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The py-pde python package provides methods and classes useful for solving partial dif-
ferential equations (PDEs) of the form

dwu(x,t) = Dlu(z, t)] + n(u, z,t) ,

where D is a (non-linear) operator containing spatial derivatives that defines the time

evolution of a (set of) physical fields v with possibly tensorial character, which depend

on spatial coordinates & and time ¢. The framework also supports stochastic differential _ d e
equations in the Itd representation, where the noise is represented by 7) above. py p

The main audience for the package are researchers and students who want to investigate

the behavior of a PDE and get an intuitive understanding of the role of the different terms and the boundary conditions. To
support this, py-pde evaluates PDEs using the methods of lines with a finite-difference approximation of the differential
operators. Consequently, the mathematical operator D can be naturally translated to a function evaluating the evolution
rate of the PDE.

Contents

CONTENTS 1
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CHAPTER
ONE

GETTING STARTED

The py-pde package is developed for python 3.8 and has been tested up to version 3.11 under Linux, Windows, and
macOS. Before you can start using the package, you need to install it using one of the following methods.

1.1 Install using pip

The package is available on pypi, so you should be able to install it by running

[pip install py-pde

In order to have all features of the package available, you might also want to install the following optional packages:

[pip install hbpy pandas pyfftw tgdm

Moreover, £ fmpeg needs to be installed and for creating movies.

1.2 Install using conda

The py-pde package is also available on conda using the conda-forge channel. You can thus install it using

[conda install -c conda-forge py-pde

This installation includes many dependencies to have most features of py-pde.

1.3 Install from source

Installing from source can be necessary if the pypi installation does not work or if the latest source code should be installed
from github.



https://pypi.org/project/py-pde/
https://conda.io
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1.3.1 Required prerequisites

The code builds on other python packages, which need to be installed for py-pde to function properly. The required

packages are listed in the table below:

Package Minimal version

Usage

matplotlib 3.1

numba 0.56
numpy 1.22
scipy 1.10
sympy 1.9

tqdm 4.60

Visualizing results

Just-in-time compilation to accelerate numerics
Handling numerical data

Miscellaneous scientific functions

Dealing with user-defined mathematical expressions
Display progress bars during calculations

The simplest way to install these packages is to use the requirements.txt in the base folder:

[pip install -r requirements.txt

J

Alternatively, these package can be installed via your operating system’s package manager, e.g. using macports,
homebrew, or conda. The package versions given above are minimal requirements, although this is not tested sys-

tematically. Generally, it should help to install the latest version of the package.

1.3.2 Optional packages

The following packages should be installed to use some miscellaneous features:

Package

Minimal version Usage

h5py
ipywidgets
mpidpy
napari
numba-mpi
pandas
pyfftw
rocket-fft

2.10
7

3
0.4.8
0.22
1.2
0.12
0.2

Storing data in the hierarchical file format
Jupyter notebook support

Parallel processing using MPI

Displaying images interactively

Parallel processing using MPI+numba
Handling tabular data

Faster Fourier transforms
Numba-compiled fast Fourier transforms

For making movies, the £fmpeg should be available. Additional packages might be required for running the tests

in the folder tests and to build the documentation in the folder docs.
requirements.txt in the respective folders.

1.3.3 Downloading py-pde

These packages are listed in the files

The package can be simply checked out from github.com/zwicker-group/py-pde. To import the package from any python

session, it might be convenient to include the root folder of the package into the PYTHONPATH environment variable.

This documentation can be built by calling the make html in the docs folder. The final documentation will be available
in docs/build/html. Note that a LaTeX documentation can be build using make latexpdf.

Chapter 1. Getting started


https://github.com/zwicker-group/py-pde
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1.4 Package overview

The main aim of the pde package is to simulate partial differential equations in simple geometries. Here, the time evo-
lution of a PDE is determined using the method of lines by explicitly discretizing space using fixed grids. The differential
operators are implemented using the finite difference method. For simplicity, we consider only regular, orthogonal grids,
where each axis has a uniform discretization and all axes are (locally) orthogonal. Currently, we support simulations
on CartesianGrid, PolarSymGrid, SphericalSymGrid,and CylindricalSymGrid, with and without
periodic boundaries where applicable.

Fields are defined by specifying values at the grid points using the classes ScalarField, VectorField, and Ten—
sor2Field. These classes provide methods for applying differential operators to the fields, e.g., the result of apply-
ing the Laplacian to a scalar field is returned by calling the method Iaplace (), which returns another instance of
ScalarField, whereas gradient () returns a VectorField. Combining these functions with ordinary arith-
metics on fields allows to represent the right hand side of many partial differential equations that appear in physics.
Importantly, the differential operators work with flexible boundary conditions.

The PDE:s to solve are represented as a separate class inheriting from PDEBase. One example defined in this package
is the diffusion equation implemented as Di f fusionPDE, but more specific situations need to be implemented by the
user. Most notably, PDEs can be specified by their expression using the convenient PDFE class.

The PDEs are solved using solver classes, where a simple explicit solver is implemented by ExplicitSolver, but
more advanced implementations can be done. To obtain more details during the simulation, trackers can be attached to
the solver instance, which analyze intermediate states periodically. Typical trackers include ProgressTracker (dis-
play simulation progress), P1ot Tracker (display images of the simulation), and SteadyStateTracker (aborting
simulation when a stationary state is reached). Others can be found in the t rackers module. Moreover, we provide
MemoryStorage and FileStorage, which can be used as trackers to store the intermediate state to memory and
to a file, respectively.

1.4. Package overview 5


https://en.wikipedia.org/wiki/Finite_difference_method
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CHAPTER
TWO

EXAMPLES

These are example scripts using the py-pde package, which illustrates some of the most important features of the package.

2.1 Plotting a vector field

This example shows how to initialize and visualize the vector field w = (sin(z), cos()).

Stream plot
\ /
1.5 _‘__,_.-—'—‘—.__H
'__,_.-'—'-—-..._H
1.0 T+ 4 /-"—‘\
0.5
-r'""-_‘_"""'--
'__,_..—'—'-—-._“
= 0.0 4
-r'""-'-'_‘_""'-- /"—\
—0.5 - —_——
-r'""-_‘-"""-- /"—\
-1.0 1 -
L / ——
—=1.5 ~
e v g —
-15 -1.0 -0.5 0.0 0.5 1.0 1.5
X
from pde import CartesianGrid, VectorField
grid = CartesianGrid([[-2, 2], [-2, 2]], 32)

(continues on next page)
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(continued from previous page)

field = VectorField.from_expression(grid, ["sin(x)", "cos(x)"])
field.plot (method="streamplot", title="Stream plot")

Total running time of the script: (0 minutes 0.647 seconds)

2.2 Solving Laplace’s equation in 2d

This example shows how to solve a 2d Laplace equation with spatially varying boundary conditions.

Solution to Laplace's equation

0.75

0.50

0.25

0.00

—0.25

—0.50

—0.75

~

import numpy as np
from pde import CartesianGrid, solve_laplace_equation

grid = CartesianGrid([[0, 2 * np.pil] * 2, 64)

bcs = [{"value": "sin(y)"}, {"value": "sin(x)"}]
res = solve_laplace_equation(grid, bcs)
res.plot ()

Total running time of the script: (0 minutes 0.775 seconds)

8 Chapter 2.

Examples
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2.3 Plotting a scalar field in cylindrical coordinates

This example shows how to initialize and visualize the scalar field u = /2 exp(—2) in cylindrical coordinates.

Scalar field in cylindrical coordinates

175

1.50

1.25

1.00

0.75

0.50

0.25

from pde import CylindricalSymGrid, ScalarField

grid = CylindricalSymGrid(radius=3, bounds_z=[0, 4], shape=16)
field = ScalarField.from_expression(grid, "sqrt(z) * exp(-r**2)")
field.plot (title="Scalar field in cylindrical coordinates")

Total running time of the script: (0 minutes 0.474 seconds)

2.3. Plotting a scalar field in cylindrical coordinates 9
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2.4 Solving Poisson’s equation in 1d

This example shows how to solve a 1d Poisson equation with boundary conditions.

0.5 1
0.4 +
=
2
)
1]
=
o
w 0.3 1
o
o
wn
R
=]
ol
o 0.2 -
)
=
2
)
=
o
i 0.1
0.0 1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
from pde import CartesianGrid, ScalarField, solve_poisson_equation
grid = CartesianGrid([[0, 1]], 32, periodic=False)
field = ScalarField(grid, 1)
result = solve_poisson_equation(field, bc=[{"value": 0}, {"derivative": 1}])

result.plot ()

Total running time of the script: (0 minutes 0.137 seconds)

10 Chapter 2.

Examples
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2.5 Simple diffusion equation

This example solves a simple diffusion equation in two dimensions.

0.265
0.260
0.255
0.250
0.245
0.240

0.235

x
0% 1 | 0/10.0 [00:00<?, ?it/s]
Initializing: 0% 1 | 0/10.0 [00:00<?, ?it/s]

0% | 0/10.0 [00:10<?, ?it/s]

|
0% | | 0.004/10.0 [00:10<7:28:31, 2692.23s/it]
S| | 0.018/10.0 [00:10<1:39:32, 598.31s/it]
2 | | 0.597/10.0 [00:10<02:49, 18.06s/it]
565 | NN | 5.604/10.0 [00:10<00:08, 1.94s/it]
565 | INEIEGIN | 5.604/10.0 [00:10<00:08, 1.96s/it]

1005 | IEE | 10.0/10.0 [00:10<00:00, 1.10s/it]
1005 BN 10.0/10.0 [00:10<00:00, 1.10s/it]

from pde import DiffusionPDE, ScalarField, UnitGrid

grid = UnitGrid([64, 64]) # generate grid
state = ScalarField.random_uniform(grid, 0.2, 0.3) # generate initial condition

(continues on next page)

2.5. Simple diffusion equation 11
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(continued from previous page)

eq = DiffusionPDE (diffusivity=0.1) # define the pde
result = eqg.solve(state, t_range=10)
result.plot ()

Total running time of the script: (0 minutes 11.188 seconds)

2.6 Kuramoto-Sivashinsky - Using PDE class

This example implements a scalar PDE using the PDE. We here consider the Kuramoto—Sivashinsky equation, which for
instance describes the dynamics of flame fronts:

1
Owu = —§|Vu|2 - Vu — Vi

2.0

30
1.5

25
1.0
20 0.5
- 0.0

15
—0.5

10
-1.0
5 -1.5
—2.0

0

X
0% | | 0/10.0 [00:00<?, 2it/s]
Initializing: 0% | | 0/10.0 [00:00<?, ?it/s]

o
% |
0% |

| 0/10.0 [00:17<?, ?it/s]
|
0% | |
|
|

0.01/10.0 [00:30<8:25:25, 3035.57s/it]
.02/10.0 [00:30<4:12:27, 1517.81s/it]
.1/10.0 [00:30<50:05, 303.57s/it]
.13/10.0 [00:30<00:43, 7.35s/it]

5|

41% | I

s O O

(continues on next page)

12 Chapter 2. Examples



https://en.wikipedia.org/wiki/Kuramoto–Sivashinsky_equation

py-pde Documentation, Release unknown

(continued from previous page)
415 IR | 4.13/10.0 [00:30<00:43, 7.36s/1it]

1005 | IR 10.0/10.0 [00:30<00:00, 3.04s/it]
100 | RN :0.0/10.0 [00:30<00:00, 3.04s/it]

from pde import PDE, ScalarField, UnitGrid

grid = UnitGrid([32, 32]) # generate grid

state = ScalarField.random_uniform(grid) # generate initial condition
eq = PDE ({"u": "-gradient_squared(u) / 2 - laplace(u + laplace(u))"}) # define the.
—pde

result = eqg.solve(state, t_range=10, dt=0.01)
result.plot ()

Total running time of the script: (0 minutes 30.615 seconds)

2.7 Spherically symmetric PDE

This example illustrates how to solve a PDE in a spherically symmetric geometry.

2.7. Spherically symmetric PDE 13
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0.60

0.55

0.50

0.45

0.40

0.35

% | 0/0.1 [00:00<?, ?it/s]
Initializing: 0% 1 | 0/0.1 [00:00<?, ?2it/s]
0% 1 0/0.1 [00:02<?, ?it/s]

|
7511 | 0.007/0.1 [00:02<00:34, 371.31s/it]
345 N | 0.034/0.1 [00:02<00:05, 76.46s/it]
345 IR | 0.034/0.1 [00:02<00:05, 76.49s/it]
100% | 0.1/0.1 [00:02<00:00, 26.01s/it]
100% /I ©0.1/0.1 [00:02<00:00, 26.01s/it]

from pde import DiffusionPDE, ScalarField, SphericalSymGrid

grid = SphericalSymGrid(radius=[1, 5], shape=128) # generate grid
state = ScalarField.random_uniform(grid) # generate initial condition

eq = DiffusionPDE (0.1) # define the PDE
result = eqg.solve(state, t_range=0.1, dt=0.001)

result.plot (kind="image")

Total running time of the script: (0 minutes 2.874 seconds)

14 Chapter 2.

Examples
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2.8 Diffusion on a Cartesian grid

This example shows how to solve the diffusion equation on a Cartesian grid.

2.00 —
1.75 r 07
1.50 - 0.6
1.25
= 1.00
0.75
0.50
0.25
0.00
-1.00 —-0.75 —0.50 —-0.25 0.00 0.25 050 075 1.00
b
0% | 0/1.0 [00:00<?, 2it/s]
Initializing: % | 0/1.0 [00:00<?, 2it/s]
0% | 0/1.0 [00:05<?, ?it/s]
1% | 0.01/1.0 [00:05<09:02, 548.31s/it]
35| | 0.03/1.0 [00:05<02:57, 182.78s/it]
35| | 0.03/1.0 [00:05<02:57, 182.84s/it]
100 NN 1.0/1.0 [00:05<00:00, 5.49s/it]
1005 NI 1.0/1.0 [00:05<00:00, 5.49s/it]

from pde import CartesianGrid, DiffusionPDE, ScalarField
grid = CartesianGrid([[-1, 1], [0, 211, [30, 16]) # generate grid
state = ScalarField(grid) # generate initial condition

state.insert ([0, 11, 1)

(continues on next page)
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(continued from previous page)
eq = DiffusionPDE (0.1) # define the pde
result = eqg.solve(state, t_range=1, dt=0.01)
result.plot (cmap="magma")

Total running time of the script: (0 minutes 5.686 seconds)

2.9 Stochastic simulation

This example illustrates how a stochastic simulation can be done.

Time

from pde import KPZInterfacePDE, MemoryStorage, ScalarField, UnitGrid, plot_kymograph

grid = UnitGrid([64]) # generate grid
state = ScalarField.random_harmonic (grid) # generate initial condition

eq = KPZInterfacePDE (noise=1) # define the SDE

storage = MemoryStorage ()

eqg.solve (state, t_range=10, dt=0.01, tracker=storage.tracker(0.5))
plot_kymograph (storage)

Total running time of the script: (0 minutes 6.126 seconds)
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2.10 Time-dependent boundary conditions

This example solves a simple diffusion equation in one dimensions with time-dependent boundary conditions.

20.0
17.5 0.75
15.0 0.50
12.5 0.25
£
10.0 0.00
(=
1.5 —0.25
5-0 _D.Eﬂ
2.5 _0.75
0.0

from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph

grid = CartesianGrid([[0, 10]1, [64]) # generate grid
state = ScalarField(grid) # generate initial condition
eq = PDE({"c": "laplace(c)"}, bc={"value_expression": "sin(t)"})

storage = MemoryStorage ()
eqg.solve (state, t_range=20, dt=le-4, tracker=storage.tracker(0.1))

# plot the trajectory as a space-time plot
plot_kymograph (storage)

Total running time of the script: (0 minutes 9.932 seconds)

2.10. Time-dependent boundary conditions 17
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2.11 Setting boundary conditions

This example shows how different boundary conditions can be specified.

25
20
15

10

L

0% | | 0/10.0 [00:00<?, 2it/s]
Initializing: % | 0/10.0 [00:00<?, 2it/s]
0% | | 0/10.0 [00:05<?, ?it/s]
0% | | 0.005/10.0 [00:05<3:15:21, 1172.73s/it]
% | 0.025/10.0 [00:05<38:59, 234.56s/it]
|
|

sl 0.92/10.0 [00:05<00:57, 6.38s/it]
<1l 0.92/10.0 [00:05<00:58, 6.41s/it]
12005 (HEEEEEEE | 10.0/10.0 [00:05<00:00, 1.70it/s]
1005 AN 10.0/10.0 [00:05<00:00, 1.70it/s]

from pde import DiffusionPDE, ScalarField, UnitGrid

grid = UnitGrid([32, 32], periodic=[False, True]) # generate grid
state = ScalarField.random_uniform(grid, 0.2, 0.3) # generate initial condition

(continues on next page)
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(continued from previous page)

# set boundary conditions ‘bc’ for all axes
bc_x_left = {"derivative": 0.1}

bc_x_right = {"value": "sin(y / 2)"}
bc_x = [bc_x_left, bc_x_right]
bc_y = "periodic"

eqg = DiffusionPDE (bc=[bc_x, bc_yl)

result = eg.solve(state, t_range=10, dt=0.005)
result.plot ()

Total running time of the script: (0 minutes 6.087 seconds)

2.12 1D problem - Using PDE class

This example implements a PDE that is only defined in one dimension. Here, we chose the Korteweg-de Vries equation,
given by

06 = 600, — 93¢

which we implement using the PDE.

1.0

Time

2.12. 1D problem - Using PDE class 19
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from math import pi
from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph

# initialize the equation and the space

eq = PDE({"yp": "6 * v * d_dx(p) - laplace(d_dx(yp))"})
grid = CartesianGrid([[0, 2 * pil], [32], periodic=True)
state = ScalarField.from_expression(grid, "sin(x)")

# solve the equation and store the trajectory
storage = MemoryStorage ()
eqg.solve (state, t_range=3, method="scipy", tracker=storage.tracker(0.1))

# plot the trajectory as a space-time plot
plot_kymograph (storage)

Total running time of the script: (0 minutes 9.902 seconds)

2.13 Heterogeneous boundary conditions

This example implements a spatially coupled SIR model with the following dynamics for the density of susceptible,
infected, and recovered individuals:

O¢s = DV?s — Bis
dyi = DV?i + Bis — i
dyr = DV?r + i

Here, D is the diffusivity, 5 the infection rate, and +y the recovery rate.
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0.75

0.50

0.25

0.00

—0.25

—0.50

—0.75

4
% | | 0/10.0 [00:00<?, ?it/s]
Initializing:  0%] | 0/10.0 [00:00<?, ?it/s]
0% | | 0/10.0 [00:00<?, ?it/s]
5] | 0.24/10.0 [00:00<00:09, 1.03it/s]
511 | 0.71/10.0 [00:00<00:03, 2.58it/s]
30% I | 3.03/10.0 [00:00<00:01, 6.38it/s]
g2/ | 5.22/10.0 [00:00<00:00, 8.95it/s]
s>/ | 5.22/10.0 [00:01<00:00, 7.67it/s]
1005 | 10.0/10.0 [00:01<00:00, 9.32it/s]
100% | 10.0/10.0 [00:01<00:00, 9.32it/s]
import numpy as np
from pde import CartesianGrid, DiffusionPDE, ScalarField

# define grid and an initial state
grid CartesianGrid([[-5, 5], [-5,
field ScalarField (grid)

511, 32)

(continues on next page)
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(continued from previous page)
# define the boundary conditions, which here are calculated from a function
def bc_value (adjacent_value, dx, x, y, t):
"""return boundary value"""
return np.sign (x)

bc_x = "derivative"
bc_y

["derivative", {"value_expression": bc_value}]

# define and solve a simple diffusion equation

eqg = DiffusionPDE (bc=[bc_x, bc_y])

res = eqg.solve(field, t_range=10, dt=0.01, backend="numpy")
res.plot ()

Total running time of the script: (0 minutes 1.254 seconds)

2.14 Brusselator - Using the PDE class

This example uses the PDE class to implement the Brusselator with spatial coupling,
Syu = DoV2u+a — (14+bu+ vu?
Oy = D1V30 + bu — vu?
Here, D and D, are the respective diffusivity and the parameters a and b are related to reaction rates.

Note that the same result can also be achieved with a full implementation of a custom class, which allows for more flexibility
at the cost of code complexity.

Time: 20
Field u Field v
5 5
60 60 F

50 4 50 4
40 3 40 3

=30 =30
2 2

20 20
10 1 10 1
0 0 0 0

0 20 40 60 0 20 40 60
X X

from pde import PDE, FieldCollection, PlotTracker, ScalarField, UnitGrid

# define the PDE
a, b=1, 3
do, d1 =1, 0.1
eq = PDE (
{
"u": f"{d0} * laplace(u) + {a} - ({b} + 1) * u + u**2 * v",
"v": f"{d1l} * laplace(v) + {b} * u - u**2 * vy",

(continues on next page)
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(continued from previous page)

# initialize state

grid = UnitGrid([64, 64])

u = ScalarField(grid, a, label="Field Sus$")

v =b / a+ 0.1 * ScalarField.random_normal (grid, label="Field $vs$")
state = FieldCollection([u, VvI])

# simulate the pde
tracker = PlotTracker (interval=1, plot_args={"vmin": 0, "vmax": 5})
sol = eqg.solve(state, t_range=20, dt=le-3, tracker=tracker)

Total running time of the script: (0 minutes 31.110 seconds)

2.15 Writing and reading trajectory data

This example illustrates how to store intermediate data to a file for later post-processing. The storage frequency is an
argument to the tracker.

30 30
0.8 0.8

25 25
20 0.6 20 0.6

£ £

= 15 = 15
0.4 0.4

10 10
0.2 0.2

5 5
0 0 0.0

0 10 20 30

X X

from tempfile import NamedTemporaryFile
import pde

# define grid, state and pde
grid = pde.UnitGrid([32])
state = pde.FieldCollection (

[pde.ScalarField.random_uniform(grid), pde.VectorField.random_uniform(grid) ]
)
eq = pde.PDE({"s": "_0.1 * S", LEVALY vv7VIV})

# get a temporary file to write data to
path = NamedTemporaryFile (suffix=".hdf5")

# run a simulation and write the results
writer = pde.FileStorage (path.name, write_mode="truncate")

eqg.solve (state, t_range=32, dt=0.01, tracker=writer.tracker (1))

(continues on next page)

2.15. Writing and reading trajectory data 23




py-pde Documentation, Release unknown

(continued from previous page)
# read the simulation back in again
reader = pde.FileStorage (path.name, write_mode="read_only")
pde.plot_kymographs (reader)

Total running time of the script: (0 minutes 5.469 seconds)

2.16 Diffusion equation with spatial dependence

This example solve the Diffusion equation with a heterogeneous diffusivity:
e =V (D(r)Ve)
using the PDE class. In particular, we consider D(z) = 1.01 + tanh(z), which gives a low diffusivity on the left side of

the domain.

Note that the naive implementation, PDE ({"c" : "divergence ((1.01 + tanh(x)) * gradi-
ent (c)) "}), has numerical instabilities. This is because two finite difference approximations are nested. To arrive at
a more stable numerical scheme, it is advisable to expand the divergence,

dy¢c = DV?c+VD.Ve

100

80

60

Time

40

20
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~

from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph

# Expanded definition of the PDE

diffusivity = "1.01 + tanh(x)"

term_1 = f" ({diffusivity}) * laplace(c)"

term_2 = f"dot (gradient ({diffusivity}), gradient (c))"
eq = PDE({"c": f"{term_1} + {term_2}"}, bc={"value": 0})

grid = CartesianGrid([[-5, 511, 64) # generate grid
field = ScalarField(grid, 1) # generate initial condition

storage = MemoryStorage() # store intermediate information of the simulation
res = eq.solve(field, 100, dt=1le-3, tracker=storage.tracker(l)) # solve the PDE

plot_kymograph (storage) # visualize the result in a space-time plot

Total running time of the script: (0 minutes 13.998 seconds)

2.17 Using simulation trackers

This example illustrates how trackers can be used to analyze simulations.

Time: 3

2.17. Using simulation trackers 25
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0% | | 0/3.0 [00:00<?, 2it/s]
Initializing: % | 0/3.0 [00:00<?, 2it/s]
0% | 0/3.0 [00:05<?, 2it/s]

| | 0.1/3.0 [00:05<02:45, 57.14s/it]
7511 | 0.2/3.0 [00:05<01:20, 28.57s/it]
205 |1l | 0.6/3.0 [00:05<00:22, 9.53s/it]
205 Il | 0.6/3.0 [00:05<00:23, 9.90s/it]
1005 NN 3.0/3.0 [00:05<00:00, 1.98s/it]
1200 RN 3.0/3.0 [00:05<00:00, 1.98s/it]

520.7532863208428
520.7532863208428
520.7532863208428
520.7532863208428

import pde

grid = pde.UnitGrid([32, 321]) # generate grid
state = pde.ScalarField.random_uniform(grid) # generate initial condition

storage = pde.MemoryStorage ()

trackers = [
"progress", # show progress bar during simulation
"steady_state", # abort when steady state is reached
storage.tracker (interval=1), # store data every simulation time unit
pde.PlotTracker (show=True), # show images during simulation
# print some output every 5 real seconds:
pde.PrintTracker (interval=pde.RealtimelInterrupts (duration=5)),

eq = pde.DiffusionPDE(0.1) # define the PDE
eqg.solve (state, 3, dt=0.1, tracker=trackers)

for field in storage:
print (field.integral)

Total running time of the script: (0 minutes 6.010 seconds)

2.18 Schrodinger’s Equation

This example implements a complex PDE using the PDE. We here chose the Schrodinger equation without a spatial
potential in non-dimensional form:

0 = =V

Note that the example imposes Neumann conditions at the wall, so the wave packet is expected to reflect off the wall.
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- 0.8

Time

0.0 2.5 5.0 7.5 10,0 12,5 15.0 17.5 20.0

from math import sqgrt

from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph

grid = CartesianGrid([[0, 20]], 128, periodic=False) # generate grid

# create a (normalized) wave packet with a certain form as an initial condition
initial_state = ScalarField.from_expression(grid, "exp(I * 5 * x) * exp(—-(x — 10)**2)
;}")

initial_state /= sqgrt(initial_state.to_scalar ("norm_squared") .integral.real)

eq = PDE ({"¢": £"I * laplace(y)"}) # define the pde

# solve the pde and store intermediate data

storage = MemoryStorage ()

eg.solve(initial_state, t_range=2.5, dt=le-5, tracker=[storage.tracker (0.02)1])

# visualize the results as a space-time plot
plot_kymograph (storage, scalar="norm_squared")

Total running time of the script: (0 minutes 7.468 seconds)
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2.19 Kuramoto-Sivashinsky - Using custom class

This example implements a scalar PDE using a custom class. We here consider the Kuramoto—Sivashinsky equation,
which for instance describes the dynamics of flame fronts:

Opu = —%|Vu|2 — V2 — Vi

25

20
=
15
10
5
0
X
0% | | 0/10.0 [00:00<?, 2it/s]
Initializing: 0% | | 0/10.0 [00:00<?, ?it/s]
S| | 0/10.0 [00:00<?, ?it/s]
2% 1] | 0.24/10.0 [00:00<00:16, 1.69s/it]
6511 | 0.61/10.0 [00:00<00:07, 1.33it/s]
225 11 | 2.23/10.0 [00:00<00:02, 3.29it/s]
575 | GG | 5.68/10.0 [00:01<00:00, 4.97it/s]
57 | | 5.68/10.0 [00:01<00:01, 3.28it/s]
100 ' 10.0/10.0 [00:01<00:00, 5.77it/s]
1005 | AN :0.0/10.0 [00:01<00:00, 5.77it/s]
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s N

from pde import PDEBase, ScalarField, UnitGrid
class KuramotoSivashinskyPDE (PDEBase) :
"""ITmplementation of the normalized Kuramoto-Sivashinsky equation"""

def evolution_rate(self, state, t=0):
"""implement the python version of the evolution equation"""

state_lap = state.laplace (bc="auto_periodic_neumann")

state_lap2 = state_lap.laplace (bc="auto_periodic_neumann")

state_grad = state.gradient (bc="auto_periodic_neumann")

return -state_grad.to_scalar ("squared_sum") / 2 - state_lap - state_lap?2

grid = UnitGrid([32, 32]) # generate grid
state = ScalarField.random_uniform(grid) # generate initial condition

eq = KuramotoSivashinskyPDE () # define the pde
result = eqg.solve(state, t_range=10, dt=0.01)
result.plot ()

Total running time of the script: (0 minutes 1.914 seconds)

2.20 Custom Class for coupled PDEs
This example shows how to solve a set of coupled PDEs, the spatially coupled FitzHugh—Nagumo model, which is a
simple model for the excitable dynamics of coupled Neurons:

Ou = Vu+u(u—a)(l—u)+w

Oyw = eu

Here, o denotes the external stimulus and € defines the recovery time scale. We implement this as a custom PDE class
below.

—-1.84 0.85
30
25 —-1.85 0.80
20 0.75
—-1.86
=
15 0.70
10 -1.87
0.65
3 -1.88
0.60
0
X X
% | 0/100.0 [00:00<?, ?it/s]
Initializing: 0% | | 0/100.0 [00:00<?, ?it/s]
0% | | 0/100.0 [00:00<?, 2it/s]
% | 0.23/100.0 [00:00<01:40, 1.01s/it]

(continues on next page)
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(continued from previous page)

1% | 0.71/100.0 [00:00<00:38, 2.55it/s]
3% 1] | 2.91/100.0 [00:00<00:15, 6.09it/s]
851l | 7.84/100.0 [00:00<00:10, 8.48it/s]
155 1 H | 15.22/100.0 [00:01<00:09, 9.00it/s]
245 IR | 23.65/100.0 [00:02<00:08, 8.89it/s]
325 IR | 32.22/100.0 [00:03<00:07, 9.35it/s]
425 | R | 41.88/100.0 [00:04<00:06, 9.51it/s]
525 | IR | 51.75/100.0 [00:05<00:05, 9.31it/s]
61 | NN | 60.93/100.0 [00:06<00:04, 9.40it/s]
705 | I NEGG_ | 70.48/100.0 [00:07<00:03, 9.45it/s]
sos/IHIEB | 50.15/100.0 [00:08<00:02, 9.44it/s]
90 |IMMEEME | 5°.67/100.0 [00:09<00:01, 9.57it/s]
100% | 00.8/100.0 [00:10<00:00, 9.63it/s]

1005 | NN ©°.8/100.0 [00:10<00:00, 9.60it/s]
100% BN 100.0/100.0 [00:10<00:00, 9.62it/s]
1005 | IEE | 100.0/100.0 [00:10<00:00, 9.62it/s]

from pde import FieldCollection, PDEBase, UnitGrid

class FitzhughNagumoPDE (PDEBase) :
""r'EitzHugh—-Nagumo model with diffusive coupling”"""

def _ init_ (self, stimulus=0.5, T=10, a=0, b=0, bc="auto_periodic_neumann") :
super () .__init__ ()
self.bc = bc
self.stimulus = stimulus
self.Tt =T
self.a = a
self.b = Db

def evolution_rate(self, state, t=0):
v, W = state # membrane potential and recovery variable

= v.laplace (bc=self.bc) + v — v**3 / 3 — w + self.stimulus
w_t = (v + self.a - self.b * w) / self.<T

return FieldCollection([v_t, w_t])
grid = UnitGrid([32, 32])
state = FieldCollection.scalar_random_uniform (2, grid)
eqg = FitzhughNagumoPDE ()

result = eqg.solve(state, t_range=100, dt=0.01)
result.plot ()

Total running time of the script: (0 minutes 10.826 seconds)
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2.21 1D problem - Using custom class

This example implements a PDE that is only defined in one dimension. Here, we chose the Korteweg-de Vries equation,
given by

06 = 600, — 93¢

which we implement using a custom PDE class below.

Time

e T
e
.

from math import pi

from pde import CartesianGrid, MemoryStorage, PDEBase, ScalarField, plot_kymograph

class KortewegDeVriesPDE (PDEBase) :
"""Korteweg-de Vries equation"""

def evolution_rate(self, state, t=0):
"""implement the python version of the evolution equation"""
assert state.grid.dim == # ensure the state is one-dimensional
grad_x = state.gradient ("auto_periodic_neumann") [0]
return 6 * state * grad_x - grad_x.laplace("auto_periodic_neumann")

# initialize the equation and the space
(continues on next page)

2.21. 1D problem - Using custom class 31



https://en.wikipedia.org/wiki/Korteweg–de_Vries_equation

py-pde Documentation, Release unknown

(continued from previous page)

grid = CartesianGrid([[0, 2 * pi]l], [32], periodic=True)
state = ScalarField.from_expression(grid, "sin(x)")

# solve the equation and store the trajectory

storage = MemoryStorage ()

eqg = KortewegDeVriesPDE ()

eqg.solve (state, t_range=3, method="scipy", tracker=storage.tracker(0.1))

# plot the trajectory as a space-time plot
plot_kymograph (storage)

Total running time of the script: (0 minutes 3.021 seconds)

2.22 Visualizing a scalar field

This example displays methods for visualizing scalar fields.

Original field Projection on axial coordinate
1
25 -
(¥ 0 0 A
_25 -
_1 T T T
0 5 10
r Z
Smoothed field Slice of smoothed fieldat z=1
)
0o 2 4 6
r r

import matplotlib.pyplot as plt
import numpy as np

from pde import CylindricalSymGrid, ScalarField

(continues on next page)
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(continued from previous page)
# create a scalar field with some noise
grid = CylindricalSymGrid(7, [0, 4 * np.pi], 64)
data = ScalarField.from_expression(grid, "sin(z) * exp(-r / 3)")
data += 0.05 * ScalarField.random_normal (grid)

# manipulate the field

smoothed = data.smooth () # Gaussian smoothing to get rid of the noise
projected = data.project ("r") # integrate along the radial direction
sliced = smoothed.slice({"z": 1}) # slice the smoothed data

# create four plots of the field and the modifications

fig, axes = plt.subplots(nrows=2, ncols=2)

data.plot (ax=axes[0, 0], title="Original field")

smoothed.plot (ax=axes[1l, 0], title="Smoothed field")

projected.plot (ax=axes [0, 1], title="Projection on axial coordinate")
sliced.plot (ax=axes[1l, 1], title="Slice of smoothed field at $z=1s")
plt.subplots_adjust (hspace=0.38)

plt.show ()

Total running time of the script: (0 minutes 0.419 seconds)

2.23 Kuramoto-Sivashinsky - Compiled methods

This example implements a scalar PDE using a custom class with a numba-compiled method for accelerated calculations.
We here consider the Kuramoto—Sivashinsky equation, which for instance describes the dynamics of flame fronts:

1
Opu = —§|Vu|2 — V2u - Vi
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X
%1 | 0/10.0 [00:00<?, 2it/s]
Initializing: 0% | | 0/10.0 [00:00<?, ?it/s]/home/docs/checkouts/

—readthedocs.org/user_builds/py-pde/checkouts/0.33.3/examples/pde_custom_numba.
—py:39: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to.
—~the 'numba.jit' decorator. The implicit default value for this argument is.
—currently False, but it will be changed to True in Numba 0.59.0. See https://numba.
—readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-
—back-behaviour-when-using-jit for details.

def pde_rhs(data, t):

0% | | 0/10.0 [00:12<?, 2it/s]

0% | | 0.01/10.0 [00:13<3:45:34, 1354.83s/it]
0% | | 0.02/10.0 [00:13<1:52:40, 677.44s/it]
25| | 0.16/10.0 [00:13<13:53, 84.68s/it]
67% | INNEIIN | 6.67/10.0 [00:13<00:06, 2.03s/it]
675 | IIIEIEIN | 6.67/10.0 [00:13<00:06, 2.03s/it]
100 |NMEENEN | 10.0/10.0 [00:13<00:00, 1.36s/it]
100 NN 10.0/10.0 [00:13<00:00, 1.36s/it]

{import numba as nb
(continues on next page)
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(continued from previous page)

from pde import PDEBase, ScalarField, UnitGrid

class KuramotoSivashinskyPDE (PDEBase) :
"""Tmplementation of the normalized Kuramoto-Sivashinsky equation"""

def _ init__ (self, bc="auto_periodic_neumann") :
super () .__init__ ()
self.bc = bc

def evolution_rate(self, state, t=0):
"""implement the python version of the evolution equation"""
state_lap = state.laplace (bc=self.bc)
state_lap2 = state_lap.laplace (bc=self.bc)
state_grad_sqg = state.gradient_squared(bc=self.bc)
return -state_grad_sq / 2 - state_lap - state_lap2

def _make_pde_rhs_numba (self, state):
"""nunmba-compiled implementation of the PDE"""
gradient_squared = state.grid.make_operator ("gradient_squared", bc=self.bc)

laplace = state.grid.make_operator ("laplace", bc=self.bc)
@nb. jit
def pde_rhs(data, t):
return -0.5 * gradient_squared(data) - laplace(data + laplace(data))

return pde_rhs

grid = UnitGrid([32, 32]) # generate grid
state = ScalarField.random_uniform(grid) # generate initial condition

eq = KuramotoSivashinskyPDE () # define the pde
result eq.solve(state, t_range=10, dt=0.01)
result.plot ()

Total running time of the script: (0 minutes 13.762 seconds)

2.24 Solver comparison

This example shows how to set up solvers explicitly and how to extract diagnostic information.

Deviation: 7.3e-09, 8.3e-09

explicit solver explicit, adaptive solver scipy solver

30 30 30
25 0.2 25 0.2 25 0.2

20 20 20
> 15 0.0 > 15 0.0 > 15 0.0

10 10 10

-0.2 -0.2 -0.2
5 5
0 0
o 10 20 30
x
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Diagnostic information from first run:

{'controller': {'t_start': 0, 't_end': 1.0, 'profiler': {'solver': 0.
—06525326899998163, 'tracker': 7.929700001341189e-05, 'compilation': 5.
—475753636999997}, 'jit_count': {'make_stepper': 11, 'simulation': 0}, 'solver_start
—': '2023-12-21 12:19:56.790465"', 'successful': True, 'stop_reason': 'Reached final.
—time', 'solver_duration': '0:00:00.065329', 't_final': 1.0, 'process_count': 1},

— 'package_version': 'unknown', 'solver': {'class': 'ExplicitSolver', 'pde_class':
—'DiffusionPDE', 'dt': 0.001, 'steps': 1000, 'state_modifications': 0.0, 'stochastic

—': False, 'scheme': 'euler', 'backend': 'numba'}}

Diagnostic information from second run:
{'controller': {'t_start': 0, 't_end': 1.0, 'profiler': {'solver': 0.
—20923867299998733, 'tracker': 5.952300000444666e-05, 'compilation': 1.

2226621689999888}, 'jit_count': {'make_stepper': 2, 'simulation': 0}, 'solver_start

—': '2023-12-21 12:19:58.079457"', 'successful': True, 'stop_reason': 'Reached final.
—time', 'solver_duration': '0:00:00.209366', 't_final': 1.0, 'process_count': 1},

— 'package_version': 'unknown', 'solver': {'class': 'ExplicitSolver', 'pde_class':
—'DiffusionPDE', 'dt': 0.001, 'dt_adaptive': True, 'steps': 12, 'stochastic': False,
—'state_modifications': 0.0, 'dt_statistics': {'min': 0.001, 'max': O.
—1634484520404858, 'mean': 0.08333333333333333, 'std': 0.05118057072376797, 'count':._
—12.0}, 'scheme': 'runge-kutta', 'backend': 'numba'}}

Diagnostic information from third run:

{'controller': {'t_start': 0, 't_end': 1.0, 'profiler': {'solver': 0.
—0036004760000025726, 'tracker': 6.900500000028842e-05, 'compilation': O.
—6397618310000155}, 'jit_count': {'make_stepper': 1, 'simulation': 0}, 'solver_start
—': '2023-12-21 12:20:00.426161"', 'successful': True, 'stop_reason': 'Reached final.
—time', 'solver_duration': '0:00:00.003773', 't_final': 1.0, 'process_count': 1},

— 'package_version': 'unknown', 'solver': {'class': 'ScipySolver', 'pde_class':

—'DiffusionPDE', 'dt': None, 'steps': 50, 'stochastic': False, 'backend': 'numba'}}

import pde

# initialize the grid, an initial condition, and the PDE
grid = pde.UnitGrid([32, 321])

field = pde.ScalarField.random_uniform(grid, -1, 1)

eq = pde.DiffusionPDE ()

# try the explicit solver
solverl = pde.ExplicitSolver (eq)

controllerl = pde.Controller (solverl, t_range=1, tracker=None)
soll = controllerl.run(field, dt=1e-3)
soll.label = "explicit solver"

print ("Diagnostic information from first run:")
print (controllerl.diagnostics)
print ()

# try an explicit solver with adaptive time steps

solver2 = pde.ExplicitSolver (eq, scheme="runge-kutta", adaptive=True)
controller2 = pde.Controller (solver2, t_range=1, tracker=None)
sol2 = controller2.run(field, dt=1le-3)
sol2.label = "explicit, adaptive solver"
(continues on next page)
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(continued from previous page)

print ("Diagnostic information from second run:")
print (controller2.diagnostics)
print ()

# try the standard scipy solver

solver3 = pde.ScipySolver (eq)

controller3 = pde.Controller (solver3, t_range=1, tracker=None)
sol3 = controller3.run(field)

sol3.label = "scipy solver"

print ("Diagnostic information from third run:")

print (controller3.diagnostics)

print ()

# plot both fields and give the deviation as the title

title = f"Deviation: {((soll - sol2)**2).average:.29}, {((soll - sol3)**2).average:.
%29’ V u

pde.FieldCollection([soll, sol2, sol3]) .plot(title=title)

Total running time of the script: (0 minutes 10.163 seconds)

2.25 Custom PDE class: SIR model

This example implements a spatially coupled SIR model with the following dynamics for the density of susceptible,
infected, and recovered individuals:

d¢s = DV?s — Bis
dyi = DV?i + Bis — i
Oyr = DV?r + ~i

Here, D is the diffusivity, 5 the infection rate, and ~y the recovery rate.

Time: 50.01
Susceptible Infected Recovered
1.0 1.0
30 30
25 0.8 25 0.8
20 0.6 20 0.6
=15 =15
0.4 0.4
10 10
5 0.2 5 0.2
0 0.0 0 0.0
0 10 20 30 0 10 20 30
X X X
0% | | 0/50.0 [00:00<?, 2it/s]
Initializing: % | | 0/50.0 [00:00<?, 2it/s]

0% | 0/50.0 [00:00<?, ?it/s]

\

0% | | 0.02/50.0 [00:01<44:32, 53.46s/it]
0% | | 0.04/50.0 [00:01<22:20, 26.84s/it]
1% | 0.33/50.0 [00:01<02:49, 3.42s/it]
5] | 1.57/50.0 [00:01<00:41, 1.15it/s]
851l | 4.15/50.0 [00:01<00:20, 2.26it/s]
1651 | 7.89/50.0 [00:02<00:13, 3.12it/s]
255 |l | 12.36/50.0 [00:03<00:11, 3.38it/s]
335 IR | 16.58/50.0 [00:04<00:08, 3.73it/s]

(continues on next page)
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435 | I | 21.34/50.0 [00:05<00:07, 3.79it/s]
s1% | I | 25.72/50.0 [00:06<00:06, 3.99it/s]
615 | IR | 30.58/50.0 [00:07<00:04, 4.00it/s]
70| | 35.02/50.0 [00:08<00:03, 4.14it/s]
s | 39.92/50.0 [00:09<00:02, 4.26it/s]
oo I | 45.06/50.0 [00:10<00:01, 4.24it/s]
oo | | :°.66/50.0 [00:11<00:00, 4.33it/s]
9os | 2°.66/50.0 [00:11<00:00, 4.20it/s]

12005 (BN 50.0/50.0 [00:11<00:00, 4.23it/s]
1005 (NI 50.0/50.0 [00:11<00:00, 4.23it/s]

(continued from previous page)

from pde import FieldCollection, PDEBase, PlotTracker, ScalarField, UnitGrid

class SIRPDE (PDEBase) :
"""STR-model with diffusive mobility"""

def _ init_ (

self, beta=0.3, gamma=0.9, diffusivity=0.1, bc="auto_periodic_neumann"

super () .__init__ ()
self.beta = beta # transmission rate
self.gamma = gamma # recovery rate

self.diffusivity = diffusivity # spatial mobility
self.bc = bc # boundary condition

def get_state(self, s, 1i):
"""generate a suitable initial state"""
norm = (s + 1i).data.max() # maximal density
if norm > 1:
s /= norm
i /= norm
.label = "Susceptible"
i.label = "Infected"

0

# create recovered field
r = ScalarField(s.grid, data=1 - s - 1, label="Recovered")
return FieldCollection([s, 1, r])

def evolution_rate(self, state, t=0):

s, 1, r = state

diff = self.diffusivity

ds_dt = diff * s.laplace(self.bc) - self.beta * i * s

di_dt = diff * i.laplace(self.bc) + self.beta * 1 * s - self.gamma * 1

dr_dt = diff * r.laplace(self.bc) + self.gamma * i
return FieldCollection([ds_dt, di_dt, dr_dt])

eq = SIRPDE (beta=2, gamma=0.1)

# initialize state

(continues on next page)
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(continued from previous page)

grid = UnitGrid([32, 321])
s = ScalarField(grid, 1)
i = ScalarField(grid, 0)
i.data[0, 0] =1

state = eqg.get_state(s, 1i)

# simulate the pde
tracker = PlotTracker (interval=10, plot_args={"vmin": 0, "vmax": 1})
sol = eqg.solve(state, t_range=50, dt=1le-2, tracker=["progress", tracker])

Total running time of the script: (0 minutes 12.258 seconds)

2.26 Brusselator - Using custom class

This example implements the Brusselator with spatial coupling,

Ovu = DoV3u +a — (14 b)u + vu?
v = D1V?0 + bu — vu?®
Here, Dy and D are the respective diffusivity and the parameters a and b are related to reaction rates.

Note that the PDE can also be implemented using the PDE class; see the example. However, that implementation is less
flexible and might be more difficult to extend later.

Time: 20

x

/home/docs/checkouts/readthedocs.org/user_builds/py-pde/checkouts/0.33.3/examples/pde_
—brusselator_class.py:59: NumbaDeprecationWarning: The 'nopython' keyword argument..
—was not supplied to the 'numba.jit' decorator. The implicit default value for this.
—argument is currently False, but it will be changed to True in Numba 0.59.0. See.
—https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-
—object-mode-fall-back-behaviour-when-using-jit for details.

def pde_rhs(state_data, t):
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import numba as nb
import numpy as np

from pde import FieldCollection, PDEBase, PlotTracker, ScalarField, UnitGrid

class BrusselatorPDE (PDEBase) :
""'"Brusselator with diffusive mobility"""

def _ init_ (self, a=1, b=3, diffusivity=[1, 0.1], bc="auto_periodic_neumann") :
super () .__init__ ()
self.a = a
self.b = Db

self.diffusivity = diffusivity # spatial mobility
self.bc = bc # boundary condition

def get_initial_state(self, grid):
"""prepare a useful initial state"""
u = ScalarField(grid, self.a, label="Field Sus$")
v = self.b / self.a + 0.1 * ScalarField.random_normal (grid, label="Field S$v$")
return FieldCollection([u, v])

def evolution_rate(self, state, t=0):
"""pure python implementation of the PDE"""
u, v = state
rhs = state.copy ()
d0, dl = self.diffusivity
rhs[0] = d0 * u.laplace(self.bc) + self.a - (self.b + 1) * u + u**2 * v
rhs[1] = dl1 * v.laplace(self.bc) + self.b * u - u**2 * v
return rhs

def _make_pde_rhs_numba(self, state):
"""nunmba-compiled implementation of the PDE"""
d0, dl = self.diffusivity
a, b = self.a, self.b
laplace = state.grid.make_operator ("laplace", bc=self.bc)

@nb. jit

def pde_rhs(state_data, t):
u = state_datal[0]
v = state_datall]

rate = np.empty_like (state_data)

rate[0] = d0 * laplace(u) + a — (1 + b) * u + v * u**2
rate[l] = dl1 * laplace(v) + b * u — v * u**2

return rate

return pde_rhs

# initialize state

grid = UnitGrid([64, 64])

eq = BrusselatorPDE (diffusivity=[1, 0.11])
state = eqg.get_initial_state(grid)

# simulate the pde
tracker = PlotTracker (interval=1, plot_args={"kind": "rgb", "vmin": 0, "vmax": 5})
sol = eqg.solve(state, t_range=20, dt=1e-3, tracker=tracker)
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Total running time of the script: (0 minutes 10.651 seconds)
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THREE

USER MANUAL

3.1 Mathematical basics

To solve partial differential equations (PDEs), the py-pde package provides differential operators to express spatial deriva-
tives. These operators are implemented using the finite difference method to support various boundary conditions. The
time evolution of the PDE is then calculated using the method of lines by explicitly discretizing space using the grid
classes. This reduces the PDEs to a set of ordinary differential equations, which can be solved using standard methods
as described below.

3.1.1 Curvilinear coordinates

The package supports multiple curvilinear coordinate systems. They allow to exploit symmetries present in physical
systems. Consequently, many grids implemented in py-pde inherently assume symmetry of the described fields. However,
a drawback of curvilinear coordinates are the fact that the basis vectors now depend on position, which makes tensor
fields less intuitive and complicates the expression of differential operators. To avoid confusion, we here specify the used
coordinate systems explictely:

Polar coordinates

Polar coordinates describe points by a radius r and an angle ¢ in a two-dimensional coordinates system. They are defined
by the transformation

{w =7 eo80) o ¢ [0, 00] and 6 € [0, 2n)
y = rsin(¢)

The associated symmetric grid PolarSymGrid assumes that fields only depend on the radial coordinate . Note that
vector and tensor fields can still have components in the polar direction. In particular, vector fields still have two compo-
nents: U(r) = v,.(1)€, + vy (1)€p.

Spherical coordinates

Spherical coordinates describe points by a radius 7, an azimuthal angle 6, and a polar angle ¢. The conversion to ordinary
Cartesian coordinates reads

x = rsin(f) cos(¢)
y = rsin(f)sin(¢) forr € [0,00], § € [0,7], and ¢ € [0, 27)
z = rcos(f)
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The associated symmetric grid SphericalSymGrid assumes that fields only depend on the radial coordinate r. Note
that vector and tensor fields can still have components in the two angular direction.

Warning: Not all results of differential operators on vectorial and tensorial fields can be expressed in terms of fields
that only depend on the radial coordinate r. In particular, the gradient of a vector field can only be calculated if the
azimuthal component of the vector field vanishes. Similarly, the divergence of a tensor field can only be taken in
special situations.

Cylindrical coordinates

Cylindrical coordinates describe points by a radius 7, an axial coordinate z, and a polar angle ¢. The conversion to
ordinary Cartesian coordinates reads

x = rcos(9)
y=rsin(¢) forr e [0,00],z € R, and ¢ € [0, 27)

zZ=Zz

The associated symmetric grid Cy1indricalSymGrid assumes that fields only depend on the coordinates r and z.
Vector and tensor fields still specify all components in the three-dimensional space.

Warning: The order of components in the vector and tensor fields defined on cylindrical grids is different than in
ordinary math. While it is common to use (r, ¢, z), we here use the order (r, z, ¢). It might thus be best to access
components by name instead of index.

3.1.2 Spatial discretization

Ax

X0 X1 X2 N2 XN—i

The finite differences scheme used by py-pde is currently restricted to orthogonal coordinate systems with uniform dis-
cretization. Because of the orthogonality, each axis of the grid can be discretized independently. For simplicity, we only
consider uniform grids, where the support points are spaced equidistantly along a given axis, i.e., the discretization Az is
constant. If a given axis covers values in a range [Zmin, Tmax|, @ discretization with N support points can then be though
of as covering the axis with NV equal-sized boxes; see inset. Field values are then specified for each box, i.e., the support
points lie at the centers of the box:

1
xi:xmin+<i+2)Aaj for ¢i=0,...,N—1

Tmax — Tmin
Ar = ——————

N
which is also indicated in the inset.

Differential operators are implemented using the usual second-order central differences. This requires the introducing of
virtual support points at x_1 and x, which can be determined from the boundary conditions at * = Xy, and T = Tpax,
respectively. The field classes automate this transparently. However, if you need more control over boundary conditions,
you can access the full underlying data using the field._data_full, which will have N + 2 entries along an axis
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that has N support points. In this case, the first and last entries (data_full [0] and data_full [N + 1])denote
the lower and upper virtual point, respectively. The actual field data can be obtained using data_full[1:-1] or the
field.data attribute for convenience. Note that functions evaluating differential operators generally expect the full
data as input while they return only valid data.

3.1.3 Temporal evolution

Once the fields have been discretized, the PDE reduces to a set of coupled ordinary differential equations (ODEs), which
can be solved using standard methods. This reduction is also known as the method of lines. The py-pde package imple-
ments the simple Euler scheme and a more advanced Runge-Kutta scheme in the ExplicitSolver class. For the
simple implementations of these explicit methods, the user typically specifies a fixed time step, although adaptive meth-
ods, which adjust the time step automatically, are also often used and available in the package. One problem with explicit
solvers is that they require small time steps to stably evolve some PDEs; such PDEs are then often called ‘stiff’”. Stiff PDEs
can sometimes be solved more efficiently by using implicit methods. This package provides a simple implementation of
the Backward Euler method in the ITmp1icitSolver class. Finally, more advanced methods are available by wrapping
the scipy.integrate.solve_ivp () inthe ScipySolver class.

3.2 Basic usage

We here describe the typical workflow to solve a PDE using py-pde. Throughout this section, we assume that the package
has been imported using import pde.

3.2.1 Defining the geometry

The state of the system is described in a discretized geometry, also known as a grid. The package focuses on simple ge-
ometries, which work well for the employed finite difference scheme. Grids are defined by instance of various classes that
capture the symmetries of the underlying space. In particular, the package offers Cartesian grids of / to 3 dimensions via
CartesianGrid, as well as curvilinear coordinate for spherically symmetric systems in two dimension (PolarSym—
Grid) and three dimensions (SphericalSymGrid), as well as the special class CylindricalSymGrid for a
cylindrical geometry which is symmetric in the angle.

All grids allow to set the size of the underlying geometry and the number of support points along each axis, which
determines the spatial resolution. Moreover, most grids support periodic boundary conditions. For example, a rectangular
grid with one periodic boundary condition can be specified as

[grid = pde.CartesianGrid([[0O, 10], [0, 5]1, [20, 10], periodic=[True, False]) J

This grid will have a rectangular shape of 10x5 with square unit cells of side length 0.5. Note that the grid will only be
periodic in the x-direction.

3.2.2 Initializing a field

Fields specifying the values at the discrete points of the grid defined in the previous section. Most PDEs discussed in
the package describe a scalar variable, which can be encoded th class ScalarField. However, tensors with rank 1
(vectors) and rank 2 are also supported using VectorField and Tensor2Field, respectively. In any case, a field
is initialized using a pre-defined grid, e.g., field = pde.ScalarField(grid). Optional values allow to set
the value of the grid, as well as a label that is later used in plotting, e.g., fieldl = pde.ScalarField(grid,
data=1, label="Ones"). Moreover, fields can be initialized randomly (field2 = pde.ScalarField.
random_normal (grid, mean=0.5)) or from a mathematical expression, which may depend on the coordinates
of the grid (field3 = pde.ScalarField.from_expression(grid, "x * y")).
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All field classes support basic arithmetic operations and can be used much like numpy arrays. Moreover, they have
methods for applying differential operators, e.g., the result of applying the Laplacian to a scalar field is returned by
calling the method Iaplace (), which returns another instance of ScalarField, whereas gradient () returns a
VectorField. Combining these functions with ordinary arithmetics on fields allows to represent the right hand side
of many partial differential equations that appear in physics. Importantly, the differential operators work with flexible
boundary conditions.

3.2.3 Specifying the PDE

PDEs are also instances of special classes and a number of classical PDEs are already pre-defined in the module pde .
pdes. Moreover, the special class PDE allows defining PDEs by simply specifying the expression on their right hand side.
To see how this works in practice, let us consider the Kuramoto—Sivashinsky equation, dyu = —V*u - Vu — %|Vu|2,
which describes the time evolution of a scalar field u. A simple implementation of this equation reads

[eq = pde.PDE ({"u": "-gradient_squared(u) / 2 - laplace(u + laplace(u))"}) J

Here, the argument defines the evolution rate for all fields (in this case only ). The expression on the right hand side can
contain typical mathematical functions and the operators defined by the package.

3.2.4 Running the simulation

To solve the PDE, we first need to generate an initial condition, i.e., the initial values of the fields that are evolved forward
in time by the PDE. This field also defined the geometry on which the PDE is solved. In the simplest case, the solution is
then obtain by running

[result = eqg.solve(field, t_range=10, dt=le-2) J

Here, ¢_range specifies the duration over which the PDE is considered and dt specifies the time step. The result field will
be defined on the same grid as the initial condition field, but instead contain the data value at the final time. Note that all
intermediate states are discarded in the simulation above and no information about the dynamical evolution is retained.
To study the dynamics, one can either analyze the evolution on the fly or store its state for subsequent analysis. Both these
tasks are achieved using t rackers, which analyze the simulation periodically. For instance, to store the state for some
time points in memory, one uses

storage = pde.MemoryStorage ()
result = eqg.solve(field, t_range=10, dt=le-3, tracker=["progress", storage.
—tracker (1)1)

Note that we also included the special identifier "progress™" in the list of trackers, which shows a progress bar during
the simulation. Another useful tracker is "plot " which displays the state on the fly.

3.2.5 Analyzing the results

Sometimes is suffices to plot the final result, which can be done using result .plot (). The final result can of course
also be analyzed quantitatively, e.g., using result .average to obtain its mean value. If the intermediate states have
been saved as indicated above, they can be analyzed subsequently:

for time, field in storage.items() :
print (f"t={time/}, field={field.magnitude}")

Moreover, a movie of the simulation can be created using pde .movie (storage, filename=FILE), where FILE
determines where the movie is written.
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3.3 Advanced usage

3.3.1 Boundary conditions

A crucial aspect of partial differential equations are boundary conditions, which need to be specified at the domain bound-
aries. For the simple domains contained in py-pde, all boundaries are orthogonal to one of the axes in the domain, so
boundary conditions need to be applied to both sides of each axis. Here, the lower side of an axis can have a differnt
condition than the upper side. For instance, one can enforce the value of a field to be 4 at the lower side and its derivative
(in the outward direction) to be 2 on the upper side using the following code:

bc_lower = {"value": 4}
bc_upper = {"derivative": 2}
bc = [bc_lower, bc_upper]

grid = pde.UnitGrid([16])
field = pde.ScalarField(grid)
field.laplace (bc)

Here, the Laplace operator applied to the field in the last line will respect the boundary conditions. Note that it suffices to
give one condition if both sides of the axis require the same condition. For instance, to enforce a value of 3 on both side,
one could simply use bc = {'value': 3}. Vectorial boundary conditions, e.g., to calculate the vector gradient
or tensor divergence, can have vectorial values for the boundary condition. Generally, only the normal components at
a boundary need to be specified if an operator reduces the rank of a field, e.g., for divergences. Otherwise, e.g., for
gradients and Laplacians, the full field needs to be specified at the boundary.

Boundary values that depend on space can be set by specifying a mathematical expression, which may depend on the
coordinates of all axes:

# two different conditions for lower and upper end of x—-axis

bc_x = [{"derivative": 0.1}, {"value": "sin(y / 2)"}]
# the same condition on the lower and upper end of the y-axis
bc_y = {"value": "sgrt (1l + cos(x))"}

grid = UnitGrid([32, 32])
field = pde.ScalarField (grid)
field.laplace (bc=[bc_x, bc_y])

Warning: To interpret arbitrary expressions, the package uses exec () . It should therefore not be used in a context
where malicious input could occur.

Inhomogeneous values can also be specified by directly supplying an array, whose shape needs to be compatible with the
boundary, i.e., it needs to have the same shape as the grid but with the dimension of the axis along which the boundary
is specified removed.

There exist also special boundary conditions that impose a more complex value of the field
(bc='value_expression') or its derivative (bc='derivative_expression'). Beyond the spatial
coordinates that are already supported for the constant conditions above, the expressions of these boundary conditions
can depend on the time variable t. Moreover, these boundary conditions also except python functions (with signature
adjacent_value, dx, *coords, t), thus greatly enlarging the flexibility with which boundary conditions can be expressed.
Note that PDEs need to supply the current time ¢ when setting the boundary conditions, e.g., when applying the
differential operators. The pre-defined PDEs and the general class PDE already support time-dependent boundary
conditions.
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One important aspect about boundary conditions is that they need to respect the periodicity of the underlying grid. For
instance, in a 2d grid with one periodic axis, the following boundary condition can be used:

grid = pde.UnitGrid([16, 16], periodic=[True, False])
field = pde.ScalarField (grid)

bc = ["periodic", {"derivative": 0}]
field.laplace (bc)

For convenience, this typical situation can be described with the special boundary condition auto_periodic_neumann,
e.g., calling the Laplace operator using field.laplace ("auto_periodic_neumann") is identical to the ex-
ample above. Similarly, the special condition auto_periodic_dirichlet enforces periodic boundary conditions or Dirichlet
boundary condition (vanishing value), depending on the periodicity of the underlying grid.

In summary, we have the following options for boundary conditions on a field ¢

Table 1: Supported boundary conditions

Name Condition Example
Dirichlet c=0 "dirichlet" or "value"
¢ = const {"value": 1.5}
c= f(x,t) {"value_expression": "sin(x)"}
c= f(x,t) {"value_expression": func} with function
func (value, dx, *coords, t)
Neumann Opc=0 "neumann" or "derivative"
Opc = const {"derivative": -2}
One = f(x,t) {"derivative_expression": "exp (t)"}
Robin Onc + value - ¢ = const {"type": "mixed", "value": 2,
"const": T}
Opc + value - ¢ = const {"type": "mixed_ expression", "value":
"exp(t)", "const": "3 * x"}
Curvature 02 ¢ = const {"curvature": 3}
Periodic ¢(0) = ¢(L) "periodic"
Anti-periodic ¢(0) = —¢(L) "anti-periodic"
Periodic or Dirichlet ¢(0) = ¢(L) orc =0 "auto_periodic_dirichlet"
Periodic or Neu- ¢(0) =c¢(L)ord,c=0 "auto_periodic_neumann"

mann

Here, 0,, denotes a derivative in outward normal direction, f denotes an arbitrary function given by an expression (see
next section), x denotes coordinates along the boundary, ¢ denotes time.

3.3.2 Expressions

Expressions are strings that describe mathematical expressions. They can be used in several places, most prominently
in defining PDEs using PDE, in creating fields using from_expression (), and in defining boundary conditions; see
section above. Expressions are parsed using sympy, so the expected syntax is defined by this python package. While we
describe some common use cases below, it might be best to test the abilities using the evaluate () function.

Warning: To interpret arbitrary expressions, the package uses exec () . It should therefore not be used in a context
where malicious input could occur.
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Simple expressions can contain many standard mathematical functions, e.g., sin (a) + b**2 is a valid expression.
PDE and evaluate () furthermore accept differential operators defined in this package. Note that operators need to
be specified with their full name, i.e., laplace for a scalar Laplacian and vector_laplace for a Laplacian operating on a
vector field. Moreover, the dot product between two vector fields can be denoted by using dot (fieldl, field2) in
the expression, and outer (fieldl, field2) calculates an outer product. In this case, boundary conditons for the
operators can be specified using the bc argument, in which case the same boundary conditions are applied to all operators.
The additional argument bc_ops provides a more fine-grained control, where conditions for each individual operator can
be specified.

Field expressions can also directly depend on spatial coordinates. For instance, if a field is defined on a two-dimensional
Cartesian grid, the variables x and y denote the local coordinates. To initialize a step profile in the z-direction, one can
use either (x > 5) or heaviside (x — 5, 0.5), where the second argument denotes the returned value in case
the first argument is 0. Finally, expressions for equations in PDE can explicitely depend on time, which is denoted by the
variable t.

Expressions also support user-defined functions via the user_funcs argument, which is a dictionary that maps the name of
a function to an actual implementation. Finally, constants can be defined using the consts argument. Constants can either
be individual numbers or spatially extended data, which provide values for each grid point. Note that in the latter case
only the actual grid data should be supplied, i.e., the data attribute of a potential field class.

3.3.3 Custom PDE classes

To implement a new PDE in a way that all of the machinery of py-pde can be used, one needs to subclass PDEBase and
overwrite at least the evolution_rate () method. A simple implementation for the Kuramoto—Sivashinsky equation
could read

class KuramotoSivashinskyPDE (PDEBase) :

def evolution_rate(self, state, t=0):
""" numpy implementation of the evolution equation """

state_lapacian = state.laplace (bc="auto_periodic_neumann")
state_gradient = state.gradient (bc="auto_periodic_neumann")
return (- state_lapacian.laplace (bc="auto_periodic_neumann")

- state_lapacian
- 0.5 * state_gradient.to_scalar ("squared_sum"))

A slightly more advanced example would allow for attributes that for instance define the boundary conditions and the
diffusivity:

class KuramotoSivashinskyPDE (PDEBase) :

def _ init_ (self, diffusivity=1, bc="auto_periodic_neumann", bc_laplace="auto_
—periodic_neumann") :
""n o jnitialize the class with a diffusivity and boundary conditions
for the actual field and its second derivative """
self.diffusivity = diffusivity
self.bc = bc
self.bc_laplace = bc_laplace

def evolution_rate(self, state, t=0):
""" numpy implementation of the evolution equation

mmn

state_lapacian = state.laplace (bc=self.bc)
state_gradient = state.gradient (bc=self.bc)
return (- state_lapacian.laplace (bc=self.bc_laplace)

- state_lapacian
- 0.5 * self.diffusivity * (state_gradient @ state_gradient))
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We here replaced the call to to_scalar ('squared_sum') by a dot product with itself (using the @ notation),
which is equivalent. Note that the numpy implementation of the right hand side of the PDE is rather slow since it runs
mostly in pure python and constructs a lot of intermediate field classes. While such an implementation is helpful for
testing initial ideas, actual computations should be performed with compiled PDEs as described below.

3.3.4 Low-level operators

This section explains how to use the low-level version of the field operators. This is necessary for the numba-accelerated
implementations described above and it might be necessary to use parts of the py-pde package in other packages.

Differential operators

Applying a differential operator to an instance of ScalarFieldisasimpleascallingfield.laplace (bc), where
bc denotes the boundary conditions. Calling this method returns another ScalarField, which in this case contains
the discretized Laplacian of the original field. The equivalent call using the low-level interface is

apply_laplace = field.grid.make_operator ("laplace", bc)

laplace_data = apply_laplace(field.data)

Here, the first line creates a function apply_laplace for the given grid field.grid and the boundary conditions
bc. This function can be applied to numpy . ndarray instances, e.g. field.data. Note that the result of this call is
again a numpy .ndarray.

Similarly, a gradient operator can be defined

grid = UnitGrid([6, 8])
apply_gradient = grid.make_operator ("gradient", bc="auto_periodic_neumann")

data = np.random.random( (6, 8))
gradient_data = apply_gradient (data)
assert gradient_data.shape == (2, 6, 8)

Note that this example does not even use the field classes. Instead, it directly defines a grid and the respective gradient
operator. This operator is then applied to a random field and the resulting numpy . nda rray represents the 2-dimensional
vector field.

The make_operator method of the grids generally supports the following differential operators: 'laplacian’,
'gradient', 'gradient_squared', 'divergence', 'vector_gradient', 'vector_laplace',
and 'tensor_divergence'. Moreover, generic operators that perform a derivative along a single axis are sup-
ported: Specifying 'd_dx"' for instance performs a single derivative along the x-direction, 'd_dy_forward' uses a
forward derivative along the y-direction, and 'd_d2r ' performs a second derivative in r-direction. A complete list of
operators supported by a certain grid class can be obtained from the class property GridClass.operators. New
operators can be added using the class method GridClass.register_operator ().
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Field integration

The integral of an instance of ScalarField is usually determined by accessing the property field.integral.
Since the integral of a discretized field is basically a sum weighted by the cell volumes, calculating the integral using only
numpy is easy:

cell _volumes = field.grid.cell_volumes
integral = (field.data * cell_volumes) .sum()

Note that cel1l_volumes is a simple number for Cartesian grids, but is an array for more complicated grids, where
the cell volume is not uniform.

Field interpolation

The fields defined in the py-pde package also support linear interpolation by calling field.interpolate (point).
Similarly to the differential operators discussed above, this call can also be translated to code that does not use the full
package:

grid = UnitGrid([6, 81])
interpolate = grid.make_interpolator_compiled (bc="auto_periodic_neumann™)

data = np.random.random( (6, 8))
value = interpolate(data, np.array([3.5, 7.91))

We first create a function interpolate, which is then used to interpolate the field data at a certain point. Note that
the coordinates of the point need to be supplied as a numpy . ndarray and that only the interpolation at single points
is supported. However, iteration over multiple points can be fast when the loop is compiled with numba.

Inner products

For vector and tensor fields, py-pde defines inner products that can be accessed conveniently using the @-syntax: fieldl
@ field2 determines the scalar product between the two fields. The package also provides an implementation for an
dot-operator:

grid = UnitGrid([6, 81])
fieldl = VectorField.random_normal (grid)
field2 = VectorField.random_normal (grid)

dot_operator = fieldl.make_dot_operator ()

result = dot_operator (fieldl.data, field2.data)
assert result.shape == (6, 8)

Here, result is the data of the scalar field resulting from the dot product.
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3.3.5 Numba-accelerated PDEs

The compiled operators introduced in the previous section can be used to implement a compiled method for the evolution
rate of PDEs. As an example, we now extend the class Kuramot oSivashinskyPDE introduced above:

from pde.tools.numba import jit

class KuramotoSivashinskyPDE (PDEBase) :

def _ init_ (self, diffusivity=1, bc="auto_periodic_neumann", bc_laplace="auto_
—periodic_neumann") :
""nw initialize the class with a diffusivity and boundary conditions
for the actual field and its second derivative """
self.diffusivity = diffusivity
self.bc = bc
self.bc_laplace = bc_laplace

def evolution_rate(self, state, t=0):
""" numpy implementation of the evolution equation

mmn

state_lapacian = state.laplace (bc=self.bc)
state_gradient = state.gradient (bc="auto_periodic_neumann")
return (- state_lapacian.laplace (bc=self.bc_laplace)

- state_lapacian
- 0.5 * self.diffusivity * (state_gradient @ state_gradient))

def _make_pde_rhs_numba (self, state):
""nmo the numba-accelerated evolution equation
# make attributes locally available
diffusivity = self.diffusivity

mn

# create operators

laplace_u = state.grid.make_operator ("laplace", bc=self.bc)
gradient_u = state.grid.make_operator ("gradient", bc=self.bc)
laplace2_u = state.grid.make_operator ("laplace", bc=self.bc_laplace)

dot = VectorField(state.grid) .make_dot_operator ()

@jit
def pde_rhs(state_data, t=0):
""" compiled helper function evaluating right hand side """
state_lapacian = laplace_u(state_data)
state_grad = gradient_u(state_data)
return (- laplace2_u(state_lapacian)
— state_lapacian

— diffusivity / 2 * dot (state_grad, state_grad))

return pde_rhs

To activate the compiled implementation of the evolution rate, we simply have to overwrite the
_make_pde_rhs_numba () method. This method expects an example of the state class (e.g., an instance of
ScalarField) and returns a function that calculates the evolution rate. The state argument is necessary to define the
grid and the dimensionality of the data that the returned function is supposed to be handling. The implementation of the
compiled function is split in several parts, where we first copy the attributes that are required by the implementation. This
is necessary, since numba freezes the values when compiling the function, so that in the example above the diffusivity
cannot be altered without recompiling. In the next step, we create all operators that we need subsequently. Here, we use
the boundary conditions defined by the attributes, which requires two different laplace operators, since their boundary
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conditions might differ. In the last step, we define the actual implementation of the evolution rate as a local function that
is compiled using the jit decorator. Here, we use the implementation shipped with py-pde, which sets some default
values. However, we could have also used the usual numba implementation. It is important that the implementation of
the evolution rate only uses python constructs that numba can compile.

One advantage of the numba compiled implementation is that we can now use loops, which will be much faster than their
python equivalents. For instance, we could have written the dot product in the last line as an explicit loop:

[...]

def _make_pde_rhs_numba(self, state):
""" the numba-accelerated evolution equation
# make attributes locally available
diffusivity = self.diffusivity

min

# create operators

laplace_u = state.grid.make_operator ("laplace", bc=self.bc)
gradient_u = state.grid.make_operator ("gradient", bc=self.bc)
laplace2_u = state.grid.make_operator ("laplace", bc=self.bc_laplace)

dot = VectorField(state.grid) .make_dot_operator ()
dim = state.grid.dim

@jit
def pde_rhs(state_data, t=0):
""" compiled helper function evaluating right hand side
state_lapacian = laplace_u(state_data)
state_grad = gradient_u(state_data)
result = - laplace2_u(state_lapacian) - state_lapacian

mmn

for i in range(state_data.size):
for j in range (dim) :
result.flat[i] -= diffusivity / 2 * state_grad[j].flat[i]**2

return result

return pde_rhs

Here, we extract the total number of elements in the state using its size attribute and we obtain the dimensionality
of the space from the grid attribute dim. Note that we access numpy arrays using their £1at attribute to provide an
implementation that works for all dimensions.

3.3.6 Configuration parameters

Configuration parameters affect how the package behaves. They can be set using a dictionary-like interface of the con-
figuration config, which can be imported from the base package. Here is a list of all configuration options that can be
adjusted in the package:

numba.debug
Determines whether numba uses the debug mode for compilation. If enabled, this emits extra information that
might be useful for debugging. (Default value: False)

numba.fastmath
Determines whether the fastmath flag is set during compilation. If enabled, some mathematical operations might
be faster, but less precise. This flag does not affect infinity detection and NaN handling. (Default value: True)

numba.multithreading
Determines whether multiple threads are used in numba-compiled code. Enabling this option accelerates a small
subset of operators applied to fields defined on large grids. (Default value: True)
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numba.multithreading_threshold
Minimal number of support points of grids before multithreading is enabled in numba compilations. Has no effect
when “numba.multithreading” is “False’. (Default value: 65536)

Tip: To disable parallel computing in the package, the following code could be added to the start of the script:

from pde import config
config["numba.multithreading"] = False

# actual code using py-pde

3.4 Performance

3.4.1 Measuring performance

The performance of the py-pde package depends on many details and general statements are thus difficult to make.
However, since the core operators are just-in-time compiled using numba, many operations of the package proceed at
performances close to most compiled languages. For instance, a simple Laplace operator applied to fields defined on a
Cartesian grid has performance that is similar to the operators supplied by the popular OpenCV package. The following
figures illustrate this by showing the duration of evaluating the Laplacian on grids of increasing number of support points
for two different boundary conditions (lower duration is better):
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2D Laplacian (reflecting BCs)
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Note that the call overhead is lower in the py-pde package, so that the performance on small grids is particularly good.
However, realistic use-cases probably need more complicated operations and it is thus always necessary to profile the re-
spective code. This can be done using the function est imate_computation_speed () or the traditional t imeit,
profile, or even more sophisticated profilers like pyinstrument.

3.4.2 Improving performance

Beside the underlying implementation of the operators, a major factor for performance is numerical problem at hand
and the methods that are used to solve it. As a rule of thumb, simulations run faster when there are fewer degrees of
freedom. In the case of partial differential equations, this often means using a coarser grid with fewer support points.
However, there often also is an lower bound to the number of support points if structures of a certain length scales need
to be resolved. Reducing the number of support points not only reduces the number of variables to be treated, but it can
also allow for larger time steps. This is particularly transparent for the simple diffusion equation, where a von Neumann
stability analysis reveals that the maximal time step scales as one over the discretization length squared! Choosing the
right time step obviously also affects performance of a simulation. The package supports automatic choice of suitable
time steps, using adaptive stepping schemes. To enable those, it’s best to specify an initial time step, like so

[eq.solve(t_rangele, dt=1e-3, adaptive=True)

An additional advantage of this choice is that it selects ExplicitSolver, which is also compiled with numba for
speed. Alternatively, if only 7_range is specified, the generic scipy-solver ScipySolver, which can be significantly
slower.

Additional factors influencing the performance of the package include the compiler used for numpy, scipy, and of
course numba. Moreover, the BLAS and LAPACK libraries might make a difference. The package has some basic
support for multithreading, which can be accelerated using the Threading Building Blocks library. Finally, it can help to
install the intel short vector math library (SVML). However, this is not distributed with macports and might thus be
more difficult to enable.

Using macports, one could for instance install the following variants of typical packages

port install py37-numpy +gcc8+openblas
port install py37-scipy +gcc8+openblas
port install py37-numba +tbb

Note that you can disable the automatic multithreading via Configuration parameters.
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3.4.3 Multiprocessing using MPI

The package also supports parallel simulations of PDEs using the Message Passing Interface (MPI), which allows com-
bining the power of CPU cores that do not share memory. To use this advanced simulation technique, a working imple-
mentation of MPI needs to be installed on the computer. Usually, this is done automatically, when the optional package
numba-mpi is installed via pip or conda.

To run simulations in parallel, the special solver ExplicitMPISolver needs to be used and the entire script needs
to be started using mpiexec. Taken together, a minimal example reads

from pde import DiffusionPDE, ScalarField, UnitGrid

grid = UnitGrid([64, 64])
state = ScalarField.random_uniform(grid, 0.2, 0.3)

eq = DiffusionPDE (diffusivity=0.1)
result = eg.solve(state, t_range=10, dt=0.1, method="explicit_mpi")

if result is not None: # restrict the output to the main node
result.plot ()

Saving this script as multiprocessing.py, we can evoke a parallel simulation using

[mpiexec -n 2 python3 multiprocessing.py

Here, the number 2 determines the number of cores that will be used. Note that macOS might require an additional hint
on how to connect the processes even when they are run on the same machine (e.g., your workstation). It might help to
runmpiexec -n 2 —host localhost:2 python3 multiprocessing.py in this case.

In the example above, two python processes will start in parallel and run independently at first. In particular, both processes
will load all packages and create the initial state field as well as the PDE class eq. Once the explicit_mpi solver is evoked,
the processes will start communicating. py-pde will split up the full grid into two sub-grids, in this case of shape 32x64,
distribute the associated sub-fields to both processes and ask each process to evolve the PDE for their sub-field. Note
that boundary conditions are treated and boundary values are exchanged between neighboring sub-grids automatically.
To avoid confusion, trackers will only be used on one process and also the result is only returned in one process to avoid
problems where multiple process write data simultaneously. Consequently, the example above checked whether result is
None (in which case the corresponnding process is a child process) and only resumes analysis when the result is actually
present.

The automatic treatment tries to use sensible default values, so typical simulations work out of the box. However, in some
situations it might be advantageous to adjust these values. For instance, the decomposition of the grid can be affected by an
argument decomposition, which can be passed to the solve () method or the ExplicitMPISolver. The argument
should be a list with one integer for each axis in the grid, which specifies how often the particular axis is divided.

Warning: The automatic division of the grid into sub-grids can lead to unexpected behavior, particularly in custom
PDEs that were not designed for this use case. As a rule of thumb, all local operations are fine (since they can be
performed on each subgrid), while global operations might need synchronization between all subgrids. One example
is integration, which has been implemented properly in py-pde. Consequently, it is safe to use integral.
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3.5 Contributing code

3.5.1 Structure of the package

The functionality of the pde package is split into multiple sub-package. The domain, together with its symmetries,
periodicities, and discretizations, is described by classes defined in grids. Discretized fields are represented by classes
in £1elds, which have methods for differential operators with various boundary conditions collected in boundaries.
The actual pdes are collected in pde s and the respective solvers are defined in solvers.

3.5.2 Extending functionality

All code is build on a modular basis, making it easy to introduce new classes that integrate with the rest of the package.
For instance, it is simple to define a new partial differential equation by subclassing PDEBase. Alternatively, PDEs
can be defined by specifying their evolution rates using mathematical expressions by creating instances of the class PDE.
Moreover, new grids can be introduced by subclassing GridBase. It is also possible to only use parts of the package,
e.g., the discretized differential operators from operators.

New operators can be associated with grids by registering them using register_operator (). Forinstance, to create
anew operator for the cylindrical grid one needs to define a factory function that creates the operator. This factory function
takes an instance of Boundaries as an argument and returns a function that takes as an argument the actual data array
for the grid. Note that the grid itself is an attribute of Boundaries. This operator would be registered with the grid by
calling CylindricalSymGrid.register_operator ("operator", make_operator), where the first
argument is the name of the operator and the second argument is the factory function.

3.5.3 Design choices

The data layout of field classes (subclasses of 7'ie1dBase) was chosen to allow for a simple decomposition of different
fields and tensor components. Consequently, the data is laid out in memory such that spatial indices are last. For instance,
the data of a vector field field defined on a 2d Cartesian grid will have three dimensions and can be accessed as
field.data[vector_component, x, y],wherevector_component is either Oor 1.

3.5.4 Coding style

The coding style is enforced using isort and black. Moreover, we use Google Style docstrings, which might be best
learned by example. The documentation, including the docstrings, are written using reStructuredText, with examples in
the following cheatsheet. To ensure the integrity of the code, we also try to provide many test functions, contained in the
separate sub-folder t est s. These tests can be ran using scripts in the script s subfolder in the root folder. This folder
also contain a script tests_types. sh, which uses mypy to check the consistency of the python type annotations.
We use these type annotations for additional documentation and they have also already been useful for finding some bugs.

We also have some conventions that should make the package more consistent and thus easier to use. For instance, we
try to use properties instead of getter and setter methods as often as possible. Because we use a lot of numba just-
in-time compilation to speed up computations, we need to pass around (compiled) functions regularly. The names of the
methods and functions that make such functions, i.e. that return callables, should start with ‘make_*’ where the wildcard
should describe the purpose of the function being created.
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3.5.5 Running unit tests

The pde package contains several unit tests, collection in the tests folder in the project root. These tests ensure that
basic functions work as expected, in particular when code is changed in future versions. To run all tests, there are a few
convenience scripts in the root directory scripts. The most basic script is tests_run. sh, which uses pytest
to run the tests. Clearly, the python package pytest needs to be installed. There are also additional scripts that for
instance run tests in parallel (needs the python package pytest—xdi st installed), measure test coverage (needs package
pytest—cov installed), and make simple performance measurements. Moreover, there is a script test_types. sh,
which uses mypy to check the consistency of the python type annotations and there is a script format_code. sh,
which formats the code automatically to adhere to our style.

Before committing a change to the code repository, it is good practice to run the tests, check the type annotations, and
the coding style with the scripts described above.

3.6 Citing the package

To cite or reference py-pde in other work, please refer to the publication in the Journal of Open Source Software. Here
are the respective bibliographic records in Bibtex format:

Qarticle{py-pde,
Author = {David Zwicker},
Doi = {10.21105/joss.02158},
Journal = {Journal of Open Source Software},
Number = {48},
Pages = {2158},
Publisher = {The Open Journal},
Title = {py-pde: A Python package for solving partial differential equations},
Url = {https://doi.org/10.21105/joss.02158},
Volume = {5},
Year = {2020}

and in RIS format:

TY - JOUR

AU - Zwicker, David

JO - Journal of Open Source Software

IS - 48

SP - 2158

PB - The Open Journal

Tl - py-pde: A Python package for solving partial differential equations
UR - https://doi.org/10.21105/joss.02158

VL - 5

PY - 2020
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3.7 Code of Conduct

3.7.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

3.7.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:
¢ Using welcoming and inclusive language
 Being respectful of differing viewpoints and experiences
 Gracefully accepting constructive criticism
 Focusing on what is best for the community
¢ Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
» The use of sexualized language or imagery and unwelcome sexual attention or advances
¢ Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
 Publishing others’ private information, such as a physical or electronic address, without explicit permission

* Other conduct which could reasonably be considered inappropriate in a professional setting

3.7.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate
and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

3.7.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline event.
Representation of a project may be further defined and clarified by project maintainers.
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3.7.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
david.zwicker@ds.mpg.de. All complaints will be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to
the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

3.7.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq
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CHAPTER
FOUR

REFERENCE MANUAL

The py-pde package provides classes and methods for solving partial differential equations.

Subpackages:

4.1 pde.fields package

Defines fields, which contain the actual data stored on a discrete grid.

ScalarField
VectorField
Tensor2Field
FieldCollection

Scalar field discretized on a grid

Vector field discretized on a grid

Tensor field of rank 2 discretized on a grid
Collection of fields defined on the same grid

Inheritance structure of the classes:

DataFieldBase

ScalarField

\ 4

FieldBase

FieldCollection

The details of the classes are explained below:

Tensor2Field

VectorField
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4.1.1 pde.fields.base module

Defines base classes of fields, which are discretized on grids

class DataFieldBase (grid, data='zeros', *, label=None, dtype=None, with_ghost_cells=False)
Bases: FieldBase

abstract base class for describing fields of single entities
Parameters
* grid (GridBase) — Grid defining the space on which this field is defined.

* data (Number or ndarray, optional) — Field values at the support points of the grid. The
flag with_ghost_cells determines whether this data array contains values for the ghost cells,
too. The resulting field will contain real data unless the data argument contains complex values.
Special values are “zeros” or None, initializing the field with zeros, and “empty”, just allocating
memory with unspecified values.

* label (str, optional)- Name of the field

* dtype (numpy dtype)— The data type of the field. If omitted, it will be determined from
data automatically.

* with_ghost_cells (bool) - Indicates whether the ghost cells are included in data

apply_operator (operator, bc, out=None, *, label=None, args=None, **kwargs)

apply a (differential) operator and return result as a field
Parameters

¢ operator (str)— An identifier determining the operator. Note that not all grids support
the same operators.

e be (Dict[str, Dict | str | BCBase] | Dict | str | BCBase |
Tuple[Dict | str | BCBase, Dict | str | BCBase] | Bound-
aryAxisBase | Sequence[Dict[str, Dict | str | BCBase] | Dict
| str | BCBase | Tuple[Dict | str | BCBase, Dict | str |
BCBase] | BoundaryAxisBase] | None)- Boundary conditions applied to the
field before applying the operator. Boundary conditions are generally given as a list with one
condition for each axis. For periodic axes, only periodic boundary conditions are allowed
(indicated by ‘periodic’ and ‘anti-periodic’). For non-periodic axes, different boundary con-
ditions can be specified for the lower and upper end (using a tuple of two conditions). For
instance, Dirichlet conditions enforcing a value NUM (specified by { ‘value’: NUM}) and
Neumann conditions enforcing the value DERIV for the derivative in the normal direction
(specified by { derivative’: DERIV}) are supported. Note that the special value ‘natural’ im-
poses periodic boundary conditions for periodic axis and a vanishing derivative otherwise.
More information can be found in the boundaries documentation. If the special value None
is given, no boundary conditions are enforced. The user then needs to ensure that the ghost
cells are set accordingly.

e out (DataFieldBase, optional) — Optional field to which the result is written.
e label (str, optional)— Name of the returned field

e args (dict)— Additional arguments for the boundary conditions

» **kwargs — Additional arguments affecting how the operator behaves.

Returns
Field data after applying the operator. This field is identical to out if this argument was specified.
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Return type
DataFieldBase

property average: int | float | complex | ndarray
the average of data

This is calculated by integrating each component of the field over space and dividing by the grid volume

Type
float or ndarray

copy ( *, label=None, dtype=None)
return a new field with the data (but not the grid) copied

Parameters
e label (str, optional)- Name of the returned field

e dtype (numpy dtype) - The data type of the field. If omitted, it will be determined
from data automatically or the dtype of the current field is used.

e self (ThataField)—

Returns
A copy of the current field

Return type
DataFieldBase
property data_shape: Tuple[int, ...]
the shape of the data at each grid point
Type
tuple

property fluctuations: int | float | complex | ndarray

quantification of the average fluctuations

The fluctuations are defined as the standard deviation of the data scaled by the cell volume. This definition
makes the fluctuations independent of the discretization. It corresponds to the physical scaling available in
the random_normal ().

Returns
A tensor with the same rank of the field, specifying the fluctuations of each component of the

tensor field individually. Consequently, a simple scalar is returned for a ScalarField.

Return type
ndarray

Type
float or ndarray

classmethod from_state (attributes, data=None)

create a field from given state.
Parameters
¢ attributes (dict) - The attributes that describe the current instance

¢ data (ndarray, optional) — Data values at the support points of the grid defining the field

Returns
The instance created from the stored state
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Return type
DataFieldBase

get_boundary_values (axis, upper, bc=None)
get the field values directly on the specified boundary

Parameters
e axis (int) - The axis perpendicular to the boundary
* upper (bool)— Whether the boundary is at the upper side of the axis

e be (Dict[str, Dict | str | BCBase] | Dict | str | BCBase |
Tuple[Dict | str | BCBase, Dict | str | BCBase] | Bound-
aryAxisBase | Sequence[Dict[str, Dict | str | BCBase] | Dict
| str | BCBase | Tuple[Dict | str | BCBase, Dict [ str |
BCBase] | BoundaryAxisBase] | None)- The boundary conditions applied to
the field. Boundary conditions are generally given as a list with one condition for each axis.
For periodic axes, only periodic boundary conditions are allowed (indicated by ‘periodic’ and
‘anti-periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by { value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by { derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

Returns
The discretized values on the boundary

Return type
ndarray

classmethod get_class_by_rank (rank)

return a DataFieldBase subclass describing a field with a given rank

Parameters
rank (int) — The rank of the tensor field

Returns
The DataField class that corresponds to the rank

Return type
Type[DataFieldBase]

get_image_data (scalar='auto’, transpose=False, **kwargs)

return data for plotting an image of the field
Parameters

e scalar (str or int) — The method for extracting scalars as described in
DataFieldBase.to_scalar().

* transpose (bool)— Determines whether the transpose of the data should is plotted
» **kwargs — Additional parameters are forwarded to grid.get_image_data

Returns
Information useful for plotting an image of the field
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Return type
dict

get_line_data (scalar="auto', extract="auto')
return data for a line plot of the field
Parameters

e scalar (str or int) — The method for extracting scalars as described in
DataFieldBase.to_scalar().

e extract (str)— The method used for extracting the line data. See the docstring of the
grid method get_line_data to find supported values.

Returns
Information useful for performing a line plot of the field

Return type
dict

get_vector_data (**kwargs)
return data for a vector plot of the field

Parameters
**kwargs — Additional parameters are forwarded to grid.get_image_data

Returns
Information useful for plotting an vector field

Return type
dict

insert (point, amount)
adds an (integrated) value to the field at an interpolated position

Parameters

* point (ndarray) — The point inside the grid where the value is added. This is given in
grid coordinates.

¢ amount (Number or ndarray) — The amount that will be added to the field. The value
describes an integrated quantity (given by the field value times the discretization volume).
This is important for consistency with different discretizations and in particular grids with
non-uniform discretizations.

Return type
None

abstract property integral: int | float | complex | ndarray

integral of the scalar field over space

interpolate (point, *, bc=None, fill=None)

interpolate the field to points between support points
Parameters

* point (ndarray) — The points at which the values should be obtained. This is given in
grid coordinates.

e bec(Dict[str, Dict | str | BCBase] | Dict | str | BCBase |/

Tuple[Dict | str | BCBase, Dict | str | BCBase] | Bound-
aryAxisBase | Sequence[Dict([str, Dict | str | BCBase] | Dict
| str | BCBase | Tuple[Dict | str | BCBase, Dict | str |

4.1.
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BCBase] | BoundaryAxisBase] | None)- The boundary conditions applied to
the field, which affects values close to the boundary. If omitted, the argument fill is used
to determine values outside the domain. Boundary conditions are generally given as a list
with one condition for each axis. For periodic axes, only periodic boundary conditions are
allowed (indicated by ‘periodic’ and ‘anti-periodic’). For non-periodic axes, different bound-
ary conditions can be specified for the lower and upper end (using a tuple of two conditions).
For instance, Dirichlet conditions enforcing a value NUM (specified by { value’: NUM}) and
Neumann conditions enforcing the value DERIV for the derivative in the normal direction
(specified by { derivative’: DERIV}) are supported. Note that the special value ‘natural’ im-
poses periodic boundary conditions for periodic axis and a vanishing derivative otherwise.
More information can be found in the boundaries documentation. If the special value None
is given, no boundary conditions are enforced. The user then needs to ensure that the ghost
cells are set accordingly.

e £ill (Number, optional)— Determines how values out of bounds are handled. If
None, a ValueError is raised when out-of-bounds points are requested. Otherwise, the given
value is returned.

Returns
the values of the field

Return type
ndarray

interpolate_to_grid (grid, *, fill=None, label=None)
interpolate the data of this field to another grid.

Parameters
* grid (GridBase) — The grid of the new field onto which the current field is interpolated.

e £ill (Number, optional)— Determines how values out of bounds are handled. If
None, a ValueError is raised when out-of-bounds points are requested. Otherwise, the given
value is returned.

e label (str, optional)- Name of the returned field
e self (ThataField)—

Returns
Field of the same rank as the current one.

Return type
TDataField

property magnitude: float

determine the (scalar) magnitude of the field

This is calculated by getting a scalar field using the default arguments of the to_scalar () method, aver-
aging the result over the whole grid, and taking the absolute value.

Type
float

make_dot_operator (backend="numba’, *, conjugate=True)

return operator calculating the dot product between two fields
This supports both products between two vectors as well as products between a vector and a tensor.
Parameters

* backend (st r)— Can be numba or numpy, deciding how the function is constructed
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conjugate (bool) — Whether to use the complex conjugate for the second operand

Returns
function that takes two instance of ndarray, which contain the discretized data of the two
operands. An optional third argument can specify the output array to which the result is written.

Return type
Callable[[ndarray, ndarray, ndarray | None], ndarray)

make_interpolator (¥, fill=None, with_ghost_cells=False)

returns a function that can be used to interpolate values.

Parameters

£ill (Number, optional)— Determines how values out of bounds are handled. If
None, a ValueError is raised when out-of-bounds points are requested. Otherwise, the given
value is returned.

with_ghost_cells (bool) — Flag indicating that the interpolator should work on the
full data array that includes values for the ghost points. If this is the case, the boundaries are
not checked and the coordinates are used as is.

Returns
A function which returns interpolated values when called with arbitrary positions within the
space of the grid.

Return type
Callable[[ndarray, ndarray], int | float | complex | ndarray]

plot (kind='auto', *args, title=None, filename=None, action="auto', ax_style=None, fig_style=None, ax=None,
**kwargs)

visualize the field

Parameters

kind (st r) — Determines the visualizations. Supported values are image, line, vector, or
interactive. Alternatively, auto determines the best visualization based on the field itself.

title (str) - Title of the plot. If omitted, the title might be chosen automatically.
filename (str, optional)-If given, the plot is written to the specified file.

action (str) - Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show () will be called to show the plot. If the value is none,
the figure will be created, but not necessarily shown. The value close closes the figure, after
saving it to a file when filename is given. The default value auto implies that the plot is shown
if it is not a nested plot call.

ax_style (dict) - Dictionary with properties that will be changed on the axis after the
plot has been drawn by calling matplotlib.pyplot.setp (). A special item i this
dictionary is use_offset, which is flag that can be used to control whether offset are shown
along the axes of the plot.

fig_style (dict) — Dictionary with properties that will be changed on the figure after
the plot has been drawn by calling matplotlib.pyplot.setp (). For instance, using
fig_style={‘dpi’: 200} increases the resolution of the figure.

ax (matplotlib.axes.Axes) - Figure axes to be used for plotting. The special value
“create” creates a new figure, while “reuse” attempts to reuse an existing figure, which is the
default.

4.1.
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» **kwargs — All additional keyword arguments are forwarded to the actual plotting function
determined by kind.

Returns
Instance that contains information to update the plot with new data later.

Return type
PlotReference

Tip: Typical additional arguments for the various plot kinds include

e kind == "line":

scalar: sets method for extracting scalars as described in DataFieldBase.to_scalar ().

extract: method used for extracting the line data.

ylabel: Label of the y-axis. If omitted, the label is chosen automatically from the data field.

Additional arguments are passed to matplotlib.pyplot.plot ()

* kind == "image":

colorbar: Determines whether a colorbar is shown

scalar: sets method for extracting scalars as described in
DataFieldBase.to_scalar().

transpose determines whether the transpose of the data is plotted
— Most remaining arguments are passed to matplotlib.pyplot.imshow ()

e kind == "~ "vector":

method can be either quiver or streamplot

transpose determines whether the transpose of the data is plotted

— max_points sets max. number of points along each axis in quiver plots

Additional arguments are passed to matplotlib.pyplot.quiver () or matplotlib.
pyplot.streamplot ().

classmethod random_colored (grid, exponent=0, scale=1, *, label=None, dtype=None, rng=None)
create a field of random values with colored noise

The spatially correlated values obey
(ci(k)e; (k) = T?|k["6;;0(k — k')

in spectral space, where k is the wave vector. The special case v = 0 corresponds to white noise. Note that
the spatial correlations always assume periodic boundary conditions (even if the underlying grid does not) and
that the components of tensor fields are uncorrelated.

Parameters
* grid (GridBase) — Grid defining the space on which this field is defined
¢ exponent (float)— Exponent v of the power spectrum
e scale (float)— Scaling factor I' determining noise strength
e label (str, optional)- Name of the returned field

» dtype (numpy dtype)— The data type of the field. If omitted, it defaults to double.
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* rng (Generator)— Random number generator (default: default_rng())

Return type
TDataField

classmethod random_harmonic (grid, modes=3, harmonic=<ufunc 'cos">, axis_combination=<ufunc
'multiply">, *, label=None, dtype=None, rng=None)

create a random field build from harmonics
The resulting fields will be highly correlated in space and can thus serve for testing differential operators.

With the default settings, the resulting field ¢;(x) is given by

N M 9
ci(x) = H Zaija Cos ( iLa ) )

a=1j=1

where NV is the number of spatial dimensions, each with length L, M is the number of modes given by
modes, and a;, are random amplitudes, chosen from a uniform distribution over the interval [0, 1].

Note that the product could be replaced by a sum when axis_combination = numpy.add and the cos() could
be any other function given by the parameter harmonic.

Parameters
* grid (GridBase) — Grid defining the space on which this field is defined
¢ modes (int)— Number M of harmonic modes

* harmonic (callable)— Determines which harmonic function is used. Typical values
are numpy . sin () and numpy . cos (), which basically relate to different boundary con-
ditions applied at the grid boundaries.

* axis_combination (callable) — Determines how values from different axis are
combined. Typical choices are numpy .multiply () and numpy.add () resulting in
products and sums of the values along axes, respectively.

e label (str, optional)- Name of the returned field
e dtype (numpy dtype)— The data type of the field. If omitted, it defaults to double.
* rng (Generator)— Random number generator (default: default_rng())

Return type
TDataField

classmethod random_normal (grid, mean=0, std=1, *, scaling='none’, label=None, dtype=None,
rng=None)

create field with normal distributed random values

These values are uncorrelated in space. A complex field is returned when either mean or std is a complex num-
ber. In this case, the real and imaginary parts of these arguments are used to determine the distribution of the
real and imaginary parts of the resulting field. Consequently, ScalarField.random_normal (grid,
0, 1 + 17) createsacomplex field where the real and imaginary parts are chosen from a standard normal
distribution.

Parameters
* grid (GridBase) — Grid defining the space on which this field is defined
e mean (f1oat)— Mean of the Gaussian distribution

¢ std (float)— Standard deviation of the Gaussian distribution.
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¢ scaling (st r)—Determines how the values are scaled. Possible choices are ‘none’ (values
are drawn from a normal distribution with given mean and standard deviation) or ‘physical’
(the variance of the random number is scaled by the inverse volume of the grid cell; this is
for instance useful for concentration fields, which vary less in larger volumes).

e label (str, optional)- Name of the returned field

e dtype (numpy dtype)— The data type of the field. If omitted, it defaults to double if
both mean and std are real, otherwise it is complex.

* rng (Generator)—Random number generator (default: default_rng())

Return type
TDataField

classmethod random_uniform (grid, vimin=0, vmax=1, *, label=None, dtype=None, rng=None)

create field with uniform distributed random values
These values are uncorrelated in space.
Parameters
e grid (GridBase) — Grid defining the space on which this field is defined
e vmin (f1oat)— Smallest possible random value
* vmax (f1oat) — Largest random value
e label (str, optional)- Name of the returned field

e dtype (numpy dtype)— The data type of the field. If omitted, it defaults to double if
both vmin and vmax are real, otherwise it is complex.

* rng (Generator)— Random number generator (default: default_rng())

Return type
TDataField

rank: int

set_ghost_cells (bc, *, args=None)

set the boundary values on virtual points for all boundaries
Parameters

e bec(str or 1list or tuple or dict)- The boundary conditions applied to
the field. Boundary conditions are generally given as a list with one condition for each axis.
For periodic axes, only periodic boundary conditions are allowed (indicated by ‘periodic’ and
‘anti-periodic’). For non-periodic axes, different boundary conditions can be specified for
the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions
enforcing a value NUM (specified by { value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by { derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation.

* args — Additional arguments that might be supported by special boundary conditions.

Return type
None
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smooth (sigma=1, *, out=None, label=None)
applies Gaussian smoothing with the given standard deviation
This function respects periodic boundary conditions of the underlying grid, using reflection when no period-
icity is specified.

Parameters
e sigma (f1oat)—Gives the standard deviation of the smoothing in real length units (default:

1y

e out (FieldBase, optional)- Optional field into which the smoothed data is stored.
Setting this to the input field enables in-place smoothing.

e label (str, optional)- Name of the returned field
* self (ThataField)—

Returns
Field with smoothed data. This is stored at out if given.

Return type
TDataField

abstract to_scalar (scalar="auto', *, label=None)
return scalar variant of the field
Parameters
e scalar (str)—

e label (str | None)-

Return type
ScalarField

classmethod unserialize_attributes (attributes)

unserializes the given attributes

Parameters
attributes (dict) — The serialized attributes

Returns
The unserialized attributes

Return type
dict

class FieldBase (grid, data, *, label=None)
Bases: object

abstract base class for describing (discretized) fields

Parameters
* grid (GridBase)— Grid defining the space on which this field is defined

* data (ndarray, optional) — Field values at the support points of the grid and the ghost cells
e label (str, optional)- Name of the field

apply (func, out=None, *, label=None, evaluate_args=None)
applies a function/expression to the data and returns it as a field

Parameters
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e func (callable or str)-The (vectorized) function being applied to the data or an
expression that can be parsed using sympy (evaluate () is used in this case). The local
field values can be accessed using the field labels for a field collection and via the variable ¢

otherwise.

e out (FieldBase, optional)- Optional field into which the data is written

e label (str, optional)— Name of the returned field

* evaluate_args (dict) — Additional arguments passed to evaluate (). Only used

when func is a string.
e self (TField) -

Returns
Field with new data. Identical to out if given.

Return type
FieldBase

assert_field_compatible (other, accept_scalar=False)

checks whether other is compatible with the current field

Parameters

e other (FieldBase) — The other field this one is compared to

* accept_scalar (bool, optional)- Determines whether it is acceptable that other

is an instance of ScalarField.

Return type
None

property attributes: Dict[str, Any]

describes the state of the instance (without the data)

Type
dict

property attributes_serialized: Dict[str,

serialized version of the attributes

Type
dict

conjugate ()
returns complex conjugate of the field

Returns
the complex conjugated field

Return type
FieldBase

Parameters
self (TField)-

abstract copy (*, label=None, dtype=None)
return a new field with the data (but not the grid) copied

Parameters

str]

e label (str, optional)- Name of the returned field
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e dtype (numpy dtype) - The data type of the field. If omitted, it will be determined
from data automatically or the dtype of the current field is used.

e self (TField)-

Returns
A copy of the current field

Return type
DataFieldBase

property data: ndarray
discretized data at the support points

Type
ndarray
property dtype: dtype[Any] | None | Typel[Any] | _SupportsDType|[dtype[Any]]
| str | Tuple[Any, int] | Tuple[Any, SupportsIndex |
Sequence [SupportsIndex]] | List[Any] | _DTypeDict | Tuple[Any, Any]
the numpy dtype of the underlying data
Type
DTypeLike

classmethod from_file (filename)

create field from data stored in a file

Field can be written to a file using FieldBase.to_file().

Example

Write a field to a file and then read it back:

field = pde.ScalarField(...)
field.write_to("test.hdf5")

field_copy = pde.FieldBase.from file("test.hdf5")

Parameters
filename (str)— Path to the file being read

Returns
The field with the appropriate sub-class

Return type
FieldBase

classmethod from_state (attributes, data=None)
create a field from given state.

Parameters
e attributes (dict) - The attributes that describe the current instance

e data (ndarray, optional) — Data values at the support points of the grid defining the field

Returns
The field created from the state
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Return type
FieldBase

abstract get_image_data()
return data for plotting an image of the field

Parameters

e scalar (str or int) — The method for extracting scalars as described in
DataFieldBase.to_scalar().

* transpose (bool)— Determines whether the transpose of the data should is plotted
» **kwargs — Additional parameters are forwarded to grid.get_image_data

Returns
Information useful for plotting an image of the field

Return type
dict

abstract get_line_data (scalar="auto’, extract="auto')
return data for a line plot of the field
Parameters

e scalar (str or int) — The method for extracting scalars as described in
DataFieldBase.to_scalar().

* extract (str)— The method used for extracting the line data. See the docstring of the
grid method ger_line_data to find supported values.

Returns
Information useful for performing a line plot of the field

Return type
dict
property grid: GridBase
The grid on which the field is defined

Type
base, GridBase

property imag: TField
Imaginary part of the field

Type
FieldBase

property is_complex: bool

whether the field contains real or complex data

Type
bool

property label: str | None
the name of the field

Type
str
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abstract plot (*args, **kwargs)

visualize the field
plot_interactive (viewer_args=None, **kwargs)
create an interactive plot of the field using napari
For a detailed description of the launched program, see the napari webpage.
Parameters

* viewer_args (dict)— Arguments passed to napari.viewer.Viewer to affect the
viewer.

* **kwargs — Extra arguments passed to the plotting function

Return type
None
property real: TField
Real part of the field
Type
FieldBase
split_mpi (decomposition=-1)
splits the field onto subgrids in an MPI run
In a normal serial simulation, the method simply returns the field itself. In contrast, in an MPI simulation, the

field provided on the main node is split onto all nodes using the given decomposition. The field data provided
on all other nodes is not used.

Parameters

¢ decomposition (list of ints)— Number of subdivision in each direction. Should
be a list of length field.grid.num_axes specifying the number of nodes for this axis. If one
value is -/, its value will be determined from the number of available nodes. The default
value decomposed the first axis using all available nodes

e self (TField) -

Returns
The part of the field that corresponds to the subgrid associated with the current MPI node.

Return type
FieldBase

to_file (filename, **kwargs)

store field in a file

The extension of the filename determines what format is being used. If it ends in .45 or .hdf, the Hierarchi-
cal Data Format is used. The other supported format are images, where only the most typical formats are
supported.

To load the field back from the file, you may use FieldBase. from file().

Example

Write a field to a file and then read it back:

4.1.

pde.fields package 75


https://napari.org/api/napari.html#module-napari
http://napari.org/
https://docs.python.org/3/library/stdtypes.html#dict
https://napari.org/api/napari.view_layers.Viewer.html#napari.view_layers.Viewer
https://docs.python.org/3/library/stdtypes.html#list

py-pde Documentation, Release unknown

field = pde.ScalarField(...)
field.write_to ("test.hdfb")

field copy = pde.FieldBase.from_file("test.hdf5")

Parameters

e filename (st r)— Path where the data is stored

e **kwargs — Additional parameters may be supported for some formats
Return type

None

classmethod unserialize_attributes (aftributes)

unserializes the given attributes

Parameters
attributes (dict) — The serialized attributes

Returns
The unserialized attributes

Return type
dict

property writeable: bool

whether the field data can be changed or not

Type
bool

exception RankError

Bases: TypeError

error indicating that the field has the wrong rank

4.1.2 pde.fields.collection module

Defines a collection of fields to represent multiple fields defined on a common grid.

class FieldCollection (fields, *, copy_fields=False, label=None, labels=None, dtype=None)
Bases: F'ieldBase

Collection of fields defined on the same grid

Note: All fields in a collection must have the same data type. This might lead to up-casting, where for instance a
combination of a real-valued and a complex-valued field will be both stored as complex fields.

Parameters

» fields (sequence or mapping of DataFieldBase) — Sequence or mapping of the indi-
vidual fields. If a mapping is used, the keys set the names of the individual fields.
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* copy_fields (bool) — Flag determining whether the individual fields given in fields are
copied. Note that fields are always copied if some of the supplied fields are identical. If fields
are copied the original fields will be left untouched. Conversely, if copy_fields == False, the
original fields are modified so their data points to the collection. It is thus basically impossible
to have fields that are linked to multiple collections at the same time.

e label (str) - Label of the field collection

e labels (1ist of str)- Labels of the individual fields. If omitted, the labels from the
fields argument are used.

* dtype (numpy dtype) - The data type of the field. All the numpy dtypes are supported.
If omitted, it will be determined from data automatically.

append ( *fields, label=None)
create new collection with appended field(s)

Parameters

» fields (FieldCollection or DataFieldBase) — A sequence of single fields or collection of
fields that will be appended to the fields in the current collection. The data of all fields will
be copied.

¢ label (str) - Label of the new field collection. If omitted, the current label is used

Returns
A new field collection, which combines the current one with fields given by fields.

Return type
FieldCollection

assert_field_compatible (other, accept_scalar=False)
checks whether other is compatible with the current field

Parameters
¢ other (FieldBase) — Other field this is compared to

* accept_scalar (bool, optional)- Determines whether it is acceptable that other
is an instance of ScalarField.

property attributes: Dict[str, Any]
describes the state of the instance (without the data)

Type
dict

property attributes_serialized: Dict[str, str]

serialized version of the attributes

Type
dict

property averages: List
averages of all fields

copy ( *, label=None, dtype=None)
return a copy of the data, but not of the grid

Parameters

e label (str, optional)- Name of the returned field
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dtype (numpy dtype)— The data type of the field. If omitted, it will be determined
from data automatically.

self (FieldCollection)—

Return type
FieldCollection

property fields: List[DataFieldBase]
the fields of this collection

Type

list

classmethod from_data (field classes, grid, data, *, with_ghost_cells=True, label=None, labels=None,

dtype=None)

create a field collection from classes and data

Parameters

field_classes (1ist)— List of the classes that define the individual fields

data (ndarray, optional) — Data values of all fields at support points of the grid
grid (GridBase) — Grid defining the space on which this field is defined.
with_ghost_cells (bool) — Indicates whether the ghost cells are included in data
label (st r)— Label of the field collection

labels (1ist of str)— Labels of the individual fields. If omitted, the labels from the
fields argument are used.

dtype (numpy dtype)— The data type of the field. All the numpy dtypes are supported.
If omitted, it will be determined from data automatically.

classmethod from_scalar_expressions (grid, expressions, *, user_funcs=None, consts=None,

label=None, labels=None, dtype=None)

create a field collection on a grid from given expressions

Warning: This implementation uses exec () and should therefore not be used in a context where
malicious input could occur.

Parameters

grid (GridBase) — Grid defining the space on which this field is defined

expressions (list of str)— A list of mathematical expression, one for each field
in the collection. The expressions determine the values as a function of the position on the
grid. The expressions may contain standard mathematical functions and they may depend on
the axes labels of the grid. More information can be found in the expression documentation.

user_funcs (dict, optional)-— A dictionary with user defined functions that can
be used in the expression

consts (dict, optional)- A dictionary with user defined constants that can be used
in the expression. The values of these constants should either be numbers or ndarray.

label (str, optional)- Name of the whole collection

labels (list of str, optional)- Names of the individual fields
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e dtype (numpy dtype)-The data type of the field. All the numpy dtypes are supported.
If omitted, it will be determined from data automatically.

Return type
FieldCollection

classmethod from_state (attributes, data=None)
create a field collection from given state.
Parameters
e attributes (dict) — The attributes that describe the current instance
* data (ndarray, optional) — Data values at support points of the grid defining all fields

Return type
FieldCollection

get_image_data (index=0, **kwargs)
return data for plotting an image of the field
Parameters

¢ index (int) - Index of the field whose data is returned

e **kwargs — Arguments forwarded to the ger_image_data method

Returns
Information useful for plotting an image of the field

Return type
dict
get_1line_data (index=0, scalar="auto', extract="auto")
return data for a line plot of the field
Parameters
e index (int) - Index of the field whose data is returned
e scalar (str or int) — The method for extracting scalars as described in
DataFieldBase.to_scalar ().
e extract (str)— The method used for extracting the line data. See the docstring of the
grid method get_line_data to find supported values.

Returns
Information useful for performing a line plot of the field

Return type
dict
property integrals: List
integrals of all fields
interpolate_to_grid (grid, *, fill=None, label=None)
interpolate the data of this field collection to another grid.
Parameters
e grid (GridBase)— The grid of the new field onto which the current field is interpolated.
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e £ill (Number, optional)— Determines how values out of bounds are handled. If
None, a ValueError is raised when out-of-bounds points are requested. Otherwise, the given
value is returned.

e label (str, optional)- Name of the returned field collection

Returns
Interpolated data

Return type
FieldCollection

property labels: _FieldLabels
the labels of all fields

Note: The attribute returns a special class _FieldLabels to allow specific manipulations of the field
labels. The returned object behaves much like a list, but assigning values will modify the labels of the fields
in the collection.

Type
_FieldLabels

property magnitudes: ndarray
scalar magnitudes of all fields

Type

ndarray

plot (kind='auto', figsize="auto', arrangement="horizontal', subplot_args=None, *args, title=None,
constrained_layout=True, filename=None, action="auto', fig_style=None, fig=None, **kwargs)

visualize all the fields in the collection
Parameters

e kind (str or list of str)-Determines the kind of the visualizations. Supported
values are image, line, vector, interactive, or rgb. Alternatively, auto determines the best
visualization based on each field itself. Instead of a single value for all fields, a list with
individual values can be given, unless 7gb is chosen.

e figsize(str or tuple of numbers)- Determines the figure size. The figure size
is unchanged if the string default is passed. Conversely, the size is adjusted automatically
when auto is passed. Finally, a specific figure size can be specified using two values, using
matplotlib.figure.Figure.set_size_inches().

* arrangement (st r)— Determines how the subpanels will be arranged. The default value
horizontal places all subplots next to each other. The alternative value verfical puts them
below each other.

e title (str) - Title of the plot. If omitted, the title might be chosen automatically. This
is shown above all panels.

* constrained_layout (bool) — Whether to use constrained_layout in
matplotlib.pyplot.figure () call to create a figure. This affects the layout
of all plot elements. Generally, spacing might be better with this flag enabled, but it can also
lead to problems when plotting multiple plots successively, e.g., when creating a movie.

e filename (str, optional)-If given, the figure is written to the specified file.
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* action (str)— Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show () will be called to show the plot. If the value is none,
the figure will be created, but not necessarily shown. The value close closes the figure, after
saving it to a file when filename is given. The default value auto implies that the plot is shown
if it is not a nested plot call.

e fig_style (dict) — Dictionary with properties that will be changed on the figure after
the plot has been drawn by calling matplotlib.pyplot.setp (). For instance, using
fig_style={‘dpi’: 200} increases the resolution of the figure.

e fig(matplotlib. figures.Figure) - Figure that is used for plotting. If omitted, a
new figure is created.

e subplot_args (I ist)— Additional arguments for the specific subplots. Should be a list
with a dictionary of arguments for each subplot. Supplying an empty dict allows to keep the
default setting of specific subplots.

e **kwargs — All additional keyword arguments are forwarded to the actual plotting function
of all subplots.

Returns
Instances that contain information to update all the plots with new data later.

Return type
List of PlotReference

classmethod scalar_random_uniform (num_fields, grid, vmin=0, vimax=1, *, label=None,
labels=None, rng=None)

create scalar fields with random values between vmin and vmax
Parameters
e num_fields (int) - The number of fields to create
e grid (GridBase) — Grid defining the space on which the fields are defined
e vmin (f1oat) - Lower bound. Can be complex to create complex fields
* vmax (f1oat)— Upper bound. Can be complex to create complex fields
e label (str, optional)- Name of the field collection
e labels (list of str, optional)- Names of the individual fields
e rng (Generator) — Random number generator (default: default_rng())

Return type
FieldCollection

smooth (sigma=1, *, out=None, label=None)

applies Gaussian smoothing with the given standard deviation

This function respects periodic boundary conditions of the underlying grid, using reflection when no period-
icity is specified.
sigma (float):

Gives the standard deviation of the smoothing in real length units (default: 1)

out (FieldCollection, optional):
Optional field into which the smoothed data is stored

label (str, optional):
Name of the returned field
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Returns
Field collection with smoothed data, stored at out if given.

Parameters
* sigma (float)-—
* out (FieldCollection | None)-—
e label (str | None)-
Return type
FieldCollection

classmethod unserialize_attributes (attributes)

unserializes the given attributes

Parameters
attributes (dict) — The serialized attributes

Returns
The unserialized attributes

Return type
dict

4.1.3 pde.fields.scalar module

Defines a scalar field over a grid
class ScalarField (grid, data='"zeros’, *, label=None, dtype=None, with_ghost_cells=False)
Bases: DataFieldBase
Scalar field discretized on a grid
Parameters
* grid (GridBase) — Grid defining the space on which this field is defined.

* data (Number or ndarray, optional) — Field values at the support points of the grid. The
flag with_ghost_cells determines whether this data array contains values for the ghost cells,
too. The resulting field will contain real data unless the data argument contains complex values.
Special values are “zeros” or None, initializing the field with zeros, and “empty”, just allocating
memory with unspecified values.

e label (str, optional)- Name of the field

* dtype (numpy dtype)— The data type of the field. If omitted, it will be determined from
data automatically.

* with_ghost_cells (bool) - Indicates whether the ghost cells are included in data

classmethod from_expression (grid, expression, *, user_funcs=None, consts=None, label=None,
dtype=None)

create a scalar field on a grid from a given expression

Warning: This implementation uses exec () and should therefore not be used in a context where
malicious input could occur.
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Parameters

grid (GridBase) — Grid defining the space on which this field is defined

expression (str) — Mathematical expression for the scalar value as a function of the
position on the grid. The expression may contain standard mathematical functions and it
may depend on the axes labels of the grid. More information can be found in the expression
documentation.

user_funcs (dict, optional) - A dictionary with user defined functions that can
be used in the expression

consts (dict, optional)- A dictionary with user defined constants that can be used
in the expression. The values of these constants should either be numbers or ndarray.

label (str, optional)- Name of the field

dtype (numpy dtype) — The data type of the field. If omitted, it will be determined
from data automatically.

Return type
ScalarField

classmethod from_image (path, bounds=None, periodic=False, *, label=None)

create a scalar field from an image

Parameters

path (Path or str) — The path to the image file

bounds (tuple, optional) — Gives the coordinate range for each axis. This should
be two tuples of two numbers each, which mark the lower and upper bound for each axis.

periodic (bool or 1list)— Specifies which axes possess periodic boundary condi-
tions. This is either a list of booleans defining periodicity for each individual axis or a single
boolean value specifying the same periodicity for all axes.

label (str, optional)- Name of the field

Return type
ScalarField

get_boundary_field (index, bc=None, *, label=None)

get the field on the specified boundary

Parameters

index (str or tuple) - Index specifying the boundary. Can be either a string given
in boundary_names, like "1eft", or a tuple of the axis index perpendicular to the
boundary and a boolean specifying whether the boundary is at the upper side of the axis or
not,e.g., (1, True).

* be (Optional [BoundariesData]) — The boundary conditions applied to the field.

Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axes, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by { value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by { derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
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boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

e label (str)— Label of the returned field

Returns
The field on the boundary

Return type
ScalarField

gradient (bc, out=None, **kwargs)
apply gradient operator and return result as a field

Parameters

* be (Optional [BoundariesData]) — The boundary conditions applied to the field.
Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axes, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by { value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by { derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

e out (VectorField, optional)- Optional vector field to which the result is written.
e label (str, optional)- Name of the returned field

Returns
result of applying the operator

Return type
VectorField

gradient_squared (bc, out=None, **kwargs)

apply squared gradient operator and return result as a field
This evaluates |V |? for the scalar field ¢
Parameters

* be (Optional [BoundariesData]) — The boundary conditions applied to the field.
Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axes, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by { value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by { derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

* out (ScalarField, optional)- Optional vector field to which the result is written.

e label (str, optional)- Name of the returned field
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e central (bool) - Determines whether a central difference approximation is used for the
gradient operator or not. If not, the squared gradient is calculated as the mean of the squared
values of the forward and backward derivatives, which thus includes the value at a support
point in the result at the same point.

Returns
the squared gradient of the field

Return type
ScalarField
property integral: int | float | complex
integral of the scalar field over space
Type
Number
laplace (bc, out=None, **kwargs)

apply Laplace operator and return result as a field
Parameters

* bec (Optional [BoundariesData]) — The boundary conditions applied to the field.
Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axes, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by { ‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by { derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

e out (ScalarField, optional)- Optional scalar field to which the result is written.
e label (str, optional)- Name of the returned field
* backend (st r) - The backend (e.g., ‘numba’ or ‘scipy’) used for this operator.

Returns
the Laplacian of the field

Return type
ScalarField

project (axes, method="integral’, label=None)

project scalar field along given axes
Parameters

e axes (list of str)-The names of the axes that are removed by the projection oper-
ation. The valid names for a given grid are the ones in the GridBase . axes attribute.

* method (st r)— The projection method. This can be either ‘integral’ to integrate over the
removed axes or ‘average’ to perform an average instead.

e label (str, optional)- The label of the returned field

Returns
The projected data in a scalar field with a subgrid of the original grid.
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Return type
ScalarField

rank: int = 0

slice (position, *, method='nearest', label=None)

slice data at a given position

Note: This method should not be used to evaluate fields right at the boundary since it does not respect
boundary conditions. Use get_boundary_field () to obtain the values directly on the boundary.

Parameters

* position (dict) - Determines the location of the slice using a dictionary supplying co-
ordinate values for a subset of axes. Axes not mentioned in the dictionary are retained and
form the slice. For instance, in a 2d Cartesian grid, position = {x” 1} slices along the y-
direction at x=1. Additionally, the special positions low’, ‘mid’, and ‘high’ are supported to
reference relative positions along the axis.

* method (st r)— The method used for slicing. Currently, we only support nearest, which
takes data from cells defined on the grid.

e label (str, optional)- The label of the returned field

Returns
The sliced data in a scalar field with a subgrid of the original grid.

Return type
ScalarField

to_scalar (scalar='auto', *, label=None)

return a modified scalar field by applying method scalar
Parameters

* scalar (str or callable)- Determines the method used for obtaining the scalar.
If this is a callable, it is simply applied to self.data and a new scalar field with this data is
returned. Alternatively, pre-defined methods can be selected using strings. Here, abs and
norm denote the norm of each entry of the field, while norm_squared returns the squared
norm. The default aufo is to return a (unchanged) copy of a real field and the norm of a
complex field.

e label (str, optional)- Name of the returned field

Returns
Scalar field after applying the operation

Return type
ScalarField
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4.1.4 pde.fields.tensorial module

Defines a tensorial field of rank 2 over a grid

class Tensor2Field (grid, data='"zeros', *, label=None, dtype=None, with_ghost_cells=False)
Bases: DataFieldBase

Tensor field of rank 2 discretized on a grid
Parameters
* grid (GridBase) — Grid defining the space on which this field is defined.

* data (Number or ndarray, optional) — Field values at the support points of the grid. The
flag with_ghost_cells determines whether this data array contains values for the ghost cells,
too. The resulting field will contain real data unless the data argument contains complex values.
Special values are “zeros” or None, initializing the field with zeros, and “empty”, just allocating
memory with unspecified values.

* label (str, optional)- Name of the field

* dtype (numpy dtype)— The data type of the field. If omitted, it will be determined from
data automatically.

* with_ghost_cells (bool) - Indicates whether the ghost cells are included in data

divergence (bc, out=None, **kwargs)

apply tensor divergence and return result as a field

The tensor divergence is a vector field v,, resulting from a contracting of the derivative of the tensor field ¢, 3:

_ Otas
Vo = % 3:1:[;

Parameters

* be (Optional [BoundariesData]) — The boundary conditions applied to the field.
Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axes, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by { value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by { derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

e out (VectorField, optional)— Optional scalar field to which the result is written.
e label (str, optional)- Name of the returned field
e **kwargs — Additional arguments affecting how the operator behaves.

Returns
result of applying the operator

Return type
VectorField
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dot (other, out=None, *, conjugate=True, label="dot product’)

calculate the dot product involving a tensor field

This supports the dot product between two tensor fields as well as the product between a tensor and a vector.

The resulting fields will be a tensor or vector, respectively.

Parameters

other (VectorField or Tensor2Field) - the second field

out (VectorField or Tensor2Field, optional)- Optionalfield to which the
result is written.

conjugate (bool)— Whether to use the complex conjugate for the second operand

label (str, optional)- Name of the returned field

Returns
VectorFieldor Tensor2Field: result of applying the dot operator

Return type
VectorField | Tensor2Field

classmethod from_expression (grid, expressions, *, user_funcs=None, consts=None, label=None,

dtype=None)

create a tensor field on a grid from given expressions

Warning:

Parameters

grid (GridBase) — Grid defining the space on which this field is defined

expressions (list of str)— A 2d list of mathematical expression, one for each
component of the tensor field. The expressions determine the values as a function of the
position on the grid. The expressions may contain standard mathematical functions and they
may depend on the axes labels of the grid. More information can be found in the expression
documentation.

user_funcs (dict, optional)— A dictionary with user defined functions that can
be used in the expression

consts (dict, optional)- A dictionary with user defined constants that can be used
in the expression. The values of these constants should either be numbers or ndarray.

label (str, optional)- Name of the field

dtype (numpy dtype)— The data type of the field. If omitted, it will be determined
from data automatically.

Return type
Tensor2Field

property integral: ndarray

integral of each component over space

Type

ndarray
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plot_components (kind='auto’, *args, title=None, constrained_layout=True, filename=None, action="auto’,

fig_style=None, fig=None, **kwargs)

visualize all the components of this tensor field

Parameters

kind (str or list of str)- Determines the kind of the visualizations. Supported
values are image or line. Alternatively, auto determines the best visualization based on the
grid.

title (str) - Title of the plot. If omitted, the title might be chosen automatically. This
is shown above all panels.

constrained_layout (bool) - Whether to use constrained_layout in
matplotlib.pyplot.figure () call to create a figure. This affects the layout
of all plot elements. Generally, spacing might be better with this flag enabled, but it can also
lead to problems when plotting multiple plots successively, e.g., when creating a movie.

filename (str, optional)-If given, the figure is written to the specified file.

action (str) - Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show () will be called to show the plot. If the value is none,
the figure will be created, but not necessarily shown. The value close closes the figure, after
saving it to a file when filename is given. The default value auto implies that the plot is shown
if it is not a nested plot call.

fig_style (dict) — Dictionary with properties that will be changed on the figure after
the plot has been drawn by calling matplotlib.pyplot.setp (). For instance, using
fig_style={‘dpi’: 200} increases the resolution of the figure.

fig(matplotlib.figures.Figure)— Figure that is used for plotting. If omitted, a
new figure is created.

**kwargs — All additional keyword arguments are forwarded to the actual plotting function
of all subplots.

Returns
Instances that contain information to update all the plots with new data later.

Return type

2d

rank: int =

list of PlotReference

2

symmetrize (make_traceless=False, inplace=False)

symmetrize

the tensor field in place

Parameters

* make_traceless (bool)— Determines whether the result is also traceless

inplace (boo1l) — Flag determining whether to symmetrize the current field or return a
new one

Returns
result of the operation

Return type
TensorZField
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to_scalar (scalar='"auto’, *, label="scalar “{scalar}"")

return scalar variant of the field

The invariants of the tensor field A are

Il = tI'(A)
I, = % [(tr(A)? — tr(AZ)]
Ig = det(A)

where #r denotes the trace and det denotes the determinant. Note that the three invariants can only be distinct
and non-zero in three dimensions. In two dimensional spaces, we have the identity 2/, = I3 and in one-

dimensional spaces, we have I; = I3 as well as I, = 0.

Parameters

e scalar (str)— The method to calculate the scalar. Possible choices include norm (the
default chosen when the value is auto), min, max, squared_sum, norm_squared, trace (or
invariantl), invariant2, and determinant (or invariant3)

e label (str, optional)- Name of the returned field

Returns
the scalar field after applying the operation

Return type
ScalarField

trace (label="trace')
return the trace of the tensor field as a scalar field

Parameters
label (str, optional)- Name of the returned field

Returns
scalar field of traces

Return type
ScalarField

transpose (label="transpose')
return the transpose of the tensor field

Parameters
label (str, optional)- Name of the returned field

Returns
transpose of the tensor field

Return type
TensorZ2Field
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4.1.5 pde.fields.vectorial module

Defines a vectorial field over a grid

class VectorField (grid, data='zeros', *, label=None, dtype=None, with_ghost_cells=False)
Bases: DataFieldBase

Vector field discretized on a grid
Parameters
* grid (GridBase) — Grid defining the space on which this field is defined.

* data (Number or ndarray, optional) — Field values at the support points of the grid. The
flag with_ghost_cells determines whether this data array contains values for the ghost cells,
too. The resulting field will contain real data unless the data argument contains complex values.
Special values are “zeros” or None, initializing the field with zeros, and “empty”, just allocating
memory with unspecified values.

* label (str, optional)- Name of the field

* dtype (numpy dtype)— The data type of the field. If omitted, it will be determined from
data automatically.

* with_ghost_cells (bool) - Indicates whether the ghost cells are included in data
divergence (bc, out=None, **kwargs)
apply divergence operator and return result as a field

Parameters

* be (Optional [BoundariesData]) — The boundary conditions applied to the field.
Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axes, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by { ‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by { derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

* out (ScalarField, optional)- Optional scalar field to which the result is written.
e label (str, optional)— Name of the returned field
» **kwargs — Additional arguments affecting how the operator behaves.

Returns
Divergence of the field

Return type
ScalarField

dot (other, out=None, *, conjugate="True, label="dot product')

calculate the dot product involving a vector field

This supports the dot product between two vectors fields as well as the product between a vector and a tensor.
The resulting fields will be a scalar or vector, respectively.

Parameters
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other (VectorField or Tensor2Field)- the second field

out (ScalarField or VectorField, optional)- Optional field to which the
result is written.

conjugate (bool) — Whether to use the complex conjugate for the second operand

label (str, optional)- Name of the returned field

Returns
ScalarFieldor VectorField: result of applying the operator

Return type
ScalarField | VectorField

classmethod from_expression (grid, expressions, *, user_funcs=None, consts=None, label=None,

dtype=None)

create a vector field on a grid from given expressions

Warning:

Parameters

grid (GridBase) — Grid defining the space on which this field is defined

expressions (list of str)- A list of mathematical expression, one for each com-
ponent of the vector field. The expressions determine the values as a function of the position
on the grid. The expressions may contain standard mathematical functions and they may
depend on the axes labels of the grid. More information can be found in the expression
documentation.

user_funcs (dict, optional)— A dictionary with user defined functions that can
be used in the expression

consts (dict, optional)- A dictionary with user defined constants that can be used
in the expression. The values of these constants should either be numbers or ndarray.

label (str, optional)- Name of the field

dtype (numpy dtype) — The data type of the field. If omitted, it will be determined
from data automatically.

Return type
VectorField

classmethod from_scalars (fields, *, label=None, dtype=None)

create a vector field from a list of ScalarFields

Note that the data of the scalar fields is copied in the process

Parameters

fields (1ist)— The list of (compatible) scalar fields
label (str, optional)- Name of the returned field

dtype (numpy dtype) — The data type of the field. If omitted, it will be determined
from data automatically.
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Returns
the resulting vector field

Return type
VectorField
get_vector_data (transpose=False, max_points=None, **kwargs)

return data for a vector plot of the field
Parameters
* transpose (bool)— Determines whether the transpose of the data should be plotted.

* max_points (int) — The maximal number of points that is used along each axis. This
option can be used to sub-sample the data.

* **kwargs — Additional parameters forwarded to grid.get_image_data

Returns
Information useful for plotting an vector field

Return type
dict

gradient (bc, out=None, **kwargs)

apply vector gradient operator and return result as a field

The vector gradient field is a tensor field ¢4 that specifies the derivatives of the vector field v, with respect
to all coordinates zg.

Parameters

* be (Optional [BoundariesData]) — The boundary conditions applied to the field.
Boundary conditions need to determine all components of the vector field. Boundary con-
ditions are generally given as a list with one condition for each axis. For periodic axes, only
periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’). For
non-periodic axes, different boundary conditions can be specified for the lower and upper
end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value
NUM (specified by { value’: NUM}) and Neumann conditions enforcing the value DERIV
for the derivative in the normal direction (specified by { derivative’: DERIV}) are supported.
Note that the special value ‘natural’ imposes periodic boundary conditions for periodic axis
and a vanishing derivative otherwise. More information can be found in the boundaries doc-
umentation. If the special value None is given, no boundary conditions are enforced. The
user then needs to ensure that the ghost cells are set accordingly.

e out (VectorField, optional)- Optional vector field to which the result is written.
e label (str, optional)- Name of the returned field
e **kwargs — Additional arguments affecting how the operator behaves.

Returns
Gradient of the field

Return type
TensorZField

property integral: ndarray
integral of each component over space

Type
ndarray
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laplace (bc, out=None, **kwargs)

apply vector Laplace operator and return result as a field

The vector Laplacian is a vector field L, containing the second derivatives of the vector field v, with respect
to the coordinates zg:

Parameters

* be (Optional [BoundariesData]) — The boundary conditions applied to the field.
Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axes, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be