also for (nested) mutable objects.

\section*{Notes}

This function might be a bit slow, since it iterates over all containers and hashes objects recursively. Moreover, the returned value might change with each run of the python interpreter, since the hash values of some basic objects, like None, change with each instance of the interpreter.

\section*{Parameters}
obj-A general python object

\section*{Returns}

A hash value associated with the data of obj

\section*{Return type}
int
```

hash_readable (obj) }->\mathrm{ str

```
return human readable hash also for (nested) mutable objects.
This function returns a JSON-like representation of the object. The function might be a bit slow, since it iterates over all containers and hashes objects recursively. Note that this hash function tries to return the same value for equivalent objects, but it does not ensure that the objects can be reconstructed from this data.

\section*{Parameters}
obj - A general python object

\section*{Returns}

A hash value associated with the data of obj

\section*{Return type}
str
make_serializer (method: str) \(\rightarrow\) Callable
returns a function that serialize data with the given method. Note that some of the methods destroy information and cannot be reverted.

\section*{Parameters}
method (str) - An identifier determining the serializer that will be returned

\section*{Returns}

A function that serializes objects

\section*{Return type}
callable
make_unserializer (method: str) \(\rightarrow\) Callable
returns a function that unserialize data with the given method
This is the inverse function of make_serializer().

\section*{Parameters}
method (str) - An identifier determining the unserializer that will be returned

\section*{Returns}

A function that serializes objects

\section*{Return type}
callable
objects_equal \((a, b) \rightarrow\) bool
compares two objects to see whether they are equal
In particular, this uses numpy .array_equal () to check for numpy arrays

\section*{Parameters}
- a - The first object
- \(\mathbf{b}\) - The second object

\section*{Returns}

Whether the two objects are considered equal

\section*{Return type}
bool

\subsection*{4.6.2 pde.tools.config module}

Handles configuration variables of the package
\begin{tabular}{ll}
\hline Config & class handling the package configuration \\
\hline get_package_versions & \begin{tabular}{l}
tries to load certain python packages and returns their ver- \\
sion
\end{tabular} \\
\hline parse_version_str & \begin{tabular}{l}
helper function converting a version string into a list of \\
integers
\end{tabular} \\
\hline check_package_version & checks whether a package has a sufficient version \\
\hline environment & obtain information about the compute environment \\
\hline
\end{tabular}
class Config (items: Optional[Dict[str, Any]] = None, mode: str = 'update')
Bases: UserDict
class handling the package configuration

\section*{Parameters}
- items (dict, optional)-Configuration values that should be added or overwritten to initialize the configuration.
- mode (str) - Defines the mode in which the configuration is used. Possible values are
- insert: any new configuration key can be inserted
- update: only the values of pre-existing items can be updated
- locked: no values can be changed

Note that the items specified by items will always be inserted, independent of the mode.
to_dict () \(\rightarrow\) Dict[str, Any]
convert the configuration to a simple dictionary

\section*{Returns}

A representation of the configuration in a normal dict.

\section*{Return type}
dict
check_package_version (package_name: str, min_version: str)
checks whether a package has a sufficient version
environment () \(\rightarrow\) Dict[str, Any]
obtain information about the compute environment

\section*{Returns}
information about the python installation and packages

\section*{Return type}
dict
get_package_versions (packages: List[str], *, na_str='not available') \(\rightarrow\) Dict[str, str] tries to load certain python packages and returns their version

\section*{Parameters}
- packages (list) - The names of all packages
- na_str (str) - Text to return if package is not available

\section*{Returns}

Dictionary with version for each package name

\section*{Return type}
dict
parse_version_str (ver_str: str) \(\rightarrow\) List[int]
helper function converting a version string into a list of integers

\subsection*{4.6.3 pde.tools.cuboid module}

An n-dimensional, axes-aligned cuboid
This module defines the Cuboid class, which represents an n-dimensional cuboid that is aligned with the axes of a Cartesian coordinate system.
class Cuboid (pos, size, mutable: bool = True)

\section*{Bases: object}
class that represents a cuboid in \(n\) dimensions
defines a cuboid from a position and a size vector

\section*{Parameters}
- pos (Iist) - The position of the lower left corner. The length of this list determines the dimensionality of space
- size (list) - The size of the cuboid along each dimension.
- mutable (bool) - Flag determining whether the cuboid parameters can be changed
property bounds: Tuple[Tuple[float, float], ...]
buffer (amount: Union[float, ndarray] \(=0\), inplace \(=\) False) \(\rightarrow\) Cuboid
dilate the cuboid by a certain amount in all directions
property centroid
contains_point (points: ndarray) \(\rightarrow\) ndarray
returns a True when points are within the Cuboid

\section*{Parameters}
points (ndarray) - List of point coordinates

\section*{Returns}
list of booleans indicating which points are inside

\section*{Return type}
ndarray
copy () \(\rightarrow\) Cuboid
property corners: Tuple[ndarray, ndarray]
return coordinates of two extreme corners defining the cuboid
property diagonal: float
returns the length of the diagonal
property dim: int
classmethod from_bounds (bounds: ndarray, **kwargs) \(\rightarrow\) Cuboid
create cuboid from bounds
Parameters
bounds (list) - Two dimensional array of axes bounds

\section*{Returns}
cuboid with positive size

\section*{Return type}

Cuboid
classmethod from_centerpoint (centerpoint: ndarray, size: ndarray, **kwargs) \(\rightarrow\) Cuboid create cuboid from two points

\section*{Parameters}
- centerpoint (list) - Coordinates of the center
- size (list) - Size of the cuboid

\section*{Returns} cuboid with positive size

\section*{Return type}

Cuboid
classmethod from_points (p1: ndarray, p2: ndarray, **kwargs) \(\rightarrow\) Cuboid
create cuboid from two points

\section*{Parameters}
- p1 (I ist) - Coordinates of first corner point
- p2 (list) - Coordinates of second corner point

\section*{Returns}
cuboid with positive size

\section*{Return type}

Cuboid
property mutable: bool
property size: ndarray
property surface_area: float
surface area of a cuboid in \(n\) dimensions.
The surface area is the volume of the \((n-1)\)-dimensional hypercubes that bound the current cuboid:
- \(n=1\) : the number of end points (2)
- \(n=2\) : the perimeter of the rectangle
- \(n=3\) : the surface area of the cuboid
property vertices: List[List[float]]
return the coordinates of all the corners
property volume: float
asanyarray_flags (data: ndarray,dtype=None, writeable: bool = True)
turns data into an array and sets the respective flags.
A copy is only made if necessary

\section*{Parameters}
- data (ndarray) - numpy array that whose flags are adjusted
- dtype - the resulant dtype
- writeable (bool) - Flag determining whether the results is writable

\section*{Returns}
array with same data as data but with flags adjusted.

\section*{Return type}
ndarray

\subsection*{4.6.4 pde.tools.docstrings module}

Methods for automatic transformation of docstrings
\begin{tabular}{ll}
\hline get_text_block & return a single text block \\
\hline replace_in_docstring & replace a text in a docstring using the correct indentation \\
\hline fill_in_docstring & decorator that replaces text in the docstring of a function \\
\hline
\end{tabular}
fill_in_docstring \((f:\) TFunc \() \rightarrow\) TFunc
decorator that replaces text in the docstring of a function
get_text_block (identifier: str) \(\rightarrow\) str
return a single text block

\section*{Parameters}
identifier (str) - The name of the text block

\section*{Returns}
the text block as one long line.

\section*{Return type}
str
replace_in_docstring (f: TFunc, token: str, value: str, docstring: str = None) \(\rightarrow\) TFunc replace a text in a docstring using the correct indentation

\section*{Parameters}
- \(\mathbf{f}(c a l l a b l e)\) - The function with the docstring to handle
- token (str) - The token to search for
- value (str) - The replacement string
- docstring (str) - A docstring that should be used instead of f.__doc_

\section*{Returns}

The function with the modified docstring

\section*{Return type}
callable

\subsection*{4.6.5 pde.tools.expressions module}

Handling mathematical expressions with sympy
This module provides classes representing expressions that can be provided as human-readable strings and are converted to numpy and numba representations using sympy.
\begin{tabular}{ll}
\hline parse_number & return a number compiled from an expression \\
\hline ScalarExpression & describes a mathematical expression of a scalar quantity \\
\hline TensorExpression & \begin{tabular}{l}
describes a mathematical expression of a tensorial quan- \\
tity
\end{tabular} \\
\hline evaluate & evaluate an expression involving fields \\
\hline
\end{tabular}
class ExpressionBase (expression: Basic, signature: Optional[Sequence[Union[str, List[str]]]] = None, *, user_funcs: Optional[Dict[str, Callable]] = None, consts: Optional[Dict[str, Union[int, float, complex, ndarray]I] = None)
Bases: ob ject
abstract base class for handling expressions

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

\section*{Parameters}
- expression (sympy. core.basic.Basic) - A sympy expression or array. This could for instance be an instance of Expr or NDimArray.
- signature (list of str, optional) - The signature defines which variables are expected in the expression. This is typically a list of strings identifying the variable names. Individual names can be specified as list, in which case any of these names can be used. The first item in such a list is the definite name and if another name of the list is used, the associated variable is renamed to the definite name. If signature is None, all variables in expressions are allowed.
- user_funcs (dict, optional)-A dictionary with user defined functions that can be used in the expression.
- consts (dict, optional) - A dictionary with user defined constants that can be used in the expression. The values of these constants should either be numbers or ndarray.
classmethod check_reserved_symbols (symbols: Iterable[str], strict: bool \(=\) True) \(\rightarrow\) None
throws an error if reserved symbols are found

\section*{Parameters}
- symbols (iterable) - A sequence or set of strings with symbols to check.
- strict (\(b \circ \circ 1\)) - Flag determining whether an exception is raised
property complex: bool
whether the expression contains the imaginary unit I

\section*{Type}
bool
property constant: bool
whether the expression is a constant
Type bool
depends_on (variable: str) \(\rightarrow\) bool
determine whether the expression depends on variable

\section*{Parameters}
variable (str) - the name of the variable to check for

\section*{Returns}
whether the variable appears in the expression

\section*{Return type}
bool
```

property expression: str

```
the expression in string form
Type
str
get_compiled (single_arg: bool = False) \(\rightarrow\) Callable[[...], Union[int, float, complex, ndarray]]
return numba function evaluating expression

\section*{Parameters}
single_arg (bool) - Determines whether the returned function accepts all variables in a single argument as an array or whether all variables need to be supplied separately

\section*{Returns}
the compiled function

\section*{Return type}
function
property rank: int
the rank of the expression
Type
int
abstract property shape: Tuple[int, ...]
class ScalarExpression (expression: Union[float, str, ndarray, Basic, ExpressionBase] = 0, signature: Optional[Sequence[Union[str, List[str]]]] = None, *, user_funcs: Optional[Dict[str, Callable]] = None, consts: Optional[Dict[str, Union[int, float, complex, ndarray]]] = None, allow_indexed: bool \(=\) False)

Bases: ExpressionBase
describes a mathematical expression of a scalar quantity

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

\section*{Parameters}
- expression (str or float) - The expression, which is either a number or a string that sympy can parse
- signature (list of str) - The signature defines which variables are expected in the expression. This is typically a list of strings identifying the variable names. Individual names can be specified as lists, in which case any of these names can be used. The first item in such a list is the definite name and if another name of the list is used, the associated variable is renamed to the definite name. If signature is None, all variables in expressions are allowed.
- user_funcs (dict, optional)-A dictionary with user defined functions that can be used in the expression
- consts (dict, optional) - A dictionary with user defined constants that can be used in the expression. The values of these constants should either be numbers or ndarray.
- allow_indexed (bool) - Whether to allow indexing of variables. If enabled, array variables are allowed to be indexed using square bracket notation.
```

copy() }->\mathrm{ ScalarExpression

```
return a copy of the current expression

\section*{derivatives}
differentiate the expression with respect to all variables
differentiate (var: str) \(\rightarrow\) ScalarExpression
return the expression differentiated with respect to var
property is_zero: bool
returns whether the expression is zero

Type
bool
shape: Tuple[int, ...] = ()
property value: Union[int, float, complex]
the value for a constant expression
Type
float
class TensorExpression (expression: Union[float, str, ndarray, Basic, ExpressionBase], signature:
Optional[Sequence[Union[str, List[str]]]] = None, *, user_funcs: Optional[Dict[str, Callable]] = None, consts: Optional[Dict[str, Union[int, float, complex, ndarray]]] = None)
Bases: ExpressionBase
describes a mathematical expression of a tensorial quantity

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

\section*{Parameters}
- expression (str or float) - The expression, which is either a number or a string that sympy can parse
- signature (list of str) - The signature defines which variables are expected in the expression. This is typically a list of strings identifying the variable names. Individual names can be specified as list, in which case any of these names can be used. The first item in such a list is the definite name and if another name of the list is used, the associated variable is renamed to the definite name. If signature is None, all variables in expressions are allowed.
- user_funcs (dict, optional)-A dictionary with user defined functions that can be used in the expression.
- consts (dict, optional) - A dictionary with user defined constants that can be used in the expression. The values of these constants should either be numbers or ndarray.

\section*{derivatives}
differentiate the expression with respect to all variables
differentiate (var: str) \(\rightarrow\) TensorExpression
return the expression differentiated with respect to var
get_compiled_array (single_arg: bool = True) \(\rightarrow\) Callable[[ndarray, Optional[ndarray]], ndarray]
compile the tensor expression such that a numpy array is returned

\section*{Parameters}
single_arg (bool) - Whether the compiled function expects all arguments as a single array or whether they are supplied individually.
property shape: Tuple[int, ...]
the shape of the tensor

\section*{Type}
tuple

\section*{property value}
the value for a constant expression
evaluate (expression: str, fields: Dict[str, DataFieldBase], *, bc: Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]]]]] = 'auto_periodic_neumann', bc_ops: Optional[Dict[str, Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]], Sequence[Union[Dict[str, Union[Dict, str, BCBase]], Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict, str, BCBase []]]I]] = None, user_funcs: Optional[Dict[str, Callable]] = None, consts: Optional[Dict[str, Union[int, float, complex, ndarray]]] \(=\) None, label: str \(=\) None \() \rightarrow\) DataFieldBase
evaluate an expression involving fields

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

\section*{Parameters}
- expression (str) - The expression, which is parsed by sympy. The expression may contain variables (i.e., fields and spatial coordinates of the grid), standard local mathematical operators defined by sympy, and the operators defined in the pde package. Note that operators need to be specified with their full name, i.e., laplace for a scalar Laplacian and vector_laplace for a Laplacian operating on a vector field. Moreover, the dot product between two vector fields can be denoted by using \(\operatorname{dot}(\) field1, field2) in the expression, and outer(field1, field2) calculates an outer product. More information can be found in the expression documentation.
- fields (dict) - Dictionary of the fields involved in the expression.
- bc - Boundary conditions for the operators used in the expression. The conditions here are applied to all operators that do not have a specialized condition given in \(b c\) _ops. Boundary conditions are generally given as a list with one condition for each axis. For periodic axis, only periodic boundary conditions are allowed (indicated by 'periodic' and 'anti-periodic'). For non- periodic axes, different boundary conditions can be specified for the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM (specified by \{ 'value': NUM\}) and Neumann conditions enforcing the value DERIV for the derivative in the normal direction (specified by \{'derivative': DERIV\}) are supported. Note that the special value 'natural' imposes periodic boundary conditions for periodic axis and a vanishing derivative otherwise. More information can be found in the boundaries documentation.
- bc_ops (dict) - Special boundary conditions for some operators. The keys in this dictionary specify the operator to which the boundary condition will be applied.
- user_funcs (dict, optional)-A dictionary with user defined functions that can be used in the expressions in rhs.
- consts (dict, optional) - A dictionary with user defined constants that can be used in the expression. These can be either scalar numbers or fields defined on the same grid as the actual simulation.
- label (str) - Name of the field that is returned.

\section*{Returns}

The resulting field. The rank of the returned field (and thus the precise class) is determined automatically.

\section*{Return type}
pde.fields.base.DataFieldBase
parse_number (expression: Union[str, int, float, complex], variables: Optional[Mapping[str, Number]] \(=\) None) \(\rightarrow\) Number
return a number compiled from an expression

Warning: This implementation uses exec () and should therefore not be used in a context where malicious input could occur.

\section*{Parameters}
- expression (str or Number) - An expression that can be interpreted as a number
- variables (dict) - A dictionary of values that replace variables in the expression

\section*{Returns}
the calculated value

\section*{Return type}

Number

\subsection*{4.6.6 pde.tools.math module}

Auxiliary mathematical functions
class SmoothData1D (\(x, y\), sigma: float \(=\) None \()\)
Bases: object
allows smoothing data in 1 d using a Gaussian kernel of defined width
The data is given a pairs of \(x\) and \(y\), the assumption being that there is an underlying relation \(y=f(x)\).
initialize with data

\section*{Parameters}
- \(\mathbf{x}\) - List of x values
- \(\mathbf{y}\) - List of y values
- sigma (float) - The size of the smoothing window in units of \(x\). If omitted, the average distance of x values multiplied by sigma_auto_scale is used.
property bounds: Tuple[float, float]
return minimal and maximal \(x\) values
```

sigma_auto_scale: float = 10

```
scale for setting automatic values for sigma
Type
float

\subsection*{4.6.7 pde.tools.misc module}

Miscellaneous python functions
\begin{tabular}{ll}
\hline module_available & check whether a python module is available \\
\hline ensure_directory_exists & creates a folder if it not already exists \\
\hline preserve_scalars & \begin{tabular}{l}
decorator that makes vectorized methods work with \\
scalars
\end{tabular} \\
\hline decorator_arguments & make a decorator usable with and without arguments: \\
\hline skipUnlessModule & decorator that skips a test when a module is not available \\
\hline import_class & import a class or module given an identifier \\
\hline classproperty & \begin{tabular}{l}
decorator that can be used to define read-only properties \\
for classes.
\end{tabular} \\
\hline hybridmethod & \begin{tabular}{l}
descriptor that can be used as a decorator to allow calling \\
\\
a method both as a classmethod and an instance method
\end{tabular} \\
\hline estimate_computation_speed & estimates the computation speed of a function \\
\hline hdf_write_attributes & write (JSON-serialized) attributes to a hdf file \\
\hline number & convert a value into a float or complex number \\
\hline get_common_dtype & returns a dtype in which all arguments can be represented \\
\hline number_array & convert an array with arbitrary dtype either to np.double \\
or np.cdouble
\end{tabular}
class classproperty (fget=None, doc=None)
Bases: property
decorator that can be used to define read-only properties for classes.
This is inspired by the implementation of astropy, see astropy.org.

\section*{Example}

The decorator can be used much like the property decorator:
```

class Test():
item: str = 'World'
@classproperty
def message(cls):
return 'Hello ' + cls.item
print(Test.message)

```
deleter (fdel)
Descriptor to change the deleter on a property.
```

getter(fget)

```

Descriptor to change the getter on a property.
setter (\(f\) set)
Descriptor to change the setter on a property.
```

decorator_arguments (decorator: Callable) }->\mathrm{ Callable

``` make a decorator usable with and without arguments:

The resulting decorator can be used like @decorator or @decorator(*args, **kwargs)
Inspired by https://stackoverflow.com/a/14412901/932593

\section*{Parameters}
decorator - the decorator that needs to be modified

\section*{Returns}
the decorated function
ensure_directory_exists (folder: Union[str, Path])
creates a folder if it not already exists
Parameters
folder (str) - path of the new folder
estimate_computation_speed (func: Callable, *args, **kwargs) \(\rightarrow\) float
estimates the computation speed of a function

\section*{Parameters}
func (callable) - The function to call

\section*{Returns}
the number of times the function can be calculated in one second. The inverse is thus the runtime in seconds per function call

\section*{Return type}
float
get_common_dtype (*args)
returns a dtype in which all arguments can be represented
Parameters
*args - All items (arrays, scalars, etc) to be checked
Returns: numpy.cdouble if any entry is complex, otherwise np.double
hdf_write_attributes (hdf_path, attributes: Optional[Dict[str, Any]] = None, raise_serialization_error: bool = False) \(\rightarrow\) None
write (JSON-serialized) attributes to a hdf file

\section*{Parameters}
- hdf_path - Path to a group or dataset in an open HDF file
- attributes (dict) - Dictionary with values written as attributes
- raise_serialization_error (bool) - Flag indicating whether serialization errors are raised or silently ignored
class hybridmethod (fclass, finstance=None, doc=None)
Bases: ob ject
descriptor that can be used as a decorator to allow calling a method both as a classmethod and an instance method
Adapted from https://stackoverflow.com/a/28238047
classmethod (fclass)
instancemethod (finstance)
```

import_class (identifier: str)

```
import a class or module given an identifier

\section*{Parameters}
identifier (str) - The identifier can be a module or a class. For instance, calling the function with the string identifier \(==\) 'numpy.linalg.norm' is roughly equivalent to running from numpy.linalg import norm and would return a reference to norm.
module_available (module_name: str) \(\rightarrow\) bool
check whether a python module is available
Parameters
module_name (str) - The name of the module

\section*{Returns}

True if the module can be imported and False otherwise
number (value: Union[int, float, complex, str]) \(\rightarrow\) Number
convert a value into a float or complex number

\section*{Parameters}
value (Number or str) - The value which needs to be converted

\section*{Result:}

Number: A complex number or a float if the imaginary part vanishes
number_array (data: Union[int, float, complex, ndarray, Sequence[Union[int, float, complex, ndarray]], Sequence[Sequence[Any]]], dtype=None, copy: bool \(=\) True) \(\rightarrow\) ndarray
convert an array with arbitrary dtype either to np.double or np.cdouble

\section*{Parameters}
- data (ndarray) - The data that needs to be converted to a float array. This can also be any iterable of numbers.
- dtype (numpy dtype) - The data type of the field. All the numpy dtypes are supported. If omitted, it will be determined from data automatically.
- copy (bool) - Whether the data must be copied (in which case the original array is left untouched). Note that data will always be copied when changing the dtype.

\section*{Returns}

An array with the correct dtype

\section*{Return type}
ndarray
preserve_scalars (method: TFunc) \(\rightarrow\) TFunc
decorator that makes vectorized methods work with scalars
This decorator allows to call functions that are written to work on numpy arrays to also accept python scalars, like int and float. Essentially, this wrapper turns them into an array and unboxes the result.
```

Parameters
method - The method being decorated

```

\section*{Returns}

The decorated method
skipUnlessModule (module_names: Union[Sequence[str], str]) \(\rightarrow\) Callable[[TFunc], TFunc]
decorator that skips a test when a module is not available

\section*{Parameters}
module_names (str) - The name of the required module(s)

\section*{Returns}

A function, so this can be used as a decorator

\subsection*{4.6.8 pde.tools.numba module}

Helper functions for just-in-time compilation with numba
```

class Counter(value: int = 0)

```

Bases: object
helper class for implementing JIT_COUNT
We cannot use a simple integer for this, since integers are immutable, so if one imports JIT_COUNT from this module it would always stay at the fixed value it had when it was first imported. The workaround would be to import the symbol every time the counter is read, but this is error-prone. Instead, we implement a thin wrapper class around an int, which only supports reading and incrementing the value. Since this object is now mutable it can be used easily. A disadvantage is that the object needs to be converted to int before it can be used in most expressions.
increment()
```

convert_scalar(arr)

```
helper function that turns 0d-arrays into scalars
This helps to avoid the bug discussed in https://github.com/numba/numba/issues/6000

\section*{flat_idx (arr, \(i\))}
helper function allowing indexing of scalars as if they arrays
get_common_numba_dtype (*args)
returns a numba numerical type in which all arrays can be represented

\section*{Parameters}
*args - All items to be tested
Returns: numba.complex128 if any entry is complex, otherwise numba.double
jit (function: TFunc, signature \(=\) None, parallel: bool \(=\) False, \({ }^{* *}\) kwargs) \(\rightarrow\) TFunc
apply nb.jit with predefined arguments

\section*{Parameters}
- function - The function which is jitted
- signature - Signature of the function to compile
- parallel (bool) - Allow parallel compilation of the function
- **kwargs - Additional arguments to nb.jït

\section*{Returns}

Function that will be compiled using numba
jit_allocate_out (func: Callable, parallel: bool = False, out_shape: Optional[Tuple[int,...]] = None, num_args: int \(=1, * * k w a r g s) \rightarrow\) Callable
Decorator that compiles a function with allocating an output array.
This decorator compiles a function that takes the arguments arr and out. The point of this decorator is to make the out array optional by supplying an empty array of the same shape as arr if necessary. This is implemented efficiently by using numba. generated_jit ().

\section*{Parameters}
- func - The function to be compiled
- parallel (bool) - Determines whether the function is jitted with parallel=True.
- out_shape (tuple) - Determines the shape of the out array. If omitted, the same shape as the input array is used.
- num_args (int, optional) - Determines the number of input arguments of the function.
- **kwargs - Additional arguments used in numba.jit ()

\section*{Returns}

The decorated function
make_array_constructor (arr: ndarray) \(\rightarrow\) Callable[[], ndarray]
returns an array within a jitted function using basic information

\section*{Parameters}
\(\operatorname{arr}\) (ndarray) - The array that should be accessible within jit

Warning: A reference to the array needs to be retained outside the numba code to prevent garbage collection from removing the array
numba_dict (data: Optional[Dict[str, Any]] = None) \(\rightarrow\) Optional[Dict]
converts a python dictionary to a numba typed dictionary
numba_environment () \(\rightarrow\) Dict[str, Any]
return information about the numba setup used

\section*{Returns}
(dict) information about the numba setup

\subsection*{4.6.9 pde.tools.output module}

Python functions for handling output
\begin{tabular}{ll}
\hline get_progress_bar_class & returns a class that behaves as progress bar. \\
\hline display_progress & displays a progress bar when iterating \\
\hline in_jupyter_notebook & checks whether we are in a jupyter notebook \\
\hline BasicOutput & class that writes text line to stdout \\
\hline JupyterOutput & class that writes text lines as html in a jupyter cell \\
\hline
\end{tabular}
class BasicOutput (stream=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)
Bases: OutputBase
class that writes text line to stdout

\section*{Parameters}
stream - The stream where the lines are written
show ()
shows the actual text
class JupyterOutput (header: str = '", footer: str = ")
Bases: OutputBase
class that writes text lines as html in a jupyter cell

\section*{Parameters}
- header (str) - The html code written before all lines
- footer (str) - The html code written after all lines
show ()
shows the actual html in a jupyter cell
class OutputBase
Bases: object
base class for output management
abstract show()
class SimpleProgress (iterable=None, *args, **kwargs)
Bases: object
indicates progress by printing dots to stderr
close (*args, **kwargs)
refresh (*args, **kwargs)
set_description (msg: str, refresh: bool = True, *args, **kwargs)
display_progress (iterator, total=None, enabled=True, **kwargs)
displays a progress bar when iterating

\section*{Parameters}
- iterator (iter) - The iterator
- total (int) - Total number of steps
- enabled (bool) - Flag determining whether the progress is display
- **kwargs - All extra arguments are forwarded to the progress bar class

\section*{Returns}

A class that behaves as the original iterator, but shows the progress alongside iteration.
get_progress_bar_class () \(\rightarrow\) Type[SimpleProgress]
returns a class that behaves as progress bar.
This either uses classes from the optional tqdm package or a simple version that writes dots to stderr, if the class it not available.
```

in_jupyter_notebook() }->\mathrm{ bool

```
checks whether we are in a jupyter notebook

\subsection*{4.6.10 pde.tools.parameters module}

Infrastructure for managing classes with parameters
One aim is to allow easy management of inheritance of parameters.
\begin{tabular}{ll}
\hline Parameter & class representing a single parameter \\
\hline DeprecatedParameter & \begin{tabular}{l}
a parameter that can still be used normally but is depre- \\
cated
\end{tabular} \\
\hline HideParameter & \begin{tabular}{l}
a helper class that allows hiding parameters of the parent \\
classes
\end{tabular} \\
\hline Parameterized & \begin{tabular}{l}
a mixin that manages the parameters of a class \\
get_all_parameters a dictionary with all parameters of all registered \\
classes
\end{tabular} \\
\hline
\end{tabular}
class DeprecatedParameter (name: str, default_value=None, cls=<class 'object'>, description: str = '", hidden: bool \(=\) False, extra: \(\sim\) Optional \([\sim\) Dict[str, \(\sim\) Any]] \(=\) None)
Bases: Parameter
a parameter that can still be used normally but is deprecated
initialize a parameter

\section*{Parameters}
- name (str) - The name of the parameter
- default_value - The default value
- cls - The type of the parameter, which is used for conversion
- description (str) - A string describing the impact of this parameter. This description appears in the parameter help
- hidden \((b \circ \circ 1)\) - Whether the parameter is hidden in the description summary
- extra (dict) - Extra arguments that are stored with the parameter
```

class HideParameter (name: str)

```

Bases: object
a helper class that allows hiding parameters of the parent classes

\section*{Parameters}
name (str) - The name of the parameter
class Parameter (name: str, default_value=None, cls=<class 'object'>, description: str = '", hidden: bool = False, extra: \(\sim\) Optional[\(\sim\) Dict[str, \(\sim\) Any]] = None)
Bases: object
class representing a single parameter
initialize a parameter

\section*{Parameters}
- name (str) - The name of the parameter
- default_value - The default value
- cls - The type of the parameter, which is used for conversion
- description (str) - A string describing the impact of this parameter. This description appears in the parameter help
- hidden \((b \circ \circ 1)\) - Whether the parameter is hidden in the description summary
- extra (dict) - Extra arguments that are stored with the parameter
convert (value=None)
converts a value into the correct type for this parameter. If value is not given, the default value is converted.
Note that this does not make a copy of the values, which could lead to unexpected effects where the default value is changed by an instance.

\section*{Parameters}
```

        value - The value to convert
    ```

\section*{Returns}

The converted value, which is of type self.cls
```

class Parameterized(parameters: Optional[Dict[str, Any]] = None)

```

Bases: object
a mixin that manages the parameters of a class
initialize the parameters of the object

\section*{Parameters}
parameters (dict) - A dictionary of parameters to change the defaults. The allowed parameters can be obtained from get_parameters() or displayed by calling show_parameters().
get_parameter_default (name)
return the default value for the parameter with name

\section*{Parameters}
name (str) - The parameter name
classmethod get_parameters (include_hidden: bool = False, include_deprecated: bool \(=\) False, sort: bool \(=\) True \() \rightarrow\) Dict[str, Parameter \(]\)
return a dictionary of parameters that the class supports

\section*{Parameters}
- include_hidden (bool) - Include hidden parameters
- include_deprecated (bool) - Include deprecated parameters
- sort (bo○l) - Return ordered dictionary with sorted keys

\section*{Returns}
a dictionary of instance of Parameter with their names as keys.

\section*{Return type}
dict
parameters_default: Sequence[Union[Parameter, HideParameter]] = []
show_parameters (description: Optional[bool] = None, sort: bool \(=\) False, show_hidden: bool \(=\) False, show_deprecated: bool = False)
show all parameters in human readable format

\section*{Parameters}
- description (bool) - Flag determining whether the parameter description is shown. The default is to show the description only when we are in a jupyter notebook environment.
- sort (\(b \circ \circ \mathrm{l}\)) - Flag determining whether the parameters are sorted
- show_hidden (b○○l) - Flag determining whether hidden parameters are shown
- show_deprecated (bool) - Flag determining whether deprecated parameters are shown
- default_value (b○○l) - Flag determining whether the default values or the current values are shown

All flags default to False.
get_all_parameters (data: str = 'name') \(\rightarrow\) Dict[str, Any]
get a dictionary with all parameters of all registered classes

\section*{Parameters}
data (str) - Determines what data is returned. Possible values are 'name', 'value', or 'description', to return the respective information about the parameters.
```

sphinx_display_parameters(app, what, name, obj, options, lines)

```
helper function to display parameters in sphinx documentation

\section*{Example}

This function should be connected to the 'autodoc-process-docstring' event like so:
app.connect('autodoc-process-docstring', sphinx_display_parameters)

\subsection*{4.6.11 pde.tools.parse_duration module}

Parsing time durations from strings
This module provides a function that parses time durations from strings. It has been copied from the django software, which comes with the following notes:

Copyright (c) Django Software Foundation and individual contributors. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of Django nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

parse_duration (value: str) }->\mathrm{ timedelta

```

Parse a duration string and return a datetime.timedelta.

\section*{Parameters}
value (str) - A time duration given as text. The preferred format for durations is "\%d \(\% \mathrm{H}: \% \mathrm{M}: \% \mathrm{~S} . \% \mathrm{f}\) '. This function also supports ISO 8601 representation and PostgreSQL's daytime interval format.

\section*{Returns}

An instance representing the duration.

\section*{Return type}
datetime.timedelta

\subsection*{4.6.12 pde.tools.plotting module}

Tools for plotting and controlling plot output using context managers
\begin{tabular}{ll}
\hline add_scaled_colorbar & add a vertical color bar to an image plot \\
\hline disable_interactive & \begin{tabular}{l}
context manager disabling the interactive mode of mat- \\
plotlib
\end{tabular} \\
\hline plot_on_axes & \begin{tabular}{l}
decorator for a plot method or function that uses a single \\
axes
\end{tabular} \\
\hline plot_on_figure & \begin{tabular}{l}
decorator for a plot method or function that fills an entire \\
figure
\end{tabular} \\
\hline PlotReference & contains all information to update a plot element \\
\hline BasicPlottingContext & basic plotting using just matplotlib \\
\hline JupyterPlottingContext & plotting in a jupyter widget using the inline backend \\
\hline get_plotting_context & returns a suitable plotting context \\
\hline napari_add_layers & adds layers to a napari viewer \\
\hline
\end{tabular}
class BasicPlottingContext (fig_or_ax=None, title: str = None, show: bool = True)
Bases: PlottingContextBase
basic plotting using just matplotlib

\section*{Parameters}
- \(\mathbf{f i g}\) _or_ax - If axes are given, they are used. If a figure is given, it is set as active.
- title (str) - The shown in the plot
- show (\(b \circ \circ 1\)) - Flag determining whether plots are actually shown
class JupyterPlottingContext (title: str = None, show: bool \(=\) True)
Bases: PlottingContextBase
plotting in a jupyter widget using the inline backend

\section*{Parameters}
- title (str) - The shown in the plot
- show (bool) - Flag determining whether plots are actually shown

\section*{close()}
close the plot
supports_update: bool = False
flag indicating whether the context supports that plots can be updated with out redrawing the entire plot. The jupyter backend (inline) requires replotting of the entire figure, so an update is not supported.
class PlotReference (ax, element: Any, parameters: Optional[Dict[str, Any]] = None)
Bases: object
contains all information to update a plot element

\section*{Parameters}
- ax (matplotlib. axes.Axes) - The axes of the element
- element (matplotlib.artist.Artist) - The actual element
- parameters \((d i c t)\) - Parameters to recreate the plot element
ax
element
parameters
class PlottingContextBase (title: str = None, show: bool = True)
Bases: object
base class of the plotting contexts

\section*{Example}

The context wraps calls to the matplot lib. pyplot interface:
```

context = PlottingContext()
with context:
plt.plot(...)
plt.xlabel(...)

```

\section*{Parameters}
- title (str) - The shown in the plot
- show (bool) - Flag determining whether plots are actually shown
```

close()

```
close the plot
supports_update: bool = True
flag indicating whether the context supports that plots can be updated with out redrawing the entire plot
add_scaled_colorbar (axes_image: matplotlib.cm.ScalarMappable, ax=None, aspect: float \(=20\), pad_fraction: float \(=0.5\), label: str \(\left.="^{\prime}, * * k w a r g s\right)\)
add a vertical color bar to an image plot
The height of the colorbar is now adjusted to the plot, so that the width determined by aspect is now given relative to the height. Moreover, the gap between the colorbar and the plot is now given in units of the fraction of the width by pad_fraction.

Inspired by https://stackoverflow.com/a/33505522/932593

\section*{Parameters}
- axes_image(matplotlib.cm.ScalarMappable)-Mappable object, e.g., returned from matplotlib.pyplot.imshow()
- ax (matplotlib.axes.Axes) - The current figure axes from which space is taken for the colorbar. If omitted, the axes in which the axes_image is shown is taken.
- aspect (float) - The target aspect ratio of the colorbar
- pad_fraction (float) - Width of the gap between colorbar and image
- label (str) - Set a label for the colorbar
- **kwargs - Additional parameters are passed to colorbar call

\section*{Returns}

The resulting Colorbar object

\section*{Return type}

Colorbar

\section*{disable_interactive()}
context manager disabling the interactive mode of matplotlib
This context manager restores the previous state after it is done. Details of the interactive mode are described in matplotlib.interactive().
get_plotting_context (context=None, title: str \(=\) None, show: bool \(=\) True \() \rightarrow\) PlottingContextBase returns a suitable plotting context

\section*{Parameters}
- context - An instance of PlottingContextBase or an instance of matplotlib. axes.Axes or matplotlib.figure.Figure to determine where the plotting will happen. If omitted, the context is determined automatically.
- title (str) - The title shown in the plot
- show (b○○l) - Determines whether the plot is shown while the simulation is running. If False, the files are created in the background.

\section*{Returns}

The plotting context

\section*{Return type}

PlottingContextBase
in_ipython () \(\rightarrow\) bool
try to detect whether we are in an ipython shell, e.g., a jupyter notebook
napari_add_layers (viewer: napari.viewer. Viewer, layers_data: Dict[str, dict]) adds layers to a napari viewer

\section*{Parameters}
- viewer (napar i.viewer.Viewer) - The napari application
- layers_data (dict) - Data for all layers that will be added.
napari_viewer (grid: GridBase, run: bool = None, close: bool = False, **kwargs) \(\rightarrow\) Generator[napari.viewer.Viewer, None, None] creates an napari viewer for interactive plotting

\section*{Parameters}
- grid (pde.grids.base. GridBase) - The grid defining the space
- run (bool) - Whether to run the event loop of napari.
- close (\(b \circ \circ 1\)) - Whether to close the viewer immediately (e.g. for testing)
- **kwargs - Extra arguments are passed to napari.Viewer
```

class nested_plotting_check

```

Bases: object
context manager that checks whether it is the root plotting call

\section*{Example}

The context manager can be used in plotting calls to check for nested plotting calls:
```

with nested_plotting_check() as is_outermost_plot_call:
make_plot(...) \# could potentially call other plotting methods
if is_outermost_plot_call:
plt.show()

```
```

plot_on_axes (wrapped=None, update_method=None)

```
decorator for a plot method or function that uses a single axes
This decorator adds typical options for creating plots that fill a single axes. These options are available via keyword arguments. To avoid redundancy in describing these options in the docstring, the placeholder \(\left\{P L O T _A R G S\right\}\) can be added to the docstring of the wrapped function or method and will be replaced by the appropriate text. Note that the decorator can be used on both functions and methods.

\section*{Example}

The following example illustrates how this decorator can be used to implement plotting for a given class. In particular, supplying the update_method will allow efficient dynamical plotting:
```

class State:
def __init__(self):
self.data = np.arange(8)
def _update_plot(self, reference):
reference.element.set_ydata(self.data)
@plot_on_axes(update_method='_update_plot')
def plot(self, ax):

```
```

    line, = ax.plot(np.arange(8), self.data)
    return PlotReference(ax, line)
    @plot_on_axes
def make_plot(ax):
ax.plot(...)

```

When update_method is absent, the method can still be used for plotting, but dynamic updating, e.g., by pde . trackers.PlotTracker, is not possible.

\section*{Parameters}
- wrapped (callable) - Function to be wrapped
- update_method (callable or str)-Method to call to update the plot. The argument of the new method will be the result of the initial call of the wrapped method.
```

plot_on_figure(wrapped=None, update_method=None)

```
decorator for a plot method or function that fills an entire figure
This decorator adds typical options for creating plots that fill an entire figure. This decorator adds typical options for creating plots that fill a single axes. These options are available via keyword arguments. To avoid redundancy in describing these options in the docstring, the placeholder \{PLOT_ARGS\} can be added to the docstring of the wrapped function or method and will be replaced by the appropriate text. Note that the decorator can be used on both functions and methods.

\section*{Example}

The following example illustrates how this decorator can be used to implement plotting for a given class. In particular, supplying the update_method will allow efficient dynamical plotting:
```

class State:
def __init__(self):
self.data = np.random.random((2, 8))
def _update_plot(self, reference):
ref1, ref2 = reference
ref1.element.set_ydata(self.data[0])
ref2.element.set_ydata(self.data[1])
@plot_on_figure(update_method='_update_plot')
def plot(self, fig):
ax1, ax2 = fig.subplots(1, 2)
l1, = ax1.plot(np.arange(8), self.data[0])
12, = ax2.plot(np.arange(8), self.data[1])
return [PlotReference(ax1, l1), PlotReference(ax2, l2)]
@plot_on_figure
def make_plot(fig):

```

When update_method is not supplied, the method can still be used for plotting, but dynamic updating, e.g., by
pde.trackers.PlotTracker, is not possible.

\section*{Parameters}
- wrapped (callable) - Function to be wrapped
- update_method (callable or str) - Method to call to update the plot. The argument of the new method will be the result of the initial call of the wrapped method.

\subsection*{4.6.13 pde.tools.spectral module}

Functions making use of spectral decompositions
\begin{tabular}{ll}
\hline make_colored_noise & \begin{tabular}{l}
Return a function creating an array of random values that \\
obey
\end{tabular} \\
\hline
\end{tabular}
```

make_colored_noise (shape: Tuple[int, ...], $d x=1.0$, exponent: float $=0$, scale: float $=1$, rng: Optional[Generator] $=$ None $) \rightarrow$ Callable[[], ndarray]

```

Return a function creating an array of random values that obey
\[
\left\langle c(\boldsymbol{k}) c\left(\boldsymbol{k}^{\prime}\right)\right\rangle=\Gamma^{2}|\boldsymbol{k}|^{\nu} \delta\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)
\]
in spectral space on a Cartesian grid. The special case \(\nu=0\) corresponds to white noise.

\section*{Parameters}
- shape (tuple of ints) - Number of supports points in each spatial dimension. The number of the list defines the spatial dimension.
- dx (float or list of floats)- Discretization along each dimension. A uniform discretization in each direction can be indicated by a single number.
- exponent - Exponent \(\nu\) of the power spectrum
- scale - Scaling factor \(\Gamma\) determining noise strength
- rng (Generator) - Random number generator (default: default_rng ())

\section*{Returns}
a function returning a random realization

\section*{Return type}
callable

\subsection*{4.6.14 pde.tools.spherical module}

Module collecting functions for handling spherical geometry
The coordinate systems use the following convention for polar coordinates \((r, \phi)\), where \(r\) is the radial coordinate and \(\phi\) is the polar angle:
\[
\left\{\begin{array}{l}
x=r \cos (\phi) \\
y=r \sin (\phi)
\end{array} \quad \text { for } r \in[0, \infty] \text { and } \phi \in[0,2 \pi)\right.
\]

Similarly, for spherical coordinates \((r, \theta, \phi)\), where \(r\) is the radial coordinate, \(\theta\) is the azimuthal angle, and \(\phi\) is the polar angle, we use
\[
\left\{\begin{array}{l}
x=r \sin (\theta) \cos (\phi) \\
y=r \sin (\theta) \sin (\phi) \quad \text { for } r \in[0, \infty], \theta \in[0, \pi], \text { and } \phi \in[0,2 \pi) \\
z=r \cos (\theta)
\end{array}\right.
\]

The module also provides functions for handling spherical harmonics. These spherical harmonics are described by the degree \(l\) and the order \(m\) or, alternatively, by the mode \(k\). The relation between these values is
\[
k=l(l+1)+m
\]
and
\[
\begin{aligned}
l & =\text { floor }(\sqrt{k}) \\
m & =k-l(l+1)
\end{aligned}
\]

We will use these indices interchangeably, although the mode \(k\) is preferred internally. Note that we also consider axisymmetric spherical harmonics, where the order is always zero and the degree \(l\) and the mode \(k\) are thus identical.
\begin{tabular}{ll}
\hline radius_from_volume & Return the radius of a sphere with a given volume \\
\hline volume_from_radius & Return the volume of a sphere with a given radius \\
\hline surface_from_radius & Return the surface area of a sphere with a given radius \\
\hline spherical_index_k & returns the mode \(k\) from the degree degree and order order \\
\hline spherical_index_lm & returns the degree \(l\) and the order \(m\) from the mode \(k\) \\
\hline spherical_index_count & return the number of modes for all indices <=1 \\
\hline spherical_index_count_optimal & \begin{tabular}{l}
checks whether the modes captures all orders for maximal \\
degree
\end{tabular} \\
\hline spherical_harmonic_symmetric & \begin{tabular}{l}
axisymmetric spherical harmonics with degree degree, so \\
\(m=0\).
\end{tabular} \\
\hline spherical_harmonic_real & real spherical harmonics of degree l and order m \\
\hline spherical_harmonic_real_k & real spherical harmonics described by mode k \\
\hline
\end{tabular}

\section*{class PointsOnSphere (points)}

Bases: object
class representing points on an n-dimensional unit sphere

\section*{Parameters}
points (ndarray) - The list of points on the unit sphere
get_area_weights (balance_axes: bool = True)
return the weight of each point associated with the unit cell size

\section*{Parameters}
balance_axes (bool) - Flag determining whether the weights should be chosen such that the weighted average of all points is the zero vector

\section*{Returns}

The weight associated with each point

\section*{Return type}
ndarray
get_distance_matrix()
calculate the (spherical) distances between each point

\section*{Returns}
the distance of each point to each other

\section*{Return type}
ndarray
get_mean_separation () \(\rightarrow\) float
float: calculates the mean distance to the nearest neighbor
classmethod make_uniform (dim: int, num_points: int = None)
create uniformly distributed points on a sphere

\section*{Parameters}
- \(\operatorname{dim}(i n t)\) - The dimension of space
- num_points (int, optional) - The number of points to generate. Note that for one-dimensional spheres (intervals), only exactly two points can be generated
write_to_xyz (path: str, comment: str = ", symbol: str = 'S')
write the point coordinates to a xyz file

\section*{Parameters}
- path (str) - location of the file where data is written
- comment (str, optional) - comment that is written to the second line
- symbol (str, optional) - denotes the symbol used for the atoms
get_spherical_polygon_area (vertices: ndarray, radius: float \(=1\)) \(\rightarrow\) float
Calculate the surface area of a polygon on the surface of a sphere. Based on equation provided here: http:// mathworld.wolfram.com/LHuiliersTheorem.html Decompose into triangles, calculate excess for each
Adapted from https://github.com/tylerjereddy/spherical-SA-docker-demo Licensed under MIT License (see copy in root of this project)

\section*{Parameters}
- vertices (ndarray) - List of vertices (using Cartesian coordinates) that describe the corners of the polygon. The vertices need to be oriented.
- radius (float) - Radius of the sphere
haversine_distance (point1: ndarray, point2: ndarray) \(\rightarrow\) ndarray
Calculate the haversine-based distance between two points on the surface of a sphere. Should be more accurate than the arc cosine strategy. See, for example: https://en.wikipedia.org/wiki/Haversine_formula
Adapted from https://github.com/tylerjereddy/spherical-SA-docker-demo Licensed under MIT License (see copy in root of this project)

\section*{Parameters}
- point1 (ndarray) - First point(s) on the sphere (given in Cartesian coordinates)
- point2 (ndarray) - Second point on the sphere Second point(s) on the sphere (given in Cartesian coordinates)

\section*{Returns}

The distances between the points

\section*{Return type}
ndarray
make_radius_from_volume_compiled (dim: int) \(\rightarrow\) Callable[[TNumArr], TNumArr]
Return a function calculating the radius of a sphere with a given volume

\section*{Parameters}
\(\operatorname{dim}(i n t)\) - Dimension of the space

\section*{Returns}

A function that takes a volume and returns the radius

\section*{Return type}
function
make_surface_from_radius_compiled (dim: int) \(\rightarrow\) Callable[[TNumArr], TNumArr]
Return a function calculating the surface area of a sphere

\section*{Parameters}
\(\operatorname{dim}(i n t)\) - Dimension of the space

\section*{Returns}

A function that takes a radius and returns the surface area

\section*{Return type}
function
make_volume_from_radius_compiled (dim: int) \(\rightarrow\) Callable[[TNumArr], TNumArr]
Return a function calculating the volume of a sphere with a given radius

\section*{Parameters}
\(\operatorname{dim}(i n t)\) - Dimension of the space

\section*{Returns}

A function that takes a radius and returns the volume

\section*{Return type}
function
points_cartesian_to_spherical (points: ndarray) \(\rightarrow\) ndarray
Convert points from Cartesian to spherical coordinates

\section*{Parameters}
points (ndarray) - Points in Cartesian coordinates

\section*{Returns}

Points (\(\mathrm{r}, \theta, \varphi\)) in spherical coordinates

\section*{Return type}
ndarray
points_spherical_to_cartesian (points: ndarray) \(\rightarrow\) ndarray
Convert points from spherical to Cartesian coordinates

\section*{Parameters}
points (ndarray) - Points in spherical coordinates (r, \(\theta, \varphi\))

\section*{Returns}

Points in Cartesian coordinates

\section*{Return type} ndarray
radius_from_surface (surface: TNumArr, dim: int) \(\rightarrow\) TNumArr
Return the radius of a sphere with a given surface area

\section*{Parameters}
- surface (float or ndarray) - Surface area of the sphere
- dim (int) - Dimension of the space

\section*{Returns}

Radius of the sphere

\section*{Return type}
float or ndarray
radius_from_volume (volume: TNumArr, dim: int) \(\rightarrow\) TNumArr
Return the radius of a sphere with a given volume

\section*{Parameters}
- volume (float or ndarray) - Volume of the sphere
- \(\operatorname{dim}(i n t)\) - Dimension of the space

\section*{Returns}

Radius of the sphere

\section*{Return type}
float or ndarray
spherical_harmonic_real (degree: int, order: int, \(\theta:\) float, \(\varphi:\) float) \(\rightarrow\) float real spherical harmonics of degree 1 and order \(m\)

\section*{Parameters}
- degree (int) - Degree \(l\) of the spherical harmonics
- order (int) - Order \(m\) of the spherical harmonics
- \(\boldsymbol{\theta}\) (float) - Azimuthal angle (in \([0, \pi]\)) at which the spherical harmonics is evaluated.
- \(\boldsymbol{\varphi}(f l o a t)\) - Polar angle (in \([0,2 \pi]\)) at which the spherical harmonics is evaluated.

\section*{Returns}

The value of the spherical harmonics

\section*{Return type}
float
spherical_harmonic_real_k (\(k\) : int, \(\theta:\) float, \(\varphi:\) float \() \rightarrow\) float
real spherical harmonics described by mode k

\section*{Parameters}
- \(\mathbf{k}\) (int) - Combined index determining the degree and order of the spherical harmonics
- \(\boldsymbol{\theta}(f l \circ a t)\) - Azimuthal angle (in \([0, \pi])\) at which the spherical harmonics is evaluated.
- \(\boldsymbol{\varphi}(f l o a t)\) - Polar angle (in \([0,2 \pi]\)) at which the spherical harmonics is evaluated.

\section*{Returns}

The value of the spherical harmonics
Return type
float
spherical_harmonic_symmetric (degree: int, \(\theta:\) float) \(\rightarrow\) float axisymmetric spherical harmonics with degree degree, so \(m=0\).

\section*{Parameters}
- degree (int) - Degree of the spherical harmonics
- \(\boldsymbol{\theta}(\mathrm{float})\) - Azimuthal angle at which the spherical harmonics is evaluated (in \([0, \pi]\))

\section*{Returns}

The value of the spherical harmonics

\section*{Return type}
float
spherical_index_count (\(l\) : int) \(\rightarrow\) int
return the number of modes for all indices \(<=1\)
The returned value is one less than the maximal mode \(k\) required.

\section*{Parameters}

1 (int) - Maximal degree of the spherical harmonics

\section*{Returns}

The number of modes

\section*{Return type}
int
spherical_index_count_optimal (k_count: int) \(\rightarrow\) bool
checks whether the modes captures all orders for maximal degree

\section*{Parameters}
\(\mathbf{k}\) _count (int) - The number of modes considered
spherical_index_k (degree: int, order: int \(=0\)) \(\rightarrow\) int
returns the mode \(k\) from the degree degree and order order

\section*{Parameters}
- degree (int) - Degree of the spherical harmonics
- order (int) - Order of the spherical harmonics

\section*{Raises}

ValueError - if order \(<\)-degree or order \(>\) degree

\section*{Returns}
a combined index k

\section*{Return type}
int
spherical_index_lm (\(k\) : int) \(\rightarrow\) Tuple[int, int]
returns the degree \(l\) and the order \(m\) from the mode \(k\)

\section*{Parameters}
\(\mathbf{k}\) (int) - The combined index for the spherical harmonics

\section*{Returns}

The degree \(l\) and order \(m\) of the spherical harmonics assoicated with the combined index

\section*{Return type}
tuple
surface_from_radius (radius: TNumArr, dim: int) \(\rightarrow\) TNumArr
Return the surface area of a sphere with a given radius

\section*{Parameters}
- radius (float or ndarray) - Radius of the sphere
- dim (int) - Dimension of the space

\section*{Returns}

Surface area of the sphere

\section*{Return type}
float or ndarray
volume_from_radius (radius: TNumArr, dim: int) \(\rightarrow\) TNumArr
Return the volume of a sphere with a given radius

\section*{Parameters}
- radius (float or ndarray) - Radius of the sphere
- \(\operatorname{dim}(i n t)\) - Dimension of the space

\section*{Returns}

Volume of the sphere

\section*{Return type}
float or ndarray

\subsection*{4.6.15 pde.tools.typing module}

Provides support for mypy type checking of the package

\section*{4.7 pde.trackers package}

Classes for tracking simulation results in controlled intervals
Trackers are classes that periodically receive the state of the simulation to analyze, store, or output it. The trackers defined in this module are:
\begin{tabular}{ll}
\hline CallbackTracker & Tracker calling a function periodically \\
\hline ProgressTracker & Tracker showing the progress of the simulation \\
\hline PrintTracker & Tracker printing data to a stream (default: stdout) \\
\hline PlotTracker & Tracker plotting data on screen, to files, or writes a movie \\
\hline LivePlotTracker & PlotTracker with defaults for live plotting \\
\hline DataTracker & Tracker storing custom data obtained by calling a function \\
\hline SteadyStateTracker & \begin{tabular}{l}
Tracker interrupting the simulation once steady state is \\
reached
\end{tabular} \\
\hline RuntimeTracker & \begin{tabular}{l}
Tracker interrupting the simulation once a duration has \\
passed
\end{tabular} \\
\hline ConsistencyTracker & \begin{tabular}{l}
Tracker interrupting the simulation when the state is not \\
finite
\end{tabular} \\
\hline InteractivePlotTracker & Tracker showing the state interactively in napari \\
\hline
\end{tabular}

Some trackers can also be referenced by name for convenience when using them in simulations. The lit of supported names is returned by get_named_trackers().
Multiple trackers can be collected in a TrackerCollection, which provides methods for handling them efficiently. Moreover, custom trackers can be implemented by deriving from TrackerBase. Note that trackers generally receive a view into the current state, implying that they can adjust the state by modifying it in-place. Moreover, trackers can interrupt the simulation by raising the special exception StopIteration.

For each tracker, the interval at which it is called can be decided using one of the following classes:
\begin{tabular}{ll}
\hline ConstantIntervals & class representing equidistantly spaced time intervals \\
\hline LogarithmicIntervals & class representing logarithmically spaced time intervals \\
\hline RealtimeIntervals & \begin{tabular}{l}
class representing time intervals spaced equidistantly in \\
\\
real time
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.7.1 pde.trackers.base module}

Base classes for trackers

\section*{exception FinishedSimulation}

Bases: StopIteration
exception for signaling that simulation finished successfully
class TrackerBase (interval: Union[ConstantIntervals, float, int, str] = 1)
Bases: ob ject
base class for implementing trackers

\section*{Parameters}
interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control.
finalize (info: Optional[Dict[str, Any]] \(=\) None) \(\rightarrow\) None
finalize the tracker, supplying additional information

\section*{Parameters}
info (dict) - Extra information from the simulation
classmethod from_data (data: Union[TrackerBase, str], **kwargs) \(\rightarrow\) TrackerBase create tracker class from given data

Parameters
data (str or TrackerBase) - Data describing the tracker

\section*{Returns}

An instance representing the tracker

\section*{Return type}

TrackerBase
abstract handle (field: FieldBase, \(t\) : float) \(\rightarrow\) None
handle data supplied to this tracker

\section*{Parameters}
- field (FieldBase) - The current state of the simulation
- t (float) - The associated time
initialize (field: FieldBase, info: Optional[Dict[str, Any]] = None) \(\rightarrow\) float initialize the tracker with information about the simulation

\section*{Parameters}
- field (FieldBase) - An example of the data that will be analyzed by the tracker
- info (dict) - Extra information from the simulation

\section*{Returns}

The first time the tracker needs to handle data

\section*{Return type}
float
```

class TrackerCollection (trackers: Optional[List[TrackerBase]] = None)

```

Bases: object
List of trackers providing methods to handle them efficiently

\section*{trackers}

List of the trackers in the collection

\section*{Type}
list

\section*{Parameters}
trackers - List of trackers that are to be handled.
finalize (info: Optional[Dict[str, Any]] = None) \(\rightarrow\) None
finalize the tracker, supplying additional information

\section*{Parameters}
info (dict) - Extra information from the simulation
classmethod from_data (data: Optional[Union[Sequence[Union[TrackerBase, str]], TrackerBase, str]], **kwargs) \(\rightarrow\) TrackerCollection
create tracker collection from given data

\section*{Parameters}
data - Data describing the tracker collection

\section*{Returns}

An instance representing the tracker collection

\section*{Return type}

TrackerCollection
handle (state: FieldBase, \(t\) : float, atol: float \(=1 e-08) \rightarrow\) float
handle all trackers

\section*{Parameters}
- state (FieldBase) - The current state of the simulation
- t (float) - The associated time
- atol (float) - An absolute tolerance that is used to determine whether a tracker should be called now or whether the simulation should be carried on more timesteps. This is basically used to predict the next time to decided which one is closer.

\section*{Returns}

The next time the simulation needs to be interrupted to handle a tracker.

\section*{Return type}
float
initialize (field: FieldBase, info: Optional[Dict[str, Any]] \(=\) None) \(\rightarrow\) float initialize the tracker with information about the simulation

\section*{Parameters}
- field (FieldBase) - An example of the data that will be analyzed by the tracker
- info (dict) - Extra information from the simulation

\section*{Returns}

The first time the tracker needs to handle data

\section*{Return type}
float
time_next_action: float
The time of the next interrupt of the simulation

\section*{Type}
float
tracker_action_times: List[float]
Times at which the trackers need to be handled next

\section*{Type}
list
get_named_trackers() \(\rightarrow\) Dict[str, Type[TrackerBase]]
returns all named trackers

\section*{Returns}
a mapping of names to the actual tracker classes.

\section*{Return type}
dict

\subsection*{4.7.2 pde.trackers.interactive module}

Special module for defining an interactive tracker that uses napari to display fields
class InteractivePlotTracker (interval: Union[ConstantIntervals, float, int, str] = '0:01', close: bool = True, show_time: bool = False)
Bases: TrackerBase
Tracker showing the state interactively in napari

Note: The interactive tracker uses the python multiprocessing module to run napari externally. The multiprocessing module has limitations on some platforms, which requires some care when writing your own programs. In particular, the main method needs to be safe-guarded so that the main module can be imported again after spawning a new process. An established pattern that works is to introduce a function main in your code, which you call using the following pattern
```

def main():
\# here goes your main code
if ___name___ == "___main___":
main()

```

The last two lines ensure that the main function is only called when the module is run initially and not again when it is re-imported.

\section*{Parameters}
- interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control.
- close (bool) - Flag indicating whether the napari window is closed automatically at the end of the simulation. If False, the tracker blocks when finalize is called until the user closes napari manually.
- show_time (bool) - Whether to indicate the time
finalize (info: Optional[Dict[str, Any]] = None) \(\rightarrow\) None
finalize the tracker, supplying additional information

\section*{Parameters}
info (dict) - Extra information from the simulation
handle (state: FieldBase, \(t:\) float) \(\rightarrow\) None
handle data supplied to this tracker

\section*{Parameters}
- state (FieldBase) - The current state of the simulation
- t (float) - The associated time
initialize (state: FieldBase, info: Optional[Dict[str, Any]] = None) \(\rightarrow\) float initialize the tracker with information about the simulation

\section*{Parameters}
- state (FieldBase) - An example of the data that will be analyzed by the tracker
- info (dict) - Extra information from the simulation

\section*{Returns}

The first time the tracker needs to handle data

\section*{Return type}
float
name = 'interactive'
class NapariViewer (state: FieldBase, t_initial: float \(=\) None \()\)
Bases: object
allows viewing and updating data in a separate napari process

\section*{Parameters}
- state (pde.fields.base.FieldBase) - The initial state to be shown
- t_initial (float) - The initial time. If None, no time will be shown.
close (force: bool \(=\) True \()\)
closes the napari process

\section*{Parameters}
force (bool) - Whether to force closing of the napari program. If this is False, this method blocks until the user closes napari manually.
update (state: FieldBase, \(t\) : float)
update the state in the napari viewer

\section*{Parameters}
- state (pde.fields.base.FieldBase) - The new state
- t (float) - Current time
napari_process (data_channel: Queue, initial_data: Dict[str, Dict[str, Any]], t_initial: float \(=\) None, viewer_args: Optional[Dict[str, Any]] = None)
multiprocessing.Process running napari

\section*{Parameters}
- data_channel (multiprocessing. Queue) - queue instance to receive data to view
- initial_data (dict) - Initial data to be shown by napari. The layers are named according to the keys in the dictionary. The associated value needs to be a tuple, where the first item is a string indicating the type of the layer and the second carries the associated data
- t_initial (float) - Initial time
- viewer_args (dict) - Additional arguments passed to the napari viewer

\subsection*{4.7.3 pde.trackers.intervals module}

Module defining classes for time intervals for trackers
The provided interval classes are:
\begin{tabular}{ll}
\hline ConstantIntervals & class representing equidistantly spaced time intervals \\
\hline LogarithmicIntervals & class representing logarithmically spaced time intervals \\
\hline RealtimeIntervals & \begin{tabular}{l}
class representing time intervals spaced equidistantly in \\
\\
\end{tabular} \\
\hline
\end{tabular}
class ConstantIntervals (dt: float \(=1\), t_start: float \(=\) None \()\)
Bases: object
class representing equidistantly spaced time intervals

\section*{Parameters}
- dt (float) - The duration between subsequent intervals. This is measured in simulation time units.
- t_start (float, optional) - The time after which the tracker becomes active. If omitted, the tracker starts recording right away. This argument can be used for an initial equilibration period during which no data is recorded.
copy ()
return a copy of this instance
next (\(t\) : float) \(\rightarrow\) float
computes the next time point based on the current time \(t\)

\section*{Parameters}
\(t\) (float) - The current time point of the simulation

\section*{IntervalType}
alias of ConstantIntervals
class LogarithmicIntervals (dt_initial: float \(=1\), factor: float \(=1\), t_start: float \(=\) None)
Bases: ConstantIntervals
class representing logarithmically spaced time intervals

\section*{Parameters}
- dt_initial(float)-The initial duration between subsequent intervals. This is measured in simulation time units.
- factor (float) - The factor by which the time between intervals is increased every time. Values larger than one lead to time intervals that are increasingly further apart.
- t_start (float, optional) - The time after which the tracker becomes active. If omitted, the tracker starts recording right away. This argument can be used for an initial equilibration period during which no data is recorded.
next (\(t\) : float) \(\rightarrow\) float
computes the next time point based on the current time \(t\)

\section*{Parameters}
\(\mathbf{t}\) (float) - The current time point of the simulation
class RealtimeIntervals (duration: Union[float, str], dt_initial: float = 0.01)
Bases: ConstantIntervals
class representing time intervals spaced equidistantly in real time
This spacing is only achieved approximately and depends on the initial value set by \(d t\) _initial and the actual variation in computation speed.

\section*{Parameters}
- duration (float or str) - The duration (in realtime seconds) that the intervals should be spaced apart. The duration can also be given as a string, which is then parsed using the function parse_duration().
- dt_initial (float) - The initial duration between subsequent intervals. This is measured in simulation time units.
next (\(t\) : float) \(\rightarrow\) float
computes the next time point based on the current time \(t\)

\section*{Parameters}
\(\boldsymbol{t}\) (float) - The current time point of the simulation
get_interval (interval: Union[ConstantIntervals, float, int, str]) \(\rightarrow\) ConstantIntervals
create IntervalType from various data formats
If interval is of type IntervalType it is simply returned

\subsection*{4.7.4 pde.trackers.trackers module}

Module defining classes for tracking results from simulations.
The trackers defined in this module are:
\begin{tabular}{ll}
\hline CallbackTracker & Tracker calling a function periodically \\
\hline ProgressTracker & Tracker showing the progress of the simulation \\
\hline PrintTracker & Tracker printing data to a stream (default: stdout) \\
\hline PlotTracker & Tracker plotting data on screen, to files, or writes a movie \\
\hline LivePlotTracker & PlotTracker with defaults for live plotting \\
\hline DataTracker & Tracker storing custom data obtained by calling a function \\
\hline SteadyStateTracker & \begin{tabular}{l}
Tracker interrupting the simulation once steady state is \\
reached
\end{tabular} \\
\hline RuntimeTracker & \begin{tabular}{l}
Tracker interrupting the simulation once a duration has \\
passed
\end{tabular} \\
\hline ConsistencyTracker & \begin{tabular}{l}
Tracker interrupting the simulation when the state is not \\
finite
\end{tabular} \\
\hline MaterialConservationTracker & \begin{tabular}{l}
Tracking interrupting the simulation when material con- \\
servation is broken
\end{tabular} \\
\hline
\end{tabular}
class CallbackTracker (func: Callable, interval: Union[ConstantIntervals, float, int, str] = 1)
Bases: TrackerBase
Tracker calling a function periodically

\section*{Parameters}
- func - The function to call periodically. The function signature should be (state) or (state, time), where state contains the current state as an instance of FieldBase and time is a float value indicating the current time. Note that only a view of the state is supplied, implying that a copy needs to be made if the data should be stored. The function can thus adjust the state by modifying it in-place and it can even interrupt the simulation by raising the special exception StopIteration.
- interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control.
handle (field: FieldBase, \(t\) : float) \(\rightarrow\) None
handle data supplied to this tracker

\section*{Parameters}
- field (FieldBase) - The current state of the simulation
- t (float) - The associated time
class ConsistencyTracker (interval: Optional[Union[ConstantIntervals, float, int, str]] = None)
Bases: TrackerBase
Tracker interrupting the simulation when the state is not finite

\section*{Parameters}
interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined
in intervals can be given for more control. The default value None checks for consistency approximately every (real) second.
handle (field: FieldBase, \(t:\) float) \(\rightarrow\) None
handle data supplied to this tracker

\section*{Parameters}
- field (FieldBase) - The current state of the simulation
- \(\mathbf{t}\) (float) - The associated time
name \(=\) 'consistency'
class DataTracker (func: Callable, interval: Union[ConstantIntervals, float, int, str] = 1, filename: str = None)
Bases: CallbackTracker
Tracker storing custom data obtained by calling a function
times
The time points at which the data is stored

\section*{Type}
list
data
The actually stored data, which is a list of the objects returned by the callback function.

\section*{Type}
list

\section*{Parameters}
- func - The function to call periodically. The function signature should be (state) or (state, time), where state contains the current state as an instance of FieldBase and time is a float value indicating the current time. Note that only a view of the state is supplied, implying that a copy needs to be made if the data should be stored. Typical return values of the function are either a single number, a numpy array, a list of number, or a dictionary to return multiple numbers with assigned labels.
- interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control.
- filename (str) - A path to a file to which the data is written at the end of the tracking. The data format will be determined by the extension of the filename. '.pickle' indicates a python pickle file storing a tuple (self.times, self.data), whereas any other data format requires pandas.
property dataframe: pandas.DataFrame
the data in a dataframe
If func returns a dictionary, the keys are used as column names. Otherwise, the returned data is enumerated starting with ' 0 '. In any case the time point at which the data was recorded is stored in the column 'time'.

\section*{Type}
pandas.DataFrame
finalize (info: Optional[Dict[str, Any]] = None) \(\rightarrow\) None
finalize the tracker, supplying additional information

\section*{Parameters}
info (dict) - Extra information from the simulation
handle (field: FieldBase, \(t\) : float) \(\rightarrow\) None
handle data supplied to this tracker

\section*{Parameters}
- field (FieldBase) - The current state of the simulation
- t (float) - The associated time
to_file (filename: str, **kwargs)
store data in a file
The extension of the filename determines what format is being used. For instance, '. pickle' indicates a python pickle file storing a tuple (self.times, self.data), whereas any other data format requires pandas. Supported formats include 'csv', 'json'.

\section*{Parameters}
- filename (str) - Path where the data is stored
- **kwargs - Additional parameters may be supported for some formats
class LivePlotTracker (interval: Union[ConstantIntervals, float, int, str] = '0:03', *, show: bool = True, max_fps: float \(=2, * *\) wwargs \()\)

Bases: PlotTracker
PlotTracker with defaults for live plotting
The only difference to Plot Tracker are the changed default values, where output is by default shown on screen and the interval is set something more suitable for interactive plotting. In particular, this tracker can be enabled by simply listing 'plot' as a tracker.

\section*{Parameters}
- interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control.
- title (str) - Text to show in the title. The current time point will be appended to this text, so include a space for optimal results.
- output_file (str, optional) - Specifies a single image file, which is updated periodically, so that the progress can be monitored (e.g. on a compute cluster)
- output_folder (str, optional) - Specifies a folder to which all images are written. The files will have names with increasing numbers.
- movie_file(str, optional) - Specifies a filename to which a movie of all the frames is written after the simulation.
- show (bool, optional) - Determines whether the plot is shown while the simulation is running. If False, the files are created in the background. This option can slow down a simulation severely.
- max_fps (float) - Determines the maximal rate (frames per second) at which the plots are updated. Some plots are skipped if the tracker receives data at a higher rate. A larger value
(e.g., np.inf) can be used to ensure every frame is drawn, which might penalizes the overall performance.
- plot_args (dict) - Extra arguments supplied to the plot call. For example, this can be used to specify axes ranges when a single panel is shown. For instance, the value \{'ax_style': \(\{\) 'ylim': \((0,1)\}\}\) enforces the y -axis to lie between 0 and 1 .
name \(=\) 'plot'
class MaterialConservationTracker (interval: Union[ConstantIntervals, float, int, str] \(=1\), atol: float \(=\) 0.0001, rtol: float \(=0.0001\))

Bases: TrackerBase
Tracking interrupting the simulation when material conservation is broken

\section*{Parameters}
- interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control.
- atol (float) - Absolute tolerance for amount deviations
- rtol (float) - Relative tolerance for amount deviations
handle (field: FieldBase, \(t\) : float) \(\rightarrow\) None
handle data supplied to this tracker

\section*{Parameters}
- field (FieldBase) - The current state of the simulation
- t (float) - The associated time
initialize (field: FieldBase, info: Optional[Dict[str, Any]] \(=\) None) \(\rightarrow\) float

\section*{Parameters}
- field (FieldBase) - An example of the data that will be analyzed by the tracker
- info (dict) - Extra information from the simulation

\section*{Returns}

The first time the tracker needs to handle data

\section*{Return type}
float
name = 'material_conservation'
class PlotTracker (interval: Union[ConstantIntervals, float, int, str] = 1, *, title: Union[str, Callable] = 'Time:
\{time:g\}', output_file: str = None, movie: Union[str, Path, Movie] = None, show: bool = None, max_fps: float = inf, plot_args: Dict[str, Any] = None)
Bases: TrackerBase
Tracker plotting data on screen, to files, or writes a movie
This tracker can be used to create movies from simulations or to simply update a single image file on the fly (i.e. to monitor simulations running on a cluster). The default values of this tracker are chosen with regular output to a file in mind.

\section*{Parameters}
- interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control.
- title (str or callable) - Title text of the figure. If this is a string, it is shown with a potential placeholder named time being replaced by the current simulation time. Conversely, if title is a function, it is called with the current state and the time as arguments. This function is expected to return a string.
- output_file (str, optional) - Specifies a single image file, which is updated periodically, so that the progress can be monitored (e.g. on a compute cluster)
- movie (str or Movie) - Create a movie. If a filename is given, all frames are written to this file in the format deduced from the extension after the simulation ran. If a Movie is supplied, frames are appended to the instance.
- show (bool, optional) - Determines whether the plot is shown while the simulation is running. If False, the files are created in the background. This option can slow down a simulation severely. For the default value of None, the images are only shown if neither output_file nor movie is set.
- max_fps (float) - Determines the maximal rate (frames per second) at which the plots are updated in real time during the simulation. Some plots are skipped if the tracker receives data at a higher rate. A larger value (e.g., np.inf) can be used to ensure every frame is drawn, which might penalizes the overall performance.
- plot_args (dict) - Extra arguments supplied to the plot call. For example, this can be used to specify axes ranges when a single panel is shown. For instance, the value \{'ax_style': \(\{\) 'ylim': \((0,1)\}\}\) enforces the y -axis to lie between 0 and 1 .

Note: If an instance of Movie is given as the movie argument, it can happen that the movie is not written to the file when the simulation ends. This is because, the movie could still be extended by appending frames. To write the movie to a file call its save () method. Beside adding frames before and after the simulation, an explicit movie object can also be used to adjust the output, e.g., by setting the \(d p i\) argument or the frame_rate.
finalize (info: Optional[Dict[str, Any]] = None) \(\rightarrow\) None
finalize the tracker, supplying additional information

\section*{Parameters}
info (dict) - Extra information from the simulation
handle (state: FieldBase, \(t:\) float) \(\rightarrow\) None
handle data supplied to this tracker

\section*{Parameters}
- state (FieldBase) - The current state of the simulation
- t (float) - The associated time
initialize (state: FieldBase, info: Optional[Dict[str, Any]] \(=\) None) \(\rightarrow\) float
initialize the tracker with information about the simulation

\section*{Parameters}
- state (FieldBase) - An example of the data that will be analyzed by the tracker
- info (dict) - Extra information from the simulation

\section*{Returns}

The first time the tracker needs to handle data

\section*{Return type}
float
class PrintTracker (interval: \(\sim\) Union[\(\sim\) ConstantIntervals, float, int, str] \(=1\), stream: \(\sim I O[\) str] \(=\) <_io.TextIOWrapper name \(=\) '<stdout>' mode \(=\) ' \(w\) ' encoding \(=\) 'UTF- \(8^{\prime}>\))
Bases: TrackerBase
Tracker printing data to a stream (default: stdout)

\section*{Parameters}
- interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control.
- stream - The stream used for printing
handle (field: FieldBase, \(t\) : float) \(\rightarrow\) None
handle data supplied to this tracker

\section*{Parameters}
- field (FieldBase) - The current state of the simulation
- t (float) - The associated time
name \(=\) 'print'
class ProgressTracker (interval: Optional[Union[ConstantIntervals, float, int, str]] = None, ndigits: int =5, leave: bool = True)
Bases: TrackerBase
Tracker showing the progress of the simulation

\section*{Parameters}
- interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control. The default value None updates the progress bar approximately every (real) second.
- ndigits (int) - The number of digits after the decimal point that are shown maximally.
- leave (bool) - Whether to leave the progress bar after the simulation has finished (default: True)
finalize (info: Optional[Dict[str, Any]] = None) \(\rightarrow\) None
finalize the tracker, supplying additional information

\section*{Parameters}
info (dict) - Extra information from the simulation
handle (field: FieldBase, \(t:\) float) \(\rightarrow\) None
handle data supplied to this tracker

\section*{Parameters}
- field (FieldBase) - The current state of the simulation
- t (float) - The associated time
initialize (field: FieldBase, info: Optional[Dict[str, Any]] \(=\) None) \(\rightarrow\) float
initialize the tracker with information about the simulation

\section*{Parameters}
- field (FieldBase) - An example of the data that will be analyzed by the tracker
- info (dict) - Extra information from the simulation

\section*{Returns}

The first time the tracker needs to handle data

\section*{Return type}
float
name \(=\) 'progress'
class RuntimeTracker (max_runtime: Union[int, float, str], interval: Union[ConstantIntervals, float, int, str] = 1)

Bases: TrackerBase
Tracker interrupting the simulation once a duration has passed

\section*{Parameters}
- max_runtime (float or str) - The maximal runtime of the simulation. If the runtime is exceeded, the simulation is interrupted. Values can be either given as a number (interpreted as seconds) or as a string, which is then parsed using the function parse_duration ().
- interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format ' \(\mathrm{hh}: \mathrm{mm}: \mathrm{ss}\) ' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control.
handle (field: FieldBase, \(t\) : float) \(\rightarrow\) None
handle data supplied to this tracker

\section*{Parameters}
- field (FieldBase) - The current state of the simulation
- t (float) - The associated time
initialize (field: FieldBase, info: Optional[Dict[str, Any]] \(=\) None) \(\rightarrow\) float

\section*{Parameters}
- field (FieldBase) - An example of the data that will be analyzed by the tracker
- info (dict) - Extra information from the simulation

\section*{Returns}

The first time the tracker needs to handle data

\section*{Return type}
float
class SteadyStateTracker (interval: Optional[Union[ConstantIntervals, float, int, str]] = None, atol: float \(=\) le-08, rtol: float \(=1 e-05\), progress: bool \(=\) False \()\)

Bases: TrackerBase
Tracker interrupting the simulation once steady state is reached

Steady state is obtained when the state does not change anymore. This is the case when the derivative is close to zero. Concretely, the current state cur is compared to the state prev at the previous time step. Convergence is assumed when abs (prev - cur) \(<=d t\) * (atol + rtol * cur) for all points in the state. Here, \(d t\) denotes the time that elapsed between the two states that are compared.

\section*{Parameters}
- interval - Determines how often the tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the simulation time variable. Alternatively, a string using the format 'hh:mm:ss' can be used to give durations in real time. Finally, instances of the classes defined in intervals can be given for more control. The default value None checks for the steady state approximately every (real) second.
- atol (float) - Absolute tolerance that must be reached to abort the simulation
- rtol (float) - Relative tolerance that must be reached to abort the simulation
- progress (bool) - Flag indicating whether the progress towards convergence is shown graphically during the simulation
handle (field: FieldBase, \(t:\) float) \(\rightarrow\) None
handle data supplied to this tracker

\section*{Parameters}
- field (FieldBase) - The current state of the simulation
- t (float) - The associated time
name \(=\) 'steady_state'
progress_bar_format \(=\) 'Convergence: \{percentage:3.0f\}\%|\{bar\}|
[\{elapsed\}<\{remaining\}]'
determines the format of the progress bar shown when progress \(=\) True

\section*{4.8 pde.visualization package}

Functions and classes for visualizing simulations.
\begin{tabular}{ll}
\hline movies & Functions for creating movies of simulation results \\
\hline plotting & Functions and classes for plotting simulation data \\
\hline
\end{tabular}

\subsection*{4.8.1 pde.visualization.movies module}

Functions for creating movies of simulation results
\begin{tabular}{ll}
\hline Movie & \begin{tabular}{l}
Class for creating movies from matplotlib figures using \\
ffmpeg
\end{tabular} \\
\hline movie_scalar & produce a movie for a simulation of a scalar field \\
\hline movie_multiple & produce a movie for a simulation with n components \\
\hline movie & produce a movie by simply plotting each frame \\
\hline
\end{tabular}
class Movie (filename: str, framerate: float \(=30\), dpi: float \(=\) None, \({ }^{* *}\) kwargs)
Bases: object
Class for creating movies from matplotlib figures using ffmpeg

Note: Internally, this class uses matplotlib.animation.FFMpegWriter. Note that the ffmpeg program needs to be installed in a system path, so that matplotlib can find it.

Warning: The movie is only fully written after the save () method has been called. To aid with this, it is best practice to use a contextmanager:
```

with Movie("output.mp4") as movie:
movie.add_figure()

```

\section*{Parameters}
- filename (str) - The filename where the movie is stored. The suffix of this path also determines the default movie codec.
- framerate (float) - The number of frames per second, which determines how fast the movie will appear to run.
- dpi (float) - The resolution of the resulting movie
- **kwargs - Additional parameters are used to initialize matplotlib.animation. FFMpegWriter. Here, we can for instance set the bit rate of the resulting video using the bitrate parameter.
add_figure (fig=None)
adds the figure fig as a frame to the current movie

\section*{Parameters}
\(\boldsymbol{f i g}\) (Figure) - The plot figure that is added to the movie
```

classmethod is_available() }->\mathrm{ bool

```
check whether the movie infrastructure is available

\section*{Returns}

True if movies can be created

\section*{Return type}
bool
save ()
convert the recorded images to a movie using ffmpeg
movie (storage: StorageBase, filename: str, *, progress: bool = True, dpi: float \(=150\), show_time: bool \(=\) True, plot_args: Optional[Dict[str, Any]] = None, movie_args: Optional[Dict[str, Any]] = None) \(\rightarrow\) None produce a movie by simply plotting each frame

\section*{Parameters}
- storage (StorageBase) - The storage instance that contains all the data for the movie
- filename (str) - The filename to which the movie is written. The extension determines the format used.
- progress (bool) - Flag determining whether the progress of making the movie is shown.
- dpi (float) - Resolution of the movie
- show_time (bool) - Whether to show the simulation time in the movie
- plot_args (dict) - Additional arguments for the function plotting the state
- movie_args (dict) - Additional arguments for Movie. For example, this can be used to set the resolution (dpi), the framerate (framerate), and the bitrate (bitrate).
movie_multiple (storage: StorageBase, filename: str, quantities=None, scale: Union[str, float, Tuple[float, float]] \(=\) 'automatic', progress: bool \(=\) True \() \rightarrow\) None
produce a movie for a simulation with n components

\section*{Parameters}
- storage (StorageBase) - The storage instance that contains all the data for the movie
- filename (str) - The filename to which the movie is written. The extension determines the format used.
- quantities - A 2 d list of quantities that are shown in a rectangular arrangement. If quantities is a simple list, the panels will be rendered as a single row. Each panel is defined by a dictionary, where the mandatory item 'source' defines what is being shown. Here, an integer specifies the component that is extracted from the field while a function is evaluate with the full state as an input and the result is shown. Additional items in the dictionary can be 'title' (setting the title of the panel), 'scale' (defining the color range shown; these are typically two numbers defining the lower and upper bound, but if only one is given the range [0 , scale] is assumed), and 'cmap' (defining the colormap being used).
- scale (str, float, tuple of float) - Flag determining how the range of the color scale is determined. In the simplest case a tuple of numbers marks the lower and upper end of the scalar values that will be shown. If only a single number is supplied, the range starts at zero and ends at the given number. Additionally, the special value 'automatic' determines the range from the range of scalar values.
- progress (bool) - Flag determining whether the progress of making the movie is shown.
movie_scalar (storage: StorageBase, filename: str, scale: Union[str, float, Tuple[float, float]] = 'automatic', extras: Optional[Dict[str, Any]] = None, progress: bool = True, tight: bool =False, show: bool =True) \(\rightarrow\) None
produce a movie for a simulation of a scalar field

\section*{Parameters}
- storage (StorageBase) - The storage instance that contains all the data for the movie
- filename (str) - The filename to which the movie is written. The extension determines the format used.
- scale (str, float, tuple of float) - Flag determining how the range of the color scale is determined. In the simplest case a tuple of numbers marks the lower and upper end of the scalar values that will be shown. If only a single number is supplied, the range starts at zero and ends at the given number. Additionally, the special value 'automatic' determines the range from the range of scalar values.
- extras (dict, optional) - Additional functions that are evaluated and shown for each time step. The key of the dictionary is used as a panel title.
- progress (bool) - Flag determining whether the progress of making the movie is shown.
- tight (bool) - Whether to call matplotlib.pyplot.tight_layout(). This affects the layout of all plot elements.
- show (b○○1) - Flag determining whether images are shown during making the movie

\subsection*{4.8.2 pde.visualization.plotting module}

Functions and classes for plotting simulation data
\begin{tabular}{ll}
\hline ScalarFieldPlot & class managing compound plots of scalar fields \\
\hline plot_magnitudes & plot spatially averaged quantities as a function of time \\
\hline plot_kymograph & plots a single kymograph from stored data \\
\hline plot_kymographs & plots kymographs for all fields stored in storage \\
\hline plot_interactive & plots stored data interactively using the napari viewer \\
\hline
\end{tabular}
class ScalarFieldPlot (fields: FieldBase, quantities=None, scale: Union[str, float, Tuple[float, float]] = 'automatic', fig=None, title: str = None, tight: bool = False, show: bool = True)
Bases: object
class managing compound plots of scalar fields

\section*{Parameters}
- fields (FieldBase) - Collection of fields
- quantities - A 2d list of quantities that are shown in a rectangular arrangement. If quantities is a simple list, the panels will be rendered as a single row. Each panel is defined by a dictionary, where the mandatory item 'source' defines what is being shown. Here, an integer specifies the component that is extracted from the field while a function is evaluate with the full state as an input and the result is shown. Additional items in the dictionary can be 'title' (setting the title of the panel), 'scale' (defining the color range shown; these are typically two numbers defining the lower and upper bound, but if only one is given the range [0 , scale] is assumed), and 'cmap' (defining the colormap being used).
- scale (str, float, tuple of float) - Flag determining how the range of the color scale is determined. In the simplest case a tuple of numbers marks the lower and upper end of the scalar values that will be shown. If only a single number is supplied, the range starts at zero and ends at the given number. Additionally, the special value 'automatic' determines the range from the range of scalar values.
- ((fig) - class:matplotlib.figure.Figure): Figure to be used for plotting. If `None, a new figure is created.
- title (str) - Title of the plot.
- tight (bool) - Whether to call matplotlib.pyplot.tight_layout (). This affects the layout of all plot elements.
- show (bool) - Flag determining whether to show a plot. If False, the plot is kept in the background, which can be useful if it only needs to be written to a file.
classmethod from_storage (storage: StorageBase, quantities=None, scale: Union[str, float, Tuple[float, float]] = 'automatic', tight: bool = False, show: bool \(=\) True \() \rightarrow\) ScalarFieldPlot
create ScalarFieldPlot from storage

\section*{Parameters}
- storage (StorageBase) - Instance of the storage class that contains the data
- quantities - A 2d list of quantities that are shown in a rectangular arrangement. If quantities is a simple list, the panels will be rendered as a single row. Each panel is defined by a dictionary, where the mandatory item 'source' defines what is being shown. Here, an integer specifies the component that is extracted from the field while a function is evaluate with the full state as an input and the result is shown. Additional items in the dictionary can be 'title' (setting the title of the panel), 'scale' (defining the color range shown; these are typically two numbers defining the lower and upper bound, but if only one is given the range [0 , scale] is assumed), and 'cmap' (defining the colormap being used).
- scale (str, float, tuple of float) - Flag determining how the range of the color scale is determined. In the simplest case a tuple of numbers marks the lower and upper end of the scalar values that will be shown. If only a single number is supplied, the range starts at zero and ends at the given number. Additionally, the special value 'automatic' determines the range from the range of scalar values.
- tight (bool) - Whether to call matplotlib.pyplot.tight_layout(). This affects the layout of all plot elements.
- show (bool) - Flag determining whether to show a plot. If False, the plot is kept in the background.

\section*{Returns}

ScalarFieldPlot
make_movie (storage: StorageBase, filename: str, progress: bool \(=\) True \() \rightarrow\) None
make a movie from the data stored in storage

\section*{Parameters}
- storage (StorageBase) - The storage instance that contains all the data for the movie
- filename (str) - The filename to which the movie is written. The extension determines the format used.
- progress (bool) - Flag determining whether the progress of making the movie is shown.
savefig (path: str, **kwargs)
save plot to file

\section*{Parameters}
- path (str) - The path to the file where the image is written. The file extension determines the image format
- **kwargs - Additional arguments are forwarded to matplotlib.figure.Figure. savefig().
update (fields: FieldBase, title: str \(=\) None) \(\rightarrow\) None
update the plot with the given fields

\section*{Parameters}
- fields - The field or field collection of which the defined quantities are shown.
- title(str, optional)- The title of this view. If None, the current title is not changed.
```

extract_field (fields: FieldBase, source: Union[None, int, Callable] = None, check_rank: int = None) }
DataFieldBase

```

Extracts a single field from a possible collection.

\section*{Parameters}
- fields (FieldBase) - The field from which data is extracted
- source (int or callable, optional) - Determines how a field is extracted from fields. If None, fields is passed as is, assuming it is already a scalar field. This works for the simple, standard case where only a single ScalarField is treated. Alternatively, source can be an integer, indicating which field is extracted from an instance of FieldCollection. Lastly, source can be a function that takes fields as an argument and returns the desired field.
- check_rank (int, optional) - Can be given to check whether the extracted field has the correct rank \((0=\) ScalarField, \(1=\) VectorField, \(\ldots\)).

\section*{Returns}

The extracted field

\section*{Return type}

DataFieldBase
plot_interactive (storage: StorageBase, time_scaling: str = 'exact', viewer_args: Optional[Dict[str, Any]] = None, **kwargs)
plots stored data interactively using the napari viewer

\section*{Parameters}
- storage (StorageBase) - The storage instance that contains all the data
- time_scaling (str) - Defines how the time axis is scaled. Possible options are "exact" (the actual time points are used), or "scaled" (the axis is scaled so that it has similar dimension to the spatial axes). Note that the spatial axes will never be scaled.
- viewer_args (dict) - Arguments passed to napari.viewer.Viewer to affect the viewer.
- **kwargs - Extra arguments passed to the plotting function
plot_kymograph (storage: StorageBase, field_index: int = None, scalar: str = 'auto', extract: str = 'auto', colorbar: bool \(=\) True, transpose: bool \(=\) False, *args, title: str \(=\) None, filename: str \(=\) None, action: str \(=\) 'auto', ax_style: Optional[Dict[str, Any]] = None, fig_style: Optional[Dict[str, Any]] = None, ax=None, **kwargs) \(\rightarrow\) PlotReference
plots a single kymograph from stored data
The kymograph shows line data stacked along time. Consequently, the resulting image shows space along the horizontal axis and time along the vertical axis.

\section*{Parameters}
- storage (StorageBase) - The storage instance that contains all the data
- field_index (int) - An index to choose a single field out of many in a collection stored in storage. This option should not be used if only a single field is stored in a collection.
- scalar (str) - The method for extracting scalars as described in DataFieldBase. to_scalar().
- extract (str) - The method used for extracting the line data. See the docstring of the grid method get_line_data to find supported values.
- colorbar (bool) - Whether to show a colorbar or not
- transpose (bool) - Determines whether the transpose of the data should is plotted
- title (str) - Title of the plot. If omitted, the title might be chosen automatically.
- filename (str, optional) - If given, the plot is written to the specified file.
- action (str) - Decides what to do with the final figure. If the argument is set to show, matplotlib.pyplot.show() will be called to show the plot. If the value is none, the figure will be created, but not necessarily shown. The value close closes the figure, after saving it to a file when filename is given. The default value auto implies that the plot is shown if it is not a nested plot call.
- ax_style (dict) - Dictionary with properties that will be changed on the axis after the plot has been drawn by calling matplotlib.pyplot. setp(). A special item in this dictionary is use_offset, which is flag that can be used to control whether offset are shown along the axes of the plot.
- fig_style (dict) - Dictionary with properties that will be changed on the figure after the plot has been drawn by calling matplotlib.pyplot.setp(). For instance, using fig_style \(=\{\) 'dpi': 200\(\}\) increases the resolution of the figure.
- ax (matplotlib.axes.Axes) - Figure axes to be used for plotting. The special value "create" creates a new figure, while "reuse" attempts to reuse an existing figure, which is the default.
- **kwargs - Additional keyword arguments are passed to matplotlib.pyplot. imshow().

\section*{Returns}

The reference to the plot

\section*{Return type}

PlotReference
plot_kymographs (storage: StorageBase, scalar: str = 'auto', extract: str = 'auto', colorbar: bool = True, transpose: bool \(=\) False, resize_fig: bool \(=\) True, *args, title: str \(=\) None, constrained_layout: bool \(=\) True, filename: str = None, action: str = 'auto', fig_style: Optional[Dict[str, Any]] = None, fig=None, \(* *\) kwargs \() \rightarrow\) List[PlotReference]
plots kymographs for all fields stored in storage
The kymograph shows line data stacked along time. Consequently, the resulting image shows space along the horizontal axis and time along the vertical axis.

\section*{Parameters}
- storage (StorageBase) - The storage instance that contains all the data
- scalar (str) - The method for extracting scalars as described in DataFieldBase. to_scalar().
- extract (str) - The method used for extracting the line data. See the docstring of the grid method get_line_data to find supported values.
- colorbar (bool) - Whether to show a colorbar or not
- transpose (bool) - Determines whether the transpose of the data should is plotted
- resize_fig (bool) - Whether to resize the figure to adjust to the number of panels
- title (str) - Title of the plot. If omitted, the title might be chosen automatically. This is shown above all panels.
- constrained_layout (bool) - Whether to use constrained_layout in matplotlib. pyplot.figure () call to create a figure. This affects the layout of all plot elements. Generally, spacing might be better with this flag enabled, but it can also lead to problems when plotting multiple plots successively, e.g., when creating a movie.
- filename (str, optional) - If given, the figure is written to the specified file.
- action (str) - Decides what to do with the final figure. If the argument is set to show, matplotlib.pyplot.show() will be called to show the plot. If the value is none, the figure will be created, but not necessarily shown. The value close closes the figure, after saving it to a file when filename is given. The default value auto implies that the plot is shown if it is not a nested plot call.
- fig_style (dict) - Dictionary with properties that will be changed on the figure after the plot has been drawn by calling matplotlib.pyplot.setp (). For instance, using fig_style=\{'dpi': 200\} increases the resolution of the figure.
- fig (matplotlib.figures.Figure) - Figure that is used for plotting. If omitted, a new figure is created.
- **kwargs - Additional keyword arguments are passed to the calls to matplotlib. pyplot.imshow().

\section*{Returns}

The references to all plots

\section*{Return type}
list of PIotReference
plot_magnitudes (storage: StorageBase, quantities=None, *args, title: str = None, filename: str = None, action: str = 'auto', ax_style: Optional[Dict[str, Any]] = None, fig_style: Optional[Dict[str, Any]] = None, ax=None, **kwargs) \(\rightarrow\) PlotReference
plot spatially averaged quantities as a function of time
For scalar fields, the default is to plot the average value while the averaged norm is plotted for vector fields.

\section*{Parameters}
- storage - Instance of StorageBase that contains the simulation data that will be plotted
- quantities - A 2d list of quantities that are shown in a rectangular arrangement. If quantities is a simple list, the panels will be rendered as a single row. Each panel is defined by a dictionary, where the mandatory item 'source' defines what is being shown. Here, an integer specifies the component that is extracted from the field while a function is evaluate with the full state as an input and the result is shown. Additional items in the dictionary can be 'title' (setting the title of the panel), 'scale' (defining the color range shown; these are typically two numbers defining the lower and upper bound, but if only one is given the range [0 , scale] is assumed), and 'cmap' (defining the colormap being used).
- title (str) - Title of the plot. If omitted, the title might be chosen automatically.
- filename (str, optional) - If given, the plot is written to the specified file.
- action (str) - Decides what to do with the final figure. If the argument is set to show, matplotlib. pyplot. show () will be called to show the plot. If the value is none, the figure will be created, but not necessarily shown. The value close closes the figure, after saving it to a file when filename is given. The default value auto implies that the plot is shown if it is not a nested plot call.
- ax_style (dict) - Dictionary with properties that will be changed on the axis after the plot has been drawn by calling matplotlib.pyplot.setp(). A special item in this dictionary is use_offset, which is flag that can be used to control whether offset are shown along the axes of the plot.
- fig_style (dict) - Dictionary with properties that will be changed on the figure after the plot has been drawn by calling matplotlib.pyplot.setp(). For instance, using fig_style=\{ddpi': 200\} increases the resolution of the figure.
- ax (matplotlib.axes.Axes) - Figure axes to be used for plotting. The special value "create" creates a new figure, while "reuse" attempts to reuse an existing figure, which is the default.
- **kwargs - All remaining parameters are forwarded to the ax.plot method

\section*{Returns}

The reference to the plot

\section*{Return type}

PlotReference
Indices and tables
- genindex
- modindex
- search

\section*{PYTHON MODULE INDEX}
```

f
pde.fields,55
pde.fields.base,56
pde.fields.collection,67
pde.fields.scalar,71
pde.fields.tensorial,}7
pde.fields.vectorial,}7

```
```

g
pde.grids, }8
pde.grids.base,118
pde.grids.boundaries,85
pde.grids.boundaries.axes, }8
pde.grids.boundaries.axis, 89
pde.grids.boundaries.local,93
pde.grids.cartesian, 127
pde.grids.cylindrical, 132
pde.grids.operators, 109
pde.grids.operators.cartesian, 110
pde.grids.operators.common, 111
pde.grids.operators.cylindrical_sym, 112
pde.grids.operators.polar_sym, 114
pde.grids.operators.spherical_sym, 116
pde.grids.spherical, 136

```
```

p
pde, 55
pde.pdes, 142
pde.pdes.allen_cahn,143
pde.pdes.base, 144
pde.pdes.cahn_hilliard,147
pde.pdes.diffusion,149
pde.pdes.kpz_interface, 150
pde.pdes.kuramoto_sivashinsky,151
pde.pdes.laplace, 152
pde.pdes.pde, 153
pde.pdes.swift_hohenberg,155
pde.pdes.wave, 156

```
```

S
pde.solvers,158
pde.solvers.base, 161

```
pde.solvers.controller, 161
pde.solvers.explicit, 162
pde.solvers.implicit, 163
pde.solvers.scipy, 164
pde.storage, 164
pde.storage.base, 165
pde.storage.file, 168
pde.storage.memory, 169
t
pde.tools, 171
pde.tools.cache, 172
pde.tools.config, 177
pde.tools.cuboid, 178
pde.tools.docstrings, 180
pde.tools.expressions, 181
pde.tools.math, 186
pde.tools.misc, 187
pde.tools.numba, 190
pde.tools.output, 191
pde.tools.parameters, 193
pde.tools.parse_duration, 195
pde.tools.plotting, 196
pde.tools.spectral, 201
pde.tools.spherical, 201
pde.tools.typing, 207
pde.trackers, 207
pde.trackers.base, 208
pde.trackers.interactive, 210
pde.trackers.intervals, 212
pde.trackers.trackers, 214

\section*{V}
pde.visualization, 221
pde.visualization.movies, 221
pde.visualization.plotting, 224

\section*{A}
add_figure() (Movie method), 222
add_interpolated () (DataFieldBase method), 56
add_scaled_colorbar() (in module pde.tools.plotting), 198
AllenCahnPDE (class in pde.pdes.allen_cahn), 143
append () (StorageBase method), 165
apply () (FieldBase method), 63
apply () (StorageBase method), 165
asanyarray_flags() (in module pde.tools.cuboid), 180
assert_field_compatible() (FieldBase method), 64
assert_field_compatible() (FieldCollection method), 67
assert_grid_compatible() (GridBase method), 118
attributes (FieldBase property), 64
attributes (FieldCollection property), 67
attributes_serialized (FieldBase property), 64
attributes_serialized (FieldCollection property), 67
average (DataFieldBase property), 56
averages (FieldCollection property), 67
ax (PlotReference attribute), 197
axes (CylindricalSymGrid attribute), 133
axes (GridBase attribute), 118
axes (PolarSymGrid attribute), 137
axes (SphericalSymGrid attribute), 138
axes (SphericalSymGridBase attribute), 139
axes (UnitGrid attribute), 132
axes_bounds (GridBase property), 118
axes_coords (GridBase property), 118
axes_symmetric (CylindricalSymGrid attribute), 133
axes_symmetric (GridBase attribute), 118
axes_symmetric (PolarSymGrid attribute), 137
axes_symmetric (SphericalSymGrid attribute), 138
axis (BoundaryAxisBase property), 89
axis_coord (BCBase property), 94

\section*{B}

BasicOutput (class in pde.tools.output), 191

BasicPlottingContext (class in pde.tools.plotting), 196
BCBase (class in pde.grids.boundaries.local), 93
BCDataError, 96
Boundaries (class in pde.grids.boundaries.axes), 87
BoundaryAxisBase (class in pde.grids.boundaries.axis), 89
BoundaryPair (class in pde.grids.boundaries.axis), 91
BoundaryPeriodic (class in pde.grids.boundaries.axis), 92
bounds (Cuboid property), 179
bounds (SmoothDatalD property), 186
buffer() (Cuboid method), 179
C
cache_rhs (PDEBase attribute), 144
cached_method (class in pde.tools.cache), 172
cached_property (class in pde.tools.cache), 174
CahnHilliardPDE (class in pde.pdes.cahn_hilliard), 147
CallbackTracker (class in pde.trackers.trackers), 214
CartesianGrid (class in pde.grids.cartesian), 127
CartesianGridBase (in module pde.grids.cartesian), 131
cell_coords (GridBase attribute), 119
cell_to_point() (GridBase method), 119
cell_volume_data (CartesianGrid property), 128
cell_volume_data (CylindricalSymGrid attribute), 133
cell_volume_data (GridBase attribute), 119
cell_volume_data (PolarSymGrid attribute), 137
cell_volume_data (SphericalSymGrid attribute), 138
cell_volume_data (SphericalSymGridBase attribute), 139
cell_volumes (GridBase attribute), 119
centroid (Cuboid property), 179
check_implementation (PDEBase attribute), 144
check_length () (DictFiniteCapacity method), 172
check_package_version() (in module pde.tools.config), 178
check_reserved_symbols() (ExpressionBase class method), 182
check_rhs_consistency() (PDEBase method), copy()(DataFieldBase method), 56 145
check_value_rank() (BCBase method), 94
check_value_rank() (Boundaries method), 87
check_value_rank() (BoundaryPair method), 91
check_value_rank() (BoundaryPeriodic method), 92
classmethod() (hybridmethod method), 188
classproperty (class in pde.tools.misc), 187
clear() (FileStorage method), 169
clear() (MemoryStorage method), 170
clear() (StorageBase method), 165
close() (FileStorage method), 169
close() (JupyterPlottingContext method), 197
close() (NapariViewer method), 212
close() (PlottingContextBase method), 197
close() (SimpleProgress method), 192
compatible_with () (GridBase method), 119
complex (ExpressionBase property), 182
complex_valued (PDEBase attribute), 145
Config (class in pde.tools.config), 177
conjugate () (FieldBase method), 64
ConsistencyTracker (class in pde.trackers.trackers), 214
constant (ExpressionBase property), 182
Constant Intervals (class in pde.trackers.intervals), 212
ConstBC1stOrderBase (class pde.grids.boundaries.local), 96
ConstBC2ndOrderBase (class pde.grids.boundaries.local), 98
ConstBCBase (class in pde.grids.boundaries.local), 99
contains_point() (Cuboid method), 179
contains_point() (GridBase method), 119
Controller (class in pde.solvers), 158
Controller (class in pde.solvers.controller), 161
ConvergenceError, 163
convert () (Parameter method), 194
convert_scalar() (in module pde.tools.numba), 190
coordinate_arrays (GridBase attribute), 120
coordinate_constraints (CylindricalSymGrid attribute), 133
coordinate_constraints (GridBase attribute), 120
coordinate_constraints (PolarSymGrid attribute), 137
coordinate_constraints (SphericalSymGrid attribute), 138
copy () (BCBase method), 94
copy () (Boundaries method), 87
copy () (BoundaryPair method), 91
copy () (BoundaryPeriodic method), 92
copy () (ConstantIntervals method), 212
copy () (ConstBCBase method), 100
copy () (Cuboid method), 179
copy () (DataFieldBase method), 56
copy () (ExpressionBC method), 103
copy () (FieldBase method), 64
copy () (FieldCollection method), 67
copy () (GridBase method), 120
copy () (MixedBC method), 106
copy () (ScalarExpression method), 183
copy () (StorageBase method), 165
copy () (UserBC method), 108
corners (Cuboid property), 179
Counter (class in pde.tools.numba), 190
cuboid (CartesianGrid attribute), 128
Cuboid (class in pde.tools.cuboid), 178
cuboid (UnitGrid attribute), 132
CurvatureBC (class in pde.grids.boundaries.local), 100
CylindricalSymGrid (class in pde.grids.cylindrical), 132

D
data (DataTracker attribute), 215
data (FieldBase property), 64
data (FileStorage property), 169
data (MemoryStorage attribute), 170
data (StorageBase attribute), 166
data_shape (DataFieldBase property), 56
data_shape (StorageBase property), 166
DataFieldBase (class in pde.fields.base), 56
in dataframe (DataTracker property), 215
DataTracker (class in pde.trackers.trackers), 215
in decorator_arguments() (in module pde.tools.misc), 187
default_capacity (DictFiniteCapacity attribute), 172
deleter() (classproperty method), 187
depends_on () (ExpressionBase method), 182
DeprecatedParameter (class
in pde.tools.parameters), 193
derivatives (ScalarExpression attribute), 183
derivatives (TensorExpression attribute), 184
diagnostics (PDE attribute), 154
diagonal (Cuboid property), 179
DictFiniteCapacity (class in pde.tools.cache), 172
difference_vector_real() (GridBase method), 120
differentiate() (ScalarExpression method), 183
differentiate() (TensorExpression method), 184
DiffusionPDE (class in pde.pdes.diffusion), 149
dim (Cuboid property), 179
\(\operatorname{dim}\) (CylindricalSymGrid attribute), 133
dim (GridBase attribute), 120
dim (PolarSymGrid attribute), 137
dim (SphericalSymGrid attribute), 138
dim (SphericalSymGridBase attribute), 139
dim (UnitGrid attribute), 132
DimensionError, 118

DirichletBC (class in pde.grids.boundaries.local), 101 disable_interactive() (in module pde.tools.plotting), 198
discretization (GridBase property), 120
discretize_interval() (in pde.grids.base), 126
display_progress() (in module pde.tools.output), 192
distance_real() (GridBase method), 120
divergence() (Tensor2Field method), 75
divergence() (VectorField method), 79
DomainError, 118
dot () (Tensor2Field method), 76
dot () (VectorField method), 80
dt_max (ExplicitSolver attribute), 159, 162
dt_min (ExplicitSolver attribute), 159, 162
dtype (FieldBase property), 64
dtype (StorageBase property), 166

\section*{E}
element (PlotReference attribute), 197
end_writing() (FileStorage method), 169
end_writing() (StorageBase method), 166
ensure_directory_exists() (in pde.tools.misc), 188
environment variable
PYTHONPATH, 4
environment() (in module pde.tools.config), 178
estimate_computation_speed() (in module pde.tools.misc), 188
evaluate() (in module pde.tools.expressions), 185
evolution_rate() (AllenCahnPDE method), 143
evolution_rate() (CahnHilliardPDE method), 148
evolution_rate() (DiffusionPDE method), 149
evolution_rate() (KPZInterfacePDE method), 150
evolution_rate() (KuramotoSivashinskyPDE method), 151
evolution_rate() (PDE method), 155
evolution_rate() (PDEBase method), 145
evolution_rate() (SwiftHohenbergPDE method), 156
evolution_rate() (WavePDE method), 157
explicit_time_dependence (AllenCahnPDE attribute), 144
explicit_time_dependence (CahnHilliardPDE attribute), 148
explicit_time_dependence attribute), 149
explicit_time_dependence attribute), 150
explicit_time_dependence skyPDE attribute), 152
explicit_time_dependence (PDEBase attribute), 145
explicit_time_dependence (SwiftHohenbergPDE attribute), 156
explicit_time_dependence (WavePDE attribute), 157
ExplicitSolver (class in pde.solvers), 159
ExplicitSolver (class in pde.solvers.explicit), 162
expr_prod() (in module pde.pdes.base), 147
expression (AllenCahnPDE property), 144
expression (CahnHilliardPDE property), 148
expression (DiffusionPDE property), 149
expression (ExpressionBase property), 182
expression (KPZInterfacePDE property), 151
expression (KuramotoSivashinskyPDE property), 152
expression (SwiftHohenbergPDE property), 156
ExpressionBase (class in pde.tools.expressions), 181
ExpressionBC (class in pde.grids.boundaries.local), 102
ExpressionDerivativeBC (class in pde.grids.boundaries.local), 104
expressions (PDE property), 155
expressions (WavePDE property), 157
ExpressionValueBC (class in pde.grids.boundaries.local), 104
extract_component () (BCBase method), 94
extract_component () (Boundaries method), 88
extract_component () (BoundaryPair method), 91
extract_component() (BoundaryPeriodic method), 92
extract_component () (ConstBCBase method), 100
extract_field() (in module pde.visualization.plotting), 225
extract_field() (StorageBase method), 166
extract_time_range () (StorageBase method), 166

\section*{F}
factory (OperatorInfo property), 126
FieldBase (class in pde.fields.base), 63
FieldCollection (class in pde.fields.collection), 67
fields (FieldCollection property), 67
FileStorage (class in pde.storage.file), 168
fill_in_docstring() (in module pde.tools.docstrings), 180
finalize() (DataTracker method), 215
finalize() (InteractivePlotTracker method), 211
finalize() (PlotTracker method), 218
finalize() (ProgressTracker method), 219
finalize() (StorageTracker method), 168
finalize() (TrackerBase method), 208
finalize() (TrackerCollection method), 209
FinishedSimulation, 208
flat_idx() (in module pde.tools.numba), 190
flip_sign (BoundaryPeriodic property), 92
fluctuations (DataFieldBase property), 56
from_bounds () (Cuboid class method), 179
from_centerpoint() (Cuboid class method), 179
from_collection() (MemoryStorage class method), 170
from_data() (BCBase class method), 94
from_data() (Boundaries class method), 88
from_data() (BoundaryPair class method), 91
from_data() (TrackerBase class method), 208
from_data() (TrackerCollection class method), 209
from_dict() (BCBase class method), 95
from_expression() (ScalarField class method), 72
from_expression() (Tensor2Field class method), 76
from_expression() (VectorField class method), 80
from_fields() (MemoryStorage class method), 170
from_file() (FieldBase class method), 64
from_image () (ScalarField class method), 72
from_name () (SolverBase class method), 161
from_points() (Cuboid class method), 179
from_polar_coordinates() (CartesianGrid method), 128
from_scalar_expressions() (FieldCollection class method), 68
from_scalars() (VectorField class method), 81
from_state () (CartesianGrid class method), 128
from_state() (CylindricalSymGrid class method), 133
from_state() (DataFieldBase class method), 57
from_state() (FieldBase class method), 65
from_state() (FieldCollection class method), 68
from_state () (GridBase class method), 120
from_state() (SphericalSymGridBase class method), 139
from_state () (UnitGrid class method), 132
from_storage () (ScalarFieldPlot class method), 224
from_str() (BCBase class method), 95

\section*{G}
get_all_parameters() (in module pde.tools.parameters), 195
get_area_weights() (PointsOnSphere method), 202
get_axis_index() (GridBase method), 121
get_boundary_axis() (in module pde.grids.boundaries.axis), 92
get_boundary_conditions() (CartesianGrid method), 128
get_boundary_conditions() (CylindricalSymGrid method), 133
get_boundary_conditions() (GridBase method), 121
get_boundary_conditions() (SphericalSymGridBase method), 139
get_boundary_values() (DataFieldBase method), 57
get_cartesian_grid() (CylindricalSymGrid method), 134
get_cartesian_grid() (SphericalSymGridBase method), 139
get_class_by_rank() (DataFieldBase class method), 57
get_common_dtype () (in module pde.tools.misc), 188 get_common_numba_dtype () (in module pde.tools.numba), 190
get_compiled() (ExpressionBase method), 182
get_compiled_array() (TensorExpression method), 184
get_current_time() (Controller method), 158, 161
get_data() (BCBase method), 95
get_data() (BoundaryAxisBase method), 89
get_data() (ConstBClstOrderBase method), 96
get_data() (ConstBC2ndOrderBase method), 98
get_data() (ExpressionBC method), 103
get_distance_matrix() (PointsOnSphere method), 202
get_help () (BCBase class method), 95
get_help () (Boundaries class method), 88
get_help() (BoundaryPair class method), 92
get_image_data() (CartesianGrid method), 129
get_image_data() (CylindricalSymGrid method), 134
get_image_data() (DataFieldBase method), 57
get_image_data() (FieldBase method), 65
get_image_data() (FieldCollection method), 68
get_image_data() (GridBase method), 121
get_image_data() (SphericalSymGridBase method), 140
get_initial_condition() (WavePDE method), 157
get_interval() (in module pde.trackers.intervals), 213
get_line_data() (CartesianGrid method), 129
get_line_data() (CylindricalSymGrid method), 134
get_line_data() (DataFieldBase method), 58
get_line_data() (FieldBase method), 65
get_line_data() (FieldCollection method), 68
get_line_data() (GridBase method), 121
get_line_data() (SphericalSymGridBase method), 140
get_mathematical_representation() (BCBase method), 95
get_mathematical_representation() (Boundaries method), 88
get_mathematical_representation() (BoundaryAxisBase method), 89
get_mathematical_representation() (CurvatureBC method), 101
get_mathematical_representation() (DirichletBC method), 102
get_mathematical_representation() (ExpressionBC method), 103
```

get_mathematical_representation()
(MixedBC method), }10
get_mathematical_representation()
mannBC method),107
get_mathematical_representation()
(UserBC method),108
get_mean_separation() (PointsOnSphere method),
203
get_memory_storage() (in module
pde.storage.memory), 171
get_named_trackers() (in module
pde.trackers.base), }21
get_package_versions() (in module
pde.tools.config),178
get_parameter_default() (Parameterized
method),194
get_parameters() (Parameterized class method), 194
get_plotting_context() (in module
pde.tools.plotting), 198
get_point_evaluator() (BoundaryAxisBase
method),89
get_progress_bar_class() (in module
pde.tools.output),192
get_random_point() (CartesianGrid method), 129
get_random_point() (CylindricalSymGrid method),
134
get_random_point() (GridBase method), 121
get_random_point() (SphericalSymGridBase
method),140
get_spherical_polygon_area() (in module
pde.tools.spherical),203
get_subgrid() (CartesianGrid method), 129
get_subgrid() (CylindricalSymGrid method), 135
get_subgrid() (GridBase method),121
get_subgrid()(UnitGrid method),132
get_text_block() (in module pde.tools.docstrings),
180
get_vector_data() (DataFieldBase method), 58
get_vector_data()(VectorField method), 81
get_virtual_point() (BCBase method), }9
get_virtual_point() (ConstBClstOrderBase
method),97
get_virtual_point() (ConstBC2ndOrderBase
method),98
get_virtual_point() (ExpressionBC method), 103
get_virtual_point_data()
stBC1stOrderBase method), 97
get_virtual_point_data() (Con-
stBC2ndOrderBase method), }9
get_virtual_point_data()
method),101
get_virtual_point_data() (DirichletBC
method),102
get_virtual_point_data() (MixedBC method),

```
get_mathematical_representation()
(MixedBC method), 106
get_mathematical_representation() mannBC method), 107
get_mathematical_representation()
(UserBC method), 108
get_mean_separation() (PointsOnSphere method), 203
get_memory_storage() (in module pde.storage.memory), 171
get_named_trackers() (in module pde.trackers.base), 210
get_package_versions() (in module pde.tools.config), 178
get_parameter_default() (Parameterized method), 194
get_parameters() (Parameterized class method), 194
get_progress_bar_class() (in module pde.tools.output), 192
get_random_point () (CartesianGrid method), 129
get_random_point() (CylindricalSymGrid method), 134
get_random_point () (GridBase method), 121
get_random_point() (SphericalSymGridBase method), 140
get_spherical_polygon_area() (in module pde.tools.spherical), 203
get_subgrid() (CartesianGrid method), 129
get_subgrid() (CylindricalSymGrid method), 135
get_subgrid() (GridBase method), 121
get_subgrid() (UnitGrid method), 132
get_text_block() (in module pde.tools.docstrings),
180
get_vector_data() (DataFieldBase method), 58
get_vector_data() (VectorField method), 81
get_virtual_point() (ConstBClstOrderBase method), 97
get_virtual_point() (ConstBC2ndOrderBase method), 98
get_virtual_point() (ExpressionBC method), 103
get_virtual_point_data()
(Con-
stBC1stOrderBase method), 97
(ConstBC2ndOrderBase method), 99
get_virtual_point_data() method), 101
get_virtual_point_data() (DirichletBC method), 102
get_virtual_point_data() (MixedBC method),

106
get_virtual_point_data() (NeumannBC
getter() (classproperty method), 187
gradient () (ScalarField method), 72
gradient() (VectorField method), 81
gradient_squared() (ScalarField method), 73
grid (Boundaries attribute), 88
grid (BoundaryAxisBase property), 89
grid (FieldBase property), 65
grid (StorageBase property), 167
GridBase (class in pde.grids.base), 118

\section*{H}
handle() (CallbackTracker method), 214
handle() (ConsistencyTracker method), 215
handle() (DataTracker method), 216
handle () (InteractivePlotTracker method), 211
handle() (MaterialConservationTracker method), 217
handle () (PlotTracker method), 218
handle() (PrintTracker method), 219
handle() (ProgressTracker method), 219
handle() (RuntimeTracker method), 220
handle () (SteadyStateTracker method), 221
handle() (StorageTracker method), 168
handle() (TrackerBase method), 208
handle() (TrackerCollection method), 209
has_collection (StorageBase property), 167
has_hole (SphericalSymGridBase property), 140
hash_mutable() (in module pde.tools.cache), 176
hash_readable() (in module pde.tools.cache), 176
haversine_distance() (in module pde.tools.spherical), 203
hdf_write_attributes() (in module pde.tools.misc), 188
HideParameter (class in pde.tools.parameters), 193
high (BoundaryAxisBase attribute), 90
high (BoundaryPair attribute), 92
high (BoundaryPeriodic attribute), 92
homogeneous (BCBase attribute), 95
homogeneous (CurvatureBC attribute), 101
homogeneous (DirichletBC attribute), 102
homogeneous (ExpressionBC attribute), 103
homogeneous (ExpressionDerivativeBC attribute), 104
homogeneous (ExpressionValueBC attribute), 105
homogeneous (MixedBC attribute), 106
homogeneous (NeumannBC attribute), 107
homogeneous (UserBC attribute), 108
hybridmethod (class in pde.tools.misc), 188
imag (FieldBase property), 65
ImplicitSolver (class in pde.solvers), 159
ImplicitSolver (class in pde.solvers.implicit), 163
import_class() (in module pde.tools.misc), 188 in_ipython() (in module pde.tools.plotting), 198
in_jupyter_notebook() (in module pde.tools.output), 192
increment () (Counter method), 190
info (ExplicitSolver attribute), 162
info (ImplicitSolver attribute), 163
info (ScipySolver attribute), 164
initialize() (InteractivePlotTracker method), 211
initialize() (MaterialConservationTracker method), 217
initialize() (PlotTracker method), 218
initialize() (ProgressTracker method), 220
initialize() (RuntimeTracker method), 220
initialize() (StorageTracker method), 168
initialize() (TrackerBase method), 209
initialize() (TrackerCollection method), 210
insert() (DataFieldBase method), 58
instancemethod() (hybridmethod method), 188
integral (DataFieldBase property), 58
integral (ScalarField property), 73
integral (Tensor2Field property), 77
integral (VectorField property), 82
integrals (FieldCollection property), 69
integrate() (GridBase method), 121
InteractivePlotTracker (class pde.trackers.interactive), 210
interface_width (AllenCahnPDE attribute), 144
interpolate () (DataFieldBase method), 58
interpolate_to_grid() (DataFieldBase method), 59
interpolate_to_grid() (FieldCollection method), 69
IntervalType (in module pde.trackers.intervals), 213
is_available() (Movie class method), 222
is_complex (FieldBase property), 65
is_sde (PDEBase property), 145
is_zero (ScalarExpression property), 183
items () (StorageBase method), 167
iter_mirror_points() (CartesianGrid method), 130
iter_mirror_points() (CylindricalSymGrid method), 135
iter_mirror_points() (GridBase method), 121
iter_mirror_points() (SphericalSymGridBase method), 141

J
jit() (in module pde.tools.numba), 190
jit_allocate_out() (in module pde.tools.numba), 190
JupyterOutput (class in pde.tools.output), 192
JupyterPlottingContext (class
pde.tools.plotting), 196

\section*{K}

KPZInterfacePDE (class in pde.pdes.kpz_interface), 150
KuramotoSivashinskyPDE (class in pde.pdes.kuramoto_sivashinsky), 151
\(L\)
label (FieldBase property), 65
labels (FieldCollection property), 69
laplace () (ScalarField method), 73
laplace () (VectorField method), 82
length (CylindricalSymGrid property), 135
link_value() (ConstBCBase method), 100
LivePlot Tracker (class in pde.trackers.trackers), 216
LogarithmicIntervals (class in pde.trackers.intervals), 213
low (BoundaryAxisBase attribute), 90
low (BoundaryPair attribute), 92
low (BoundaryPeriodic attribute), 92
M
magnitude (DataFieldBase property), 59
magnitudes (FieldCollection property), 69
make_adjacent_evaluator() (BCBase method), 95
make_adjacent_evaluator() (ConstBC1stOrderBase method), 97
make_adjacent_evaluator()
(ConstBC2ndOrderBase method), 99
make_adjacent_evaluator() (ExpressionBC method), 103
make_array_constructor() (in module pde.tools.numba), 191
make_cell_volume_compiled() (GridBase method), 121
make_colored_noise() (in module pde.tools.spectral), 201
make_derivative_evaluator() (BoundaryAxisBase method), 90
make_divergence() (in module pde.grids.operators.cartesian), 110
make_divergence() (in module pde.grids.operators.cylindrical_sym), 112
make_divergence () (in module pde.grids.operators.polar_sym), 114
make_divergence() (in module pde.grids.operators.spherical_sym), 116
make_dot_operator() (Tensor2Field method), 77
make_dot_operator() (VectorField method), 83
make_general_poisson_solver() (in module pde.grids.operators.common), 111
make_ghost_cell_setter() (BCBase method), 95
in make_ghost_cell_setter() (Boundaries method), 88
```

make_ghost_cell_setter() (BoundaryAxisBase
method), }9
make_ghost_cell_setter() (UserBC method),
108
make_gradient() (in module
pde.grids.operators.cartesian),110
make_gradient() (in module
pde.grids.operators.cylindrical_sym),112
make_gradient() (in module
pde.grids.operators.polar_sym),114
make_gradient() (in module
pde.grids.operators.spherical_sym),116
make_gradient_squared() (in module
pde.grids.operators.cylindrical_sym),112
make_gradient_squared() (in module
pde.grids.operators.polar_sym),114
make_gradient_squared() (in module
pde.grids.operators.spherical_sym),116
make_inserter_compiled() (GridBase method),
122
make_integrator() (GridBase method), }12
make_interpolator() (DataFieldBase method), 59
make_laplace() (in module
pde.grids.operators.cartesian),110
make_laplace() (in module
pde.grids.operators.cylindrical_sym),113
make_laplace() (in module
pde.grids.operators.polar_sym),114
make_laplace() (in module
pde.grids.operators.spherical_sym),117
make_laplace_from_matrix() (in module
pde.grids.operators.common),111
make_modify_after_step() (PDEBase method),
145
make_movie() (ScalarFieldPlot method), 225
make_normalize_point_compiled() (GridBase
method),122
make_operator() (GridBase method), 122
make_operator_no_bc() (GridBase method), 123
make_outer_prod_operator() (VectorField
method), }8
make_pde_rhs() (PDEBase method), 145
make_poisson_solver() (in module
pde.grids.operators.cartesian),110
make_poisson_solver() (in
pde.grids.operators.polar_sym), 115
make_poisson_solver() (in
pde.grids.operators.spherical_sym),117
module
module
make_radius_from_volume_compiled() (in
module pde.tools.spherical),203
make_region_evaluator() (BoundaryAxisBase
method), }9
make_sde_rhs() (PDEBase method), 146
make_serializer() (in module pde.tools.cache),176

```
pde.fields.vectorial, 79
pde.grids, 84
pde.grids.base, 118
pde.grids.boundaries, 85
pde.grids.boundaries.axes, 87
pde.grids.boundaries.axis, 89
pde.grids.boundaries.local, 93
pde.grids.cartesian, 127
pde.grids.cylindrical, 132
pde.grids.operators, 109
pde.grids.operators.cartesian, 110
pde.grids.operators.common, 111
pde.grids.operators.cylindrical_sym, 112
pde.grids.operators.polar_sym, 114
pde.grids.operators.spherical_sym,
116
pde.grids.spherical, 136
pde.pdes, 142
pde.pdes.allen_cahn, 143
pde.pdes.base, 144
pde.pdes.cahn_hilliard, 147
pde.pdes.diffusion, 149
pde.pdes.kpz_interface, 150
pde.pdes.kuramoto_sivashinsky, 151
pde.pdes.laplace, 152
pde.pdes.pde, 153
pde.pdes.swift_hohenberg, 155
pde.pdes.wave, 156
pde.solvers, 158
pde.solvers.base, 161
pde.solvers.controller, 161
pde.solvers.explicit, 162
pde.solvers.implicit, 163
pde.solvers.scipy, 164
pde.storage, 164
pde.storage.base, 165
pde.storage.file, 168
pde.storage.memory, 169
pde.tools, 171
pde.tools.cache, 172
pde.tools.config, 177
pde.tools.cuboid, 178
pde.tools.docstrings, 180
pde.tools.expressions, 181
pde.tools.math, 186
pde.tools.misc, 187
pde.tools.numba, 190
pde.tools.output, 191
pde.tools.parameters, 193
pde.tools.parse_duration, 195
pde.tools.plotting, 196
pde.tools.spectral, 201
pde.tools.spherical, 201
pde.tools.typing, 207
pde.trackers, 207
pde.trackers.base, 208
pde.trackers.interactive, 210
pde.trackers.intervals, 212
pde.trackers.trackers, 214
pde.visualization, 221
pde.visualization.movies, 221
pde.visualization.plotting, 224
module_available() (in module pde.tools.misc), 189
Movie (class in pde.visualization.movies), 221
movie() (in module pde.visualization.movies), 222
movie_multiple() (in module pde.visualization.movies), 223
movie_scalar() (in module pde.visualization.movies), 223
mutable (Cuboid property), 180

\section*{N}
name (ConsistencyTracker attribute), 215
name (ExplicitSolver attribute), 159, 163
name (ImplicitSolver attribute), 160, 163
name (InteractivePlotTracker attribute), 211
name (LivePlotTracker attribute), 217
name (MaterialConservationTracker attribute), 217
name (OperatorInfo property), 126
name (PrintTracker attribute), 219
name (ProgressTracker attribute), 220
name (ScipySolver attribute), 160, 164
name (SteadyStateTracker attribute), 221
names (BCBase attribute), 96
names (CurvatureBC attribute), 101
names (DirichletBC attribute), 102
names (ExpressionBC attribute), 103
names (ExpressionDerivativeBC attribute), 104
names (Expression ValueBC attribute), 105
names (MixedBC attribute), 106
names (NeumannBC attribute), 107
names (UserBC attribute), 109
napari_add_layers() (in module pde.tools.plotting), 198
napari_process() (in module pde.trackers.interactive), 212
napari_viewer() (in module pde.tools.plotting), 199
NapariViewer (class in pde.trackers.interactive), 211
nested_plotting_check (class in pde.tools.plotting), 199
NeumannBC (class in pde.grids.boundaries.local), 106
next () (ConstantIntervals method), 213
next () (LogarithmicIntervals method), 213
next () (RealtimeIntervals method), 213
noise_realization() (PDEBase method), 146
normalize_point() (GridBase method), 123
num_axes (CylindricalSymGrid attribute), 135
num_axes (GridBase attribute), 124
num_axes (SphericalSymGridBase attribute), 141
num_axes (UnitGrid attribute), 132
numba_dict () (in module pde.tools.numba), 191
numba_environment() (in module pde.tools.numba), 191
numba_type (GridBase property), 124
number () (in module pde.tools.misc), 189
number_array() (in module pde.tools.misc), 189

\section*{O}
objects_equal () (in module pde.tools.cache), 177
OperatorInfo (class in pde.grids.base), 126
operators (GridBase attribute), 124
outer_product () (VectorField method), 83
OutputBase (class in pde.tools.output), 192

\section*{P}

Parameter (class in pde.tools.parameters), 193
Parameterized (class in pde.tools.parameters), 194
parameters (PlotReference attribute), 197
parameters_default (Parameterized attribute), 194
parse_duration() (in module pde.tools.parse_duration), 196
parse_number() (in module pde.tools.expressions), 186
parse_version_str() (in module pde.tools.config), 178
pde
module, 55
PDE (class in pde.pdes.pde), 153
pde.fields
module, 55
pde.fields.base
module, 56
pde.fields.collection
module, 67
pde.fields.scalar module, 71
pde.fields.tensorial module, 75
pde.fields.vectorial
module, 79
pde.grids
module, 84
pde.grids.base
module, 118
pde.grids.boundaries
module, 85
pde.grids.boundaries.axes
module, 87
pde.grids.boundaries.axis
module, 89
pde.grids.boundaries.local
module, 93
pde.grids.cartesian module, 127
pde.grids.cylindrical module, 132
pde.grids.operators module, 109
pde.grids.operators.cartesian module, 110
pde.grids.operators.common module, 111
pde.grids.operators.cylindrical_sym module, 112
pde.grids.operators.polar_sym module, 114
pde.grids.operators.spherical_sym module, 116
pde.grids.spherical module, 136
pde.pdes
module, 142
pde.pdes.allen_cahn
module, 143
pde.pdes.base
module, 144
pde.pdes.cahn_hilliard
module, 147
pde.pdes.diffusion module, 149
pde.pdes.kpz_interface
module, 150
pde.pdes.kuramoto_sivashinsky
module, 151
pde.pdes.laplace
module, 152
pde.pdes.pde
module, 153
pde.pdes.swift_hohenberg
module, 155
pde.pdes.wave
module, 156
pde.solvers
module, 158
pde.solvers.base module, 161
pde.solvers.controller
module, 161
pde.solvers.explicit
module, 162
pde.solvers.implicit
module, 163
pde.solvers.scipy
module, 164
pde.storage
module, 164
pde.storage.base module, 165
pde.storage.file module, 168
pde.storage.memory
module, 169
pde.tools
module, 171
pde.tools.cache module, 172
pde.tools.config
module, 177
pde.tools.cuboid
module, 178
pde.tools.docstrings module, 180
pde.tools.expressions module, 181
pde.tools.math module, 186
pde.tools.misc module, 187
pde.tools.numba module, 190
pde.tools.output module, 191
pde.tools.parameters module, 193
pde.tools.parse_duration module, 195
pde.tools.plotting
module, 196
pde.tools.spectral
module, 201
pde.tools.spherical
module, 201
pde.tools.typing
module, 207
pde.trackers
module, 207
pde.trackers.base
module, 208
pde.trackers.interactive module, 210
pde.trackers.intervals module, 212
pde.trackers.trackers module, 214
pde.visualization module, 221
pde.visualization.movies module, 221
pde.visualization.plotting
module, 224
PDEBase (class in pde.pdes.base), 144
periodic (BCBase property), 96
periodic (Boundaries property), 88
periodic (BoundaryAxisBase property), 90
periodic (CylindricalSymGrid attribute), 135
periodic (GridBase attribute), 124
periodic (SphericalSymGridBase attribute), 141
periodic (UnitGrid attribute), 132
PeriodicityError, 126
plot () (CartesianGrid method), 130
plot () (DataFieldBase method), 60
plot () (FieldBase method), 65
plot () (FieldCollection method), 69
plot() (GridBase method), 124
plot () (SphericalSymGridBase method), 141
plot_components() (Tensor2Field method), 77
plot_interactive() (FieldBase method), 65
plot_interactive() (in module pde.visualization.plotting), 226
plot_kymograph() (in module pde.visualization.plotting), 226
plot_kymographs() (in module pde.visualization.plotting), 227
plot_magnitudes() (in module pde.visualization.plotting), 228
plot_on_axes () (in module pde.tools.plotting), 199
plot_on_figure () (in module pde.tools.plotting), 200
PlotReference (class in pde.tools.plotting), 197
PlottingContextBase (class in pde.tools.plotting), 197
Plot Tracker (class in pde.trackers.trackers), 217
point_from_cartesian() (CartesianGrid method), 130
point_from_cartesian() (CylindricalSymGrid method), 135
point_from_cartesian() (GridBase method), 124
point_from_cartesian() (SphericalSymGridBase method), 141
point_to_cartesian() (CartesianGrid method), 131
point_to_cartesian() (CylindricalSymGrid method), 135
point_to_cartesian() (GridBase method), 124
point_to_cartesian() (PolarSymGrid method), 137
point_to_cartesian() (SphericalSymGrid method), 138
point_to_cell() (GridBase method), 124
points_cartesian_to_spherical() (in module pde.tools.spherical), 204
points_spherical_to_cartesian() (in module pde.tools.spherical), 204
PointsOnSphere (class in pde.tools.spherical), 202
polar_coordinates_real() (CartesianGrid method), 131
polar_coordinates_real() (CylindricalSymGrid method), 136
polar_coordinates_real() (GridBase method), 124
polar_coordinates_real() (SphericalSymGridBase method), 142
PolarSymGrid (class in pde.grids.spherical), 136
preserve_scalars() (in module pde.tools.misc), 189
Print Tracker (class in pde.trackers.trackers), 219
progress_bar_format (SteadyStateTracker attribute), 221
ProgressTracker (class in pde.trackers.trackers), 219
project () (ScalarField method), 74
PYTHONPATH, 4

\section*{R}
radius (CylindricalSymGrid property), 136
radius (SphericalSymGridBase property), 142
radius_from_surface() (in module pde.tools.spherical), 204
radius_from_volume() (in module
pde.tools.spherical), 205
random_colored() (DataFieldBase class method), 60
random_harmonic() (DataFieldBase class method), 61
random_normal () (DataFieldBase class method), 61
random_uniform() (DataFieldBase class method), 62
rank (DataFieldBase attribute), 62
rank (ExpressionBase property), 183
rank (ScalarField attribute), 74
rank (Tensor2Field attribute), 78
rank (VectorField attribute), 83
rank_in (OperatorInfo property), 126
rank_out (OperatorInfo property), 126
RankError, 66
real (FieldBase property), 66
RealtimeIntervals (class in pde.trackers.intervals), 213
refresh () (SimpleProgress method), 192
register_operator() (GridBase class method), 125
registered_boundary_condition_classes()
(in module pde.grids.boundaries.local), 109
registered_boundary_condition_names()
(in module pde.grids.boundaries.local), 109
registered_operators() (in module pde.grids.base), 127
registered_solvers (SolverBase attribute), 161
registered_solvers() (in module pde.solvers), 160
replace_in_docstring() (in module pde.tools.docstrings), 181
run () (Controller method), 158, 162
RuntimeTracker (class in pde.trackers.trackers), 220

S
save () (Movie method), 222
savefig() (ScalarFieldPlot method), 225
scalar_random_uniform() (FieldCollection class method), 70
ScalarExpression (class in pde.tools.expressions), 183
ScalarField (class in pde.fields.scalar), 71
ScalarFieldPlot (class in pde.visualization.plotting), 224
ScipySolver (class in pde.solvers), 160
ScipySolver (class in pde.solvers.scipy), 164
SerializedDict (class in pde.tools.cache), 172
set_description() (SimpleProgress method), 192
set_ghost_cells() (BCBase method), 96
set_ghost_cells() (Boundaries method), 88
set_ghost_cells()(BoundaryAxisBase method), 90
set_ghost_cells() (ConstBClstOrderBase method), 97
set_ghost_cells() (ConstBC2ndOrderBase method), 99
set_ghost_cells() (DataFieldBase method), 62
set_ghost_cells() (ExpressionBC method), 103
set_ghost_cells() (UserBC method), 109
setter() (classproperty method), 187
shape (ExpressionBase property), 183
shape (GridBase property), 125
shape (ScalarExpression attribute), 184
shape (StorageBase property), 167
shape (TensorExpression property), 184
show () (BasicOutput method), 192
show () (JupyterOutput method), 192
show () (OutputBase method), 192
show_parameters() (Parameterized method), 194
sigma_auto_scale (SmoothDatalD attribute), 186
SimpleProgress (class in pde.tools.output), 192
size (Cuboid property), 180
skipUnlessModule() (in module pde.tools.misc), 189
slice() (ScalarField method), 74
smooth () (DataFieldBase method), 63
smooth () (FieldCollection method), 71
SmoothData1D (class in pde.tools.math), 186
solve () (PDEBase method), 146
solve_laplace_equation() (in module pde.pdes.laplace), 152
solve_poisson_equation() (in module pde.pdes.laplace), 153
SolverBase (class in pde.solvers.base), 161
spherical_harmonic_real() (in module pde.tools.spherical), 205
spherical_harmonic_real_k() (in module pde.tools.spherical), 205
spherical_harmonic_symmetric() (in module pde.tools.spherical), 205
spherical_index_count() (in module
pde.tools.spherical), 206
spherical_index_count_optimal() (in module
pde.tools.spherical), 206
spherical_index_k() (in module
pde.tools.spherical), 206
spherical_index_lm() (in module pde.tools.spherical), 206
SphericalSymGrid (class in pde.grids.spherical), 137
SphericalSymGridBase
(class
pde.grids.spherical), 138
sphinx_display_parameters() (in module pde.tools.parameters), 195
start_writing () (FileStorage method), 169
start_writing() (MemoryStorage method), 170
start_writing() (StorageBase method), 167
state (CartesianGrid property), 131
state (CylindricalSymGrid property), 136
state (GridBase property), 125
state (SphericalSymGridBase property), 142
state (UnitGrid property), 132
state_serialized (GridBase property), 125
SteadyStateTracker (class in pde.trackers.trackers), 220
storage (StorageTracker attribute), 167
StorageBase (class in pde.storage.base), 165
StorageTracker (class in pde.storage.base), 167
supports_update (JupyterPlottingContext attribute), 197
supports_update (PlottingContextBase attribute), 197
surface_area (Cuboid property), 180
surface_from_radius() (in module
pde.tools.spherical), 206
SwiftHohenbergPDE (class
pde.pdes.swift_hohenberg), 155
symmetrize() (Tensor2Field method), 78

\section*{T}
t_range (Controller property), 158, 162
Tensor2Field (class in pde.fields.tensorial), 75
TensorExpression (class in pde.tools.expressions), 184
time_next_action (TrackerCollection attribute), 210
times (DataTracker attribute), 215
times (FileStorage property), 169
times (MemoryStorage attribute), 171
times (StorageBase attribute), 167
to_cartesian() (UnitGrid method), 132
to_dict() (Config method), 178
to_file() (DataTracker method), 216
to_file() (FieldBase method), 66
to_scalar() (DataFieldBase method), 63
to_scalar() (ScalarField method), 75
to_scalar() (Tensor2Field method), 78
to_scalar() (VectorField method), 83
trace () (Tensor2Field method), 79
tracker() (StorageBase method), 167
tracker_action_times (TrackerCollection attribute), 210
TrackerBase (class in pde.trackers.base), 208
TrackerCollection (class in pde.trackers.base), 209
trackers (TrackerCollection attribute), 209
transform() (GridBase method), 125
transpose() (Tensor2Field method), 79
typical_discretization(GridBase property), 126
U
uniform_cell_volumes (GridBase attribute), 126
uniform_discretization() (in module pde.grids.operators.common), 112
Unit Grid (class in pde.grids.cartesian), 131
unserialize_attributes() (DataFieldBase class method), 63
unserialize_attributes() (FieldBase class method), 66
unserialize_attributes() (FieldCollection class method), 71
update () (DictFiniteCapacity method), 172
update () (NapariViewer method), 212
update () (ScalarFieldPlot method), 225
UserBC (class in pde.grids.boundaries.local), 108

\section*{V}
value (ConstBCBase property), 100
value (ScalarExpression property), 184
value (TensorExpression property), 184
value_is_linked (ConstBClstOrderBase attribute), 97
value_is_linked (ConstBC2ndOrderBase attribute), 99
value_is_linked (ConstBCBase attribute), 100
value_is_linked (CurvatureBC attribute), 101
value_is_linked (DirichletBC attribute), 102
value_is_linked (MixedBC attribute), 106
value_is_linked (NeumannBC attribute), 107
variables (PDE attribute), 154
VectorField (class in pde.fields.vectorial), 79
vertices (Cuboid property), 180
volume (CartesianGrid property), 131
volume (Cuboid property), 180
volume (CylindricalSymGrid property), 136
volume (GridBase property), 126
volume (SphericalSymGridBase property), 142
volume_from_radius() (in module
pde.grids.spherical), 142
volume_from_radius() (in module
pde.tools.spherical), 207

\section*{w}

WavePDE (class in pde.pdes.wave), 156
write_mode (FileStorage attribute), 169
write_mode (MemoryStorage attribute), 171
write_mode (StorageBase attribute), 167
write_to_xyz() (PointsOnSphere method), 203
writeable (FieldBase property), 66```

