
py-pde Documentation
Release unknown

David Zwicker

Nov 29, 2022

CONTENTS

1 Getting started 3
1.1 Install using pip . 3
1.2 Install using conda . 3
1.3 Install from source . 3
1.4 Package overview . 5

2 Examples 7
2.1 Plotting a vector field . 7
2.2 Solving Laplace’s equation in 2d . 8
2.3 Plotting a scalar field in cylindrical coordinates . 9
2.4 Solving Poisson’s equation in 1d . 10
2.5 Simple diffusion equation . 11
2.6 Kuramoto-Sivashinsky - Using PDE class . 12
2.7 Spherically symmetric PDE . 13
2.8 Diffusion on a Cartesian grid . 15
2.9 Stochastic simulation . 16
2.10 Time-dependent boundary conditions . 17
2.11 Setting boundary conditions . 18
2.12 1D problem - Using PDE class . 19
2.13 Brusselator - Using the PDE class . 20
2.14 Writing and reading trajectory data . 21
2.15 Diffusion equation with spatial dependence . 22
2.16 Using simulation trackers . 23
2.17 Schrödinger’s Equation . 24
2.18 Kuramoto-Sivashinsky - Using custom class . 26
2.19 Custom Class for coupled PDEs . 27
2.20 1D problem - Using custom class . 29
2.21 Visualizing a scalar field . 30
2.22 Kuramoto-Sivashinsky - Compiled methods . 31
2.23 Solver comparison . 33
2.24 Custom PDE class: SIR model . 35
2.25 Brusselator - Using custom class . 37

3 User manual 39
3.1 Mathematical basics . 39
3.2 Basic usage . 41
3.3 Advanced usage . 43
3.4 Performance . 50
3.5 Contributing code . 52
3.6 Citing the package . 53

i

3.7 Code of Conduct . 54

4 Reference manual 57
4.1 pde.fields package . 57
4.2 pde.grids package . 89
4.3 pde.pdes package . 160
4.4 pde.solvers package . 176
4.5 pde.storage package . 185
4.6 pde.tools package . 193
4.7 pde.trackers package . 226
4.8 pde.visualization package . 244

Python Module Index 253

Index 255

ii

py-pde Documentation, Release unknown

The py-pde python package provides methods and classes useful for solving partial dif-
ferential equations (PDEs) of the form

∂tu(x, t) = D[u(x, t)] + η(u,x, t) ,

whereD is a (non-linear) differential operator that defines the time evolution of a (set of)
physical fields u with possibly tensorial character, which depend on spatial coordinates
x and time t. The framework also supports stochastic differential equations in the Itô
representation, where the noise is represented by η above.
The main audience for the package are researchers and students who want to investigate
the behavior of a PDE and get an intuitive understanding of the role of the different terms
and the boundary conditions. To support this, py-pde evaluates PDEs using the methods of lines with a finite-difference
approximation of the differential operators. Consequently, the mathematical operator D can be naturally translated to a
function evaluating the evolution rate of the PDE.
Contents

CONTENTS 1

py-pde Documentation, Release unknown

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

This py-pde package is developed for python 3.8+ and should run on all common platforms. The code is tested under
Linux, Windows, and macOS.

1.1 Install using pip

The package is available on pypi, so you should be able to install it by running

pip install py-pde

In order to have all features of the package available, you might also want to install the following optional packages:

pip install h5py pandas pyfftw tqdm

Moreover, ffmpeg needs to be installed and for creating movies.

1.2 Install using conda

The py-pde package is also available on conda using the conda-forge channel. You can thus install it using

conda install -c conda-forge py-pde

This installation includes many dependencies to have most features of py-pde.

1.3 Install from source

Installing from source can be necessary if the pypi installation does not work or if the latest source code should be installed
from github.

3

https://pypi.org/project/py-pde/
https://conda.io

py-pde Documentation, Release unknown

1.3.1 Required prerequisites

The code builds on other python packages, which need to be installed for py-pde to function properly. The required
packages are listed in the table below:

Package Minimal version Usage
matplotlib 3.1 Visualizing results
numba 0.56 Just-in-time compilation to accelerate numerics
numpy 1.22 Handling numerical data
scipy 1.4 Miscellaneous scientific functions
sympy 1.5 Dealing with user-defined mathematical expressions
tqdm 4.60 Display progress bars during calculations

The simplest way to install these packages is to use the requirements.txt in the base folder:

pip install -r requirements.txt

Alternatively, these package can be installed via your operating system’s package manager, e.g. using macports,
homebrew, or conda. The package versions given above are minimal requirements, although this is not tested sys-
tematically. Generally, it should help to install the latest version of the package.

1.3.2 Optional packages

The following packages should be installed to use some miscellaneous features:

Package Minimal version Usage
h5py 2.10 Storing data in the hierarchical file format
ipywidgets 7 Jupyter notebook support
mpi4py 3 Parallel processing using MPI
napari 0.4.8 Displaying images interactively
numba-mpi 0.22 Parallel processing using MPI+numba
pandas 1.2 Handling tabular data
pyfftw 0.12 Faster Fourier transforms

For making movies, the ffmpeg should be available. Additional packages might be required for running the tests
in the folder tests and to build the documentation in the folder docs. These packages are listed in the files
requirements.txt in the respective folders.

1.3.3 Downloading py-pde

The package can be simply checked out from github.com/zwicker-group/py-pde. To import the package from any python
session, it might be convenient to include the root folder of the package into the PYTHONPATH environment variable.
This documentation can be built by calling the make html in the docs folder. The final documentation will be available
in docs/build/html. Note that a LaTeX documentation can be build using make latexpdf.

4 Chapter 1. Getting started

https://github.com/zwicker-group/py-pde
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH

py-pde Documentation, Release unknown

1.4 Package overview

The main aim of the pde package is to simulate partial differential equations in simple geometries. Here, the time evo-
lution of a PDE is determined using the method of lines by explicitly discretizing space using fixed grids. The differential
operators are implemented using the finite difference method. For simplicity, we consider only regular, orthogonal grids,
where each axis has a uniform discretization and all axes are (locally) orthogonal. Currently, we support simulations
on CartesianGrid, PolarSymGrid, SphericalSymGrid, and CylindricalSymGrid, with and without
periodic boundaries where applicable.
Fields are defined by specifying values at the grid points using the classes ScalarField, VectorField, and Ten-
sor2Field. These classes provide methods for applying differential operators to the fields, e.g., the result of apply-
ing the Laplacian to a scalar field is returned by calling the method laplace(), which returns another instance of
ScalarField, whereas gradient() returns a VectorField. Combining these functions with ordinary arith-
metics on fields allows to represent the right hand side of many partial differential equations that appear in physics.
Importantly, the differential operators work with flexible boundary conditions.
The PDEs to solve are represented as a separate class inheriting from PDEBase. One example defined in this package
is the diffusion equation implemented as DiffusionPDE, but more specific situations need to be implemented by the
user. Most notably, PDEs can be specified by their expression using the convenient PDE class.
The PDEs are solved using solver classes, where a simple explicit solver is implemented by ExplicitSolver, but
more advanced implementations can be done. To obtain more details during the simulation, trackers can be attached to
the solver instance, which analyze intermediate states periodically. Typical trackers include ProgressTracker (dis-
play simulation progress), PlotTracker (display images of the simulation), and SteadyStateTracker (aborting
simulation when a stationary state is reached). Others can be found in the trackers module. Moreover, we provide
MemoryStorage and FileStorage, which can be used as trackers to store the intermediate state to memory and
to a file, respectively.

1.4. Package overview 5

https://en.wikipedia.org/wiki/Finite_difference_method

py-pde Documentation, Release unknown

6 Chapter 1. Getting started

CHAPTER

TWO

EXAMPLES

These are example scripts using the py-pde package, which illustrates some of the most important features of the package.

2.1 Plotting a vector field

This example shows how to initialize and visualize the vector field u =
(
sin(x), cos(x)

)
.

from pde import CartesianGrid, VectorField

grid = CartesianGrid([[-2, 2], [-2, 2]], 32)

(continues on next page)

7

py-pde Documentation, Release unknown

(continued from previous page)
field = VectorField.from_expression(grid, ["sin(x)", "cos(x)"])
field.plot(method="streamplot", title="Stream plot")

Total running time of the script: (0 minutes 0.614 seconds)

2.2 Solving Laplace’s equation in 2d

This example shows how to solve a 2d Laplace equation with spatially varying boundary conditions.

import numpy as np

from pde import CartesianGrid, solve_laplace_equation

grid = CartesianGrid([[0, 2 * np.pi]] * 2, 64)
bcs = [{"value": "sin(y)"}, {"value": "sin(x)"}]

res = solve_laplace_equation(grid, bcs)
res.plot()

Total running time of the script: (0 minutes 0.724 seconds)

8 Chapter 2. Examples

py-pde Documentation, Release unknown

2.3 Plotting a scalar field in cylindrical coordinates

This example shows how to initialize and visualize the scalar field u =
√
z exp(−r2) in cylindrical coordinates.

from pde import CylindricalSymGrid, ScalarField

grid = CylindricalSymGrid(radius=3, bounds_z=[0, 4], shape=16)
field = ScalarField.from_expression(grid, "sqrt(z) * exp(-r**2)")
field.plot(title="Scalar field in cylindrical coordinates")

Total running time of the script: (0 minutes 0.460 seconds)

2.3. Plotting a scalar field in cylindrical coordinates 9

py-pde Documentation, Release unknown

2.4 Solving Poisson’s equation in 1d

This example shows how to solve a 1d Poisson equation with boundary conditions.

from pde import CartesianGrid, ScalarField, solve_poisson_equation

grid = CartesianGrid([[0, 1]], 32, periodic=False)
field = ScalarField(grid, 1)
result = solve_poisson_equation(field, bc=[{"value": 0}, {"derivative": 1}])

result.plot()

Total running time of the script: (0 minutes 0.115 seconds)

10 Chapter 2. Examples

py-pde Documentation, Release unknown

2.5 Simple diffusion equation

This example solves a simple diffusion equation in two dimensions.

0%| | 0/10.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/10.0 [00:00<?, ?it/s]
0%| | 0/10.0 [00:06<?, ?it/s]
0%| | 0.00383/10.0 [00:06<4:56:05, 1777.22s/it]
1%| | 0.08076/10.0 [00:06<13:56, 84.36s/it]

10%|# | 1.04027/10.0 [00:06<00:58, 6.55s/it]
10%|# | 1.04027/10.0 [00:06<00:58, 6.56s/it]

100%|##########| 10.0/10.0 [00:06<00:00, 1.46it/s]
100%|##########| 10.0/10.0 [00:06<00:00, 1.46it/s]

from pde import DiffusionPDE, ScalarField, UnitGrid

grid = UnitGrid([64, 64]) # generate grid
state = ScalarField.random_uniform(grid, 0.2, 0.3) # generate initial condition

(continues on next page)

2.5. Simple diffusion equation 11

py-pde Documentation, Release unknown

(continued from previous page)
eq = DiffusionPDE(diffusivity=0.1) # define the pde
result = eq.solve(state, t_range=10)
result.plot()

Total running time of the script: (0 minutes 7.032 seconds)

2.6 Kuramoto-Sivashinsky - Using PDE class

This example implements a scalar PDE using the PDE. We here consider the Kuramoto–Sivashinsky equation, which for
instance describes the dynamics of flame fronts:

∂tu = −1

2
|∇u|2 −∇2u−∇4u

0%| | 0/10.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/10.0 [00:00<?, ?it/s]
0%| | 0/10.0 [00:13<?, ?it/s]
0%| | 0.01/10.0 [00:22<6:09:59, 2222.19s/it]
0%| | 0.02/10.0 [00:22<3:04:48, 1111.12s/it]
1%|1 | 0.11/10.0 [00:22<33:18, 202.03s/it]

46%|####5 | 4.58/10.0 [00:22<00:26, 4.85s/it]
46%|####5 | 4.58/10.0 [00:22<00:26, 4.86s/it]

(continues on next page)

12 Chapter 2. Examples

https://en.wikipedia.org/wiki/Kuramoto–Sivashinsky_equation

py-pde Documentation, Release unknown

(continued from previous page)
100%|##########| 10.0/10.0 [00:22<00:00, 2.22s/it]
100%|##########| 10.0/10.0 [00:22<00:00, 2.22s/it]

from pde import PDE, ScalarField, UnitGrid

grid = UnitGrid([32, 32]) # generate grid
state = ScalarField.random_uniform(grid) # generate initial condition

eq = PDE({"u": "-gradient_squared(u) / 2 - laplace(u + laplace(u))"}) # define the␣
↪→pde
result = eq.solve(state, t_range=10, dt=0.01)
result.plot()

Total running time of the script: (0 minutes 22.449 seconds)

2.7 Spherically symmetric PDE

This example illustrates how to solve a PDE in a spherically symmetric geometry.

2.7. Spherically symmetric PDE 13

py-pde Documentation, Release unknown

0%| | 0/0.1 [00:00<?, ?it/s]
Initializing: 0%| | 0/0.1 [00:00<?, ?it/s]
0%| | 0/0.1 [00:01<?, ?it/s]
8%|8 | 0.008/0.1 [00:01<00:20, 226.68s/it]

44%|####3 | 0.044/0.1 [00:01<00:02, 41.23s/it]
44%|####3 | 0.044/0.1 [00:01<00:02, 41.24s/it]

100%|##########| 0.1/0.1 [00:01<00:00, 18.15s/it]
100%|##########| 0.1/0.1 [00:01<00:00, 18.15s/it]

from pde import DiffusionPDE, ScalarField, SphericalSymGrid

grid = SphericalSymGrid(radius=[1, 5], shape=128) # generate grid
state = ScalarField.random_uniform(grid) # generate initial condition

eq = DiffusionPDE(0.1) # define the PDE
result = eq.solve(state, t_range=0.1, dt=0.001)

result.plot(kind="image")

Total running time of the script: (0 minutes 1.999 seconds)

14 Chapter 2. Examples

py-pde Documentation, Release unknown

2.8 Diffusion on a Cartesian grid

This example shows how to solve the diffusion equation on a Cartesian grid.

0%| | 0/1.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/1.0 [00:00<?, ?it/s]
0%| | 0/1.0 [00:04<?, ?it/s]
1%|1 | 0.01/1.0 [00:04<06:49, 413.58s/it]
3%|3 | 0.03/1.0 [00:04<02:13, 137.87s/it]
3%|3 | 0.03/1.0 [00:04<02:13, 137.92s/it]

100%|##########| 1.0/1.0 [00:04<00:00, 4.14s/it]
100%|##########| 1.0/1.0 [00:04<00:00, 4.14s/it]

from pde import CartesianGrid, DiffusionPDE, ScalarField

grid = CartesianGrid([[-1, 1], [0, 2]], [30, 16]) # generate grid
state = ScalarField(grid) # generate initial condition
state.insert([0, 1], 1)

(continues on next page)

2.8. Diffusion on a Cartesian grid 15

py-pde Documentation, Release unknown

(continued from previous page)
eq = DiffusionPDE(0.1) # define the pde
result = eq.solve(state, t_range=1, dt=0.01)
result.plot(cmap="magma")

Total running time of the script: (0 minutes 4.309 seconds)

2.9 Stochastic simulation

This example illustrates how a stochastic simulation can be done.

from pde import KPZInterfacePDE, MemoryStorage, ScalarField, UnitGrid, plot_kymograph

grid = UnitGrid([64]) # generate grid
state = ScalarField.random_harmonic(grid) # generate initial condition

eq = KPZInterfacePDE(noise=1) # define the SDE
storage = MemoryStorage()
eq.solve(state, t_range=10, dt=0.01, tracker=storage.tracker(0.5))
plot_kymograph(storage)

Total running time of the script: (0 minutes 4.360 seconds)

16 Chapter 2. Examples

py-pde Documentation, Release unknown

2.10 Time-dependent boundary conditions

This example solves a simple diffusion equation in one dimensions with time-dependent boundary conditions.

from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph

grid = CartesianGrid([[0, 10]], [64]) # generate grid
state = ScalarField(grid) # generate initial condition

eq = PDE({"c": "laplace(c)"}, bc={"value_expression": "sin(t)"})

storage = MemoryStorage()
eq.solve(state, t_range=20, dt=1e-4, tracker=storage.tracker(0.1))

plot the trajectory as a space-time plot
plot_kymograph(storage)

Total running time of the script: (0 minutes 6.090 seconds)

2.10. Time-dependent boundary conditions 17

py-pde Documentation, Release unknown

2.11 Setting boundary conditions

This example shows how different boundary conditions can be specified.

0%| | 0/10.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/10.0 [00:00<?, ?it/s]
0%| | 0/10.0 [00:04<?, ?it/s]
0%| | 0.005/10.0 [00:04<2:24:08, 865.26s/it]
0%| | 0.03/10.0 [00:04<23:57, 144.22s/it]

13%|#2 | 1.265/10.0 [00:04<00:29, 3.42s/it]
13%|#2 | 1.265/10.0 [00:04<00:30, 3.44s/it]

100%|##########| 10.0/10.0 [00:04<00:00, 2.30it/s]
100%|##########| 10.0/10.0 [00:04<00:00, 2.30it/s]

from pde import DiffusionPDE, ScalarField, UnitGrid

grid = UnitGrid([32, 32], periodic=[False, True]) # generate grid
state = ScalarField.random_uniform(grid, 0.2, 0.3) # generate initial condition

(continues on next page)

18 Chapter 2. Examples

py-pde Documentation, Release unknown

(continued from previous page)
set boundary conditions `bc` for all axes
bc_x_left = {"derivative": 0.1}
bc_x_right = {"value": "sin(y / 2)"}
bc_x = [bc_x_left, bc_x_right]
bc_y = "periodic"
eq = DiffusionPDE(bc=[bc_x, bc_y])

result = eq.solve(state, t_range=10, dt=0.005)
result.plot()

Total running time of the script: (0 minutes 4.519 seconds)

2.12 1D problem - Using PDE class

This example implements a PDE that is only defined in one dimension. Here, we chose the Korteweg-de Vries equation,
given by

∂tϕ = 6ϕ∂xϕ− ∂3xϕ

which we implement using the PDE.

2.12. 1D problem - Using PDE class 19

https://en.wikipedia.org/wiki/Korteweg–de_Vries_equation

py-pde Documentation, Release unknown

from math import pi

from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph

initialize the equation and the space
eq = PDE({"φ": "6 * φ * d_dx(φ) - laplace(d_dx(φ))"})
grid = CartesianGrid([[0, 2 * pi]], [32], periodic=True)
state = ScalarField.from_expression(grid, "sin(x)")

solve the equation and store the trajectory
storage = MemoryStorage()
eq.solve(state, t_range=3, tracker=storage.tracker(0.1))

plot the trajectory as a space-time plot
plot_kymograph(storage)

Total running time of the script: (0 minutes 7.283 seconds)

2.13 Brusselator - Using the PDE class

This example uses the PDE class to implement the Brusselator with spatial coupling,

∂tu = D0∇2u+ a− (1 + b)u+ vu2

∂tv = D1∇2v + bu− vu2

Here, D0 and D1 are the respective diffusivity and the parameters a and b are related to reaction rates.
Note that the same result can also be achieved with a full implementation of a custom class, which allows formore flexibility
at the cost of code complexity.

from pde import PDE, FieldCollection, PlotTracker, ScalarField, UnitGrid

define the PDE
a, b = 1, 3
d0, d1 = 1, 0.1
eq = PDE(

{
"u": f"{d0} * laplace(u) + {a} - ({b} + 1) * u + u**2 * v",

(continues on next page)

20 Chapter 2. Examples

https://en.wikipedia.org/wiki/Brusselator

py-pde Documentation, Release unknown

(continued from previous page)
"v": f"{d1} * laplace(v) + {b} * u - u**2 * v",

}
)

initialize state
grid = UnitGrid([64, 64])
u = ScalarField(grid, a, label="Field u")
v = b / a + 0.1 * ScalarField.random_normal(grid, label="Field v")
state = FieldCollection([u, v])

simulate the pde
tracker = PlotTracker(interval=1, plot_args={"vmin": 0, "vmax": 5})
sol = eq.solve(state, t_range=20, dt=1e-3, tracker=tracker)

Total running time of the script: (0 minutes 26.315 seconds)

2.14 Writing and reading trajectory data

This example illustrates how to store intermediate data to a file for later post-processing. The storage frequency is an
argument to the tracker.

from tempfile import NamedTemporaryFile

import pde

define grid, state and pde
grid = pde.UnitGrid([32])
state = pde.FieldCollection(

[pde.ScalarField.random_uniform(grid), pde.VectorField.random_uniform(grid)]
)
eq = pde.PDE({"s": "-0.1 * s", "v": "-v"})

get a temporary file to write data to
path = NamedTemporaryFile(suffix=".hdf5")

run a simulation and write the results
writer = pde.FileStorage(path.name, write_mode="truncate")

(continues on next page)

2.14. Writing and reading trajectory data 21

py-pde Documentation, Release unknown

(continued from previous page)
eq.solve(state, t_range=32, dt=0.01, tracker=writer.tracker(1))

read the simulation back in again
reader = pde.FileStorage(path.name, write_mode="read_only")
pde.plot_kymographs(reader)

Total running time of the script: (0 minutes 5.140 seconds)

2.15 Diffusion equation with spatial dependence

This example solve the Diffusion equation with a heterogeneous diffusivity:

∂tc = ∇
(
D(r)∇c

)
using the PDE class. In particular, we consider D(x) = 1.01 + tanh(x), which gives a low diffusivity on the left side of
the domain.
Note that the naive implementation, PDE({"c": "divergence((1.01 + tanh(x)) * gradi-
ent(c))"}), has numerical instabilities. This is because two finite difference approximations are nested. To arrive at
a more stable numerical scheme, it is advisable to expand the divergence,

∂tc = D∇2c+∇D.∇c

22 Chapter 2. Examples

https://en.wikipedia.org/wiki/Diffusion_equation

py-pde Documentation, Release unknown

from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph

Expanded definition of the PDE
diffusivity = "1.01 + tanh(x)"
term_1 = f"({diffusivity}) * laplace(c)"
term_2 = f"dot(gradient({diffusivity}), gradient(c))"
eq = PDE({"c": f"{term_1} + {term_2}"}, bc={"value": 0})

grid = CartesianGrid([[-5, 5]], 64) # generate grid
field = ScalarField(grid, 1) # generate initial condition

storage = MemoryStorage() # store intermediate information of the simulation
res = eq.solve(field, 100, dt=1e-3, tracker=storage.tracker(1)) # solve the PDE

plot_kymograph(storage) # visualize the result in a space-time plot

Total running time of the script: (0 minutes 10.102 seconds)

2.16 Using simulation trackers

This example illustrates how trackers can be used to analyze simulations.

2.16. Using simulation trackers 23

py-pde Documentation, Release unknown

0%| | 0/3.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/3.0 [00:00<?, ?it/s]
0%| | 0/3.0 [00:04<?, ?it/s]
3%|3 | 0.1/3.0 [00:04<02:04, 43.04s/it]
7%|6 | 0.2/3.0 [00:04<01:00, 21.52s/it]

23%|##3 | 0.7/3.0 [00:04<00:14, 6.15s/it]
23%|##3 | 0.7/3.0 [00:04<00:14, 6.42s/it]

100%|##########| 3.0/3.0 [00:04<00:00, 1.50s/it]
100%|##########| 3.0/3.0 [00:04<00:00, 1.50s/it]
509.3808644073509
509.3808644073508
509.38086440735094
509.38086440735094

import pde

grid = pde.UnitGrid([32, 32]) # generate grid
state = pde.ScalarField.random_uniform(grid) # generate initial condition

storage = pde.MemoryStorage()

trackers = [
"progress", # show progress bar during simulation
"steady_state", # abort when steady state is reached
storage.tracker(interval=1), # store data every simulation time unit
pde.PlotTracker(show=True), # show images during simulation
print some output every 5 real seconds:
pde.PrintTracker(interval=pde.RealtimeInterrupts(duration=5)),

]

eq = pde.DiffusionPDE(0.1) # define the PDE
eq.solve(state, 3, dt=0.1, tracker=trackers)

for field in storage:
print(field.integral)

Total running time of the script: (0 minutes 4.555 seconds)

2.17 Schrödinger’s Equation

This example implements a complex PDE using the PDE. We here chose the Schrödinger equation without a spatial
potential in non-dimensional form:

i∂tψ = −∇2ψ

Note that the example imposes Neumann conditions at the wall, so the wave packet is expected to reflect off the wall.

24 Chapter 2. Examples

https://en.wikipedia.org/wiki/Schrödinger_equation

py-pde Documentation, Release unknown

from math import sqrt

from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph

grid = CartesianGrid([[0, 20]], 128, periodic=False) # generate grid

create a (normalized) wave packet with a certain form as an initial condition
initial_state = ScalarField.from_expression(grid, "exp(I * 5 * x) * exp(-(x - 10)**2)
↪→")
initial_state /= sqrt(initial_state.to_scalar("norm_squared").integral.real)

eq = PDE({"ψ": f"I * laplace(ψ)"}) # define the pde

solve the pde and store intermediate data
storage = MemoryStorage()
eq.solve(initial_state, t_range=2.5, dt=1e-5, tracker=[storage.tracker(0.02)])

visualize the results as a space-time plot
plot_kymograph(storage, scalar="norm_squared")

Total running time of the script: (0 minutes 5.217 seconds)

2.17. Schrödinger’s Equation 25

py-pde Documentation, Release unknown

2.18 Kuramoto-Sivashinsky - Using custom class

This example implements a scalar PDE using a custom class. We here consider the Kuramoto–Sivashinsky equation,
which for instance describes the dynamics of flame fronts:

∂tu = −1

2
|∇u|2 −∇2u−∇4u

0%| | 0/10.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/10.0 [00:00<?, ?it/s]
0%| | 0/10.0 [00:00<?, ?it/s]
2%|2 | 0.24/10.0 [00:00<00:14, 1.53s/it]
6%|6 | 0.64/10.0 [00:00<00:06, 1.52it/s]

24%|##3 | 2.36/10.0 [00:00<00:02, 3.74it/s]
61%|######1 | 6.12/10.0 [00:01<00:00, 5.63it/s]
61%|######1 | 6.12/10.0 [00:01<00:00, 3.92it/s]

100%|##########| 10.0/10.0 [00:01<00:00, 6.41it/s]
100%|##########| 10.0/10.0 [00:01<00:00, 6.41it/s]

26 Chapter 2. Examples

https://en.wikipedia.org/wiki/Kuramoto–Sivashinsky_equation

py-pde Documentation, Release unknown

from pde import PDEBase, ScalarField, UnitGrid

class KuramotoSivashinskyPDE(PDEBase):
"""Implementation of the normalized Kuramoto–Sivashinsky equation"""

def evolution_rate(self, state, t=0):
"""implement the python version of the evolution equation"""
state_lap = state.laplace(bc="auto_periodic_neumann")
state_lap2 = state_lap.laplace(bc="auto_periodic_neumann")
state_grad = state.gradient(bc="auto_periodic_neumann")
return -state_grad.to_scalar("squared_sum") / 2 - state_lap - state_lap2

grid = UnitGrid([32, 32]) # generate grid
state = ScalarField.random_uniform(grid) # generate initial condition

eq = KuramotoSivashinskyPDE() # define the pde
result = eq.solve(state, t_range=10, dt=0.01)
result.plot()

Total running time of the script: (0 minutes 1.721 seconds)

2.19 Custom Class for coupled PDEs

This example shows how to solve a set of coupled PDEs, the spatially coupled FitzHugh–Nagumo model, which is a
simple model for the excitable dynamics of coupled Neurons:

∂tu = ∇2u+ u(u− α)(1− u) + w

∂tw = ϵu

Here, α denotes the external stimulus and ϵ defines the recovery time scale. We implement this as a custom PDE class
below.

0%| | 0/100.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/100.0 [00:00<?, ?it/s]
0%| | 0/100.0 [00:00<?, ?it/s]
0%| | 0.24/100.0 [00:00<01:28, 1.13it/s]

(continues on next page)

2.19. Custom Class for coupled PDEs 27

https://en.wikipedia.org/wiki/FitzHugh–Nagumo_model

py-pde Documentation, Release unknown

(continued from previous page)
1%| | 0.74/100.0 [00:00<00:34, 2.86it/s]
3%|3 | 3.08/100.0 [00:00<00:14, 6.71it/s]
8%|8 | 8.32/100.0 [00:00<00:09, 9.33it/s]

16%|#6 | 16.28/100.0 [00:01<00:07, 10.52it/s]
26%|##6 | 26.1/100.0 [00:02<00:06, 11.06it/s]
37%|###7 | 37.01/100.0 [00:03<00:05, 11.35it/s]
48%|####8 | 48.5/100.0 [00:04<00:04, 11.52it/s]
60%|###### | 60.3/100.0 [00:05<00:03, 11.63it/s]
72%|#######2 | 72.25/100.0 [00:06<00:02, 11.71it/s]
84%|########4 | 84.29/100.0 [00:07<00:01, 11.77it/s]
96%|#########6| 96.37/100.0 [00:08<00:00, 11.82it/s]
96%|#########6| 96.37/100.0 [00:08<00:00, 11.39it/s]

100%|##########| 100.0/100.0 [00:08<00:00, 11.82it/s]
100%|##########| 100.0/100.0 [00:08<00:00, 11.82it/s]

from pde import FieldCollection, PDEBase, UnitGrid

class FitzhughNagumoPDE(PDEBase):
"""FitzHugh–Nagumo model with diffusive coupling"""

def __init__(self, stimulus=0.5, τ=10, a=0, b=0, bc="auto_periodic_neumann"):
super().__init__()
self.bc = bc
self.stimulus = stimulus
self.τ = τ
self.a = a
self.b = b

def evolution_rate(self, state, t=0):
v, w = state # membrane potential and recovery variable

v_t = v.laplace(bc=self.bc) + v - v**3 / 3 - w + self.stimulus
w_t = (v + self.a - self.b * w) / self.τ

return FieldCollection([v_t, w_t])

grid = UnitGrid([32, 32])
state = FieldCollection.scalar_random_uniform(2, grid)

eq = FitzhughNagumoPDE()
result = eq.solve(state, t_range=100, dt=0.01)
result.plot()

Total running time of the script: (0 minutes 8.800 seconds)

28 Chapter 2. Examples

py-pde Documentation, Release unknown

2.20 1D problem - Using custom class

This example implements a PDE that is only defined in one dimension. Here, we chose the Korteweg-de Vries equation,
given by

∂tϕ = 6ϕ∂xϕ− ∂3xϕ

which we implement using a custom PDE class below.

from math import pi

from pde import CartesianGrid, MemoryStorage, PDEBase, ScalarField, plot_kymograph

class KortewegDeVriesPDE(PDEBase):
"""Korteweg-de Vries equation"""

def evolution_rate(self, state, t=0):
"""implement the python version of the evolution equation"""
assert state.grid.dim == 1 # ensure the state is one-dimensional
grad_x = state.gradient("auto_periodic_neumann")[0]
return 6 * state * grad_x - grad_x.laplace("auto_periodic_neumann")

initialize the equation and the space

(continues on next page)

2.20. 1D problem - Using custom class 29

https://en.wikipedia.org/wiki/Korteweg–de_Vries_equation

py-pde Documentation, Release unknown

(continued from previous page)
grid = CartesianGrid([[0, 2 * pi]], [32], periodic=True)
state = ScalarField.from_expression(grid, "sin(x)")

solve the equation and store the trajectory
storage = MemoryStorage()
eq = KortewegDeVriesPDE()
eq.solve(state, t_range=3, tracker=storage.tracker(0.1))

plot the trajectory as a space-time plot
plot_kymograph(storage)

Total running time of the script: (0 minutes 2.681 seconds)

2.21 Visualizing a scalar field

This example displays methods for visualizing scalar fields.

import matplotlib.pyplot as plt
import numpy as np

from pde import CylindricalSymGrid, ScalarField

(continues on next page)

30 Chapter 2. Examples

py-pde Documentation, Release unknown

(continued from previous page)
create a scalar field with some noise
grid = CylindricalSymGrid(7, [0, 4 * np.pi], 64)
data = ScalarField.from_expression(grid, "sin(z) * exp(-r / 3)")
data += 0.05 * ScalarField.random_normal(grid)

manipulate the field
smoothed = data.smooth() # Gaussian smoothing to get rid of the noise
projected = data.project("r") # integrate along the radial direction
sliced = smoothed.slice({"z": 1}) # slice the smoothed data

create four plots of the field and the modifications
fig, axes = plt.subplots(nrows=2, ncols=2)
data.plot(ax=axes[0, 0], title="Original field")
smoothed.plot(ax=axes[1, 0], title="Smoothed field")
projected.plot(ax=axes[0, 1], title="Projection on axial coordinate")
sliced.plot(ax=axes[1, 1], title="Slice of smoothed field at $z=1$")
plt.subplots_adjust(hspace=0.8)
plt.show()

Total running time of the script: (0 minutes 0.360 seconds)

2.22 Kuramoto-Sivashinsky - Compiled methods

This example implements a scalar PDE using a custom class with a numba-compiled method for accelerated calculations.
We here consider the Kuramoto–Sivashinsky equation, which for instance describes the dynamics of flame fronts:

∂tu = −1

2
|∇u|2 −∇2u−∇4u

2.22. Kuramoto-Sivashinsky - Compiled methods 31

https://en.wikipedia.org/wiki/Kuramoto–Sivashinsky_equation

py-pde Documentation, Release unknown

0%| | 0/10.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/10.0 [00:00<?, ?it/s]
0%| | 0/10.0 [00:08<?, ?it/s]
0%| | 0.01/10.0 [00:10<2:49:51, 1020.20s/it]
0%| | 0.02/10.0 [00:10<1:24:50, 510.12s/it]
2%|1 | 0.16/10.0 [00:10<10:27, 63.77s/it]

61%|######1 | 6.11/10.0 [00:10<00:06, 1.67s/it]
61%|######1 | 6.11/10.0 [00:10<00:06, 1.67s/it]

100%|##########| 10.0/10.0 [00:10<00:00, 1.02s/it]
100%|##########| 10.0/10.0 [00:10<00:00, 1.02s/it]

import numba as nb

from pde import PDEBase, ScalarField, UnitGrid

class KuramotoSivashinskyPDE(PDEBase):
"""Implementation of the normalized Kuramoto–Sivashinsky equation"""

def __init__(self, bc="auto_periodic_neumann"):

(continues on next page)

32 Chapter 2. Examples

py-pde Documentation, Release unknown

(continued from previous page)
super().__init__()
self.bc = bc

def evolution_rate(self, state, t=0):
"""implement the python version of the evolution equation"""
state_lap = state.laplace(bc=self.bc)
state_lap2 = state_lap.laplace(bc=self.bc)
state_grad_sq = state.gradient_squared(bc=self.bc)
return -state_grad_sq / 2 - state_lap - state_lap2

def _make_pde_rhs_numba(self, state):
"""nunmba-compiled implementation of the PDE"""
gradient_squared = state.grid.make_operator("gradient_squared", bc=self.bc)
laplace = state.grid.make_operator("laplace", bc=self.bc)

@nb.jit
def pde_rhs(data, t):

return -0.5 * gradient_squared(data) - laplace(data + laplace(data))

return pde_rhs

grid = UnitGrid([32, 32]) # generate grid
state = ScalarField.random_uniform(grid) # generate initial condition

eq = KuramotoSivashinskyPDE() # define the pde
result = eq.solve(state, t_range=10, dt=0.01)
result.plot()

Total running time of the script: (0 minutes 10.394 seconds)

2.23 Solver comparison

This example shows how to set up solvers explicitly and how to extract diagnostic information.

Diagnostic information from first run:
{'controller': {'t_start': 0, 't_end': 1.0, 'profiler': {'solver': 0.0580690900000036,
↪→ 'tracker': 5.664999997634368e-05, 'compilation': 4.082863572999997}, 'jit_count': {
↪→'make_stepper': 6, 'simulation': 0}, 'solver_start': '2022-11-29 09:49:21.562441',
↪→'successful': True, 'stop_reason': 'Reached final time', 'solver_duration':
↪→'0:00:00.058157', 't_final': 1.0, 'process_count': 1}, 'package_version': 'unknown',
↪→ 'solver': {'class': 'ExplicitSolver', 'pde_class': 'DiffusionPDE', 'dt': 0.001,
↪→'steps': 1000, 'scheme': 'euler', 'state_modifications': 0.0, 'backend': 'numba',

(continues on next page)

2.23. Solver comparison 33

py-pde Documentation, Release unknown

(continued from previous page)
↪→'stochastic': False, 'dt_adaptive': False}}

Diagnostic information from second run:
{'controller': {'t_start': 0, 't_end': 1.0, 'profiler': {'solver': 0.182658038999989,
↪→'tracker': 5.9469000007084105e-05, 'compilation': 1.1734383529999945}, 'jit_count':
↪→{'make_stepper': 2, 'simulation': 0}, 'solver_start': '2022-11-29 09:49:22.795052',
↪→'successful': True, 'stop_reason': 'Reached final time', 'solver_duration':
↪→'0:00:00.182723', 't_final': 1.0, 'process_count': 1}, 'package_version': 'unknown',
↪→ 'solver': {'class': 'ExplicitSolver', 'pde_class': 'DiffusionPDE', 'dt': 0.001,
↪→'steps': 25, 'scheme': 'runge-kutta', 'state_modifications': 0.0, 'dt_statistics': {
↪→'min': 0.001, 'max': 0.07191049233773025, 'mean': 0.039999999999999994, 'std': 0.
↪→017975368676528724, 'count': 25.0}, 'stochastic': False, 'backend': 'numba', 'dt_
↪→adaptive': True}}

Diagnostic information from third run:
{'controller': {'t_start': 0, 't_end': 1.0, 'profiler': {'solver': 0.
↪→003366352000000461, 'tracker': 5.0909000009369265e-05, 'compilation': 0.
↪→6791545570000039}, 'jit_count': {'make_stepper': 1, 'simulation': 0}, 'solver_start
↪→': '2022-11-29 09:49:25.339444', 'successful': True, 'stop_reason': 'Reached final␣
↪→time', 'solver_duration': '0:00:00.003414', 't_final': 1.0, 'process_count': 1},
↪→'package_version': 'unknown', 'solver': {'class': 'ScipySolver', 'pde_class':
↪→'DiffusionPDE', 'dt': None, 'steps': 50, 'stochastic': False, 'backend': 'numba'}}

import pde

initialize the grid, an initial condition, and the PDE
grid = pde.UnitGrid([32, 32])
field = pde.ScalarField.random_uniform(grid, -1, 1)
eq = pde.DiffusionPDE()

try the explicit solver
solver1 = pde.ExplicitSolver(eq)
controller1 = pde.Controller(solver1, t_range=1, tracker=None)
sol1 = controller1.run(field, dt=1e-3)
sol1.label = "explicit solver"
print("Diagnostic information from first run:")
print(controller1.diagnostics)
print()

try an explicit solver with adaptive time steps
solver2 = pde.ExplicitSolver(eq, scheme="runge-kutta", adaptive=True)
controller2 = pde.Controller(solver2, t_range=1, tracker=None)
sol2 = controller2.run(field, dt=1e-3)
sol2.label = "explicit, adaptive solver"
print("Diagnostic information from second run:")
print(controller2.diagnostics)
print()

try the standard scipy solver
solver3 = pde.ScipySolver(eq)
controller3 = pde.Controller(solver3, t_range=1, tracker=None)

(continues on next page)

34 Chapter 2. Examples

py-pde Documentation, Release unknown

(continued from previous page)
sol3 = controller3.run(field)
sol3.label = "scipy solver"
print("Diagnostic information from third run:")
print(controller3.diagnostics)
print()

plot both fields and give the deviation as the title
title = f"Deviation: {((sol1 - sol2)**2).average:.2g}, {((sol1 - sol3)**2).average:.
↪→2g}"
pde.FieldCollection([sol1, sol2, sol3]).plot(title=title)

Total running time of the script: (0 minutes 8.377 seconds)

2.24 Custom PDE class: SIR model

This example implements a spatially coupled SIR model with the following dynamics for the density of susceptible,
infected, and recovered individuals:

∂ts = D∇2s− βis

∂ti = D∇2i+ βis− γi

∂tr = D∇2r + γi

Here, D is the diffusivity, β the infection rate, and γ the recovery rate.

0%| | 0/50.0 [00:00<?, ?it/s]
Initializing: 0%| | 0/50.0 [00:00<?, ?it/s]
0%| | 0/50.0 [00:00<?, ?it/s]
0%| | 0.02/50.0 [00:00<34:23, 41.28s/it]
0%| | 0.04/50.0 [00:00<17:15, 20.73s/it]
1%| | 0.45/50.0 [00:00<01:38, 1.99s/it]
4%|4 | 2.0/50.0 [00:01<00:27, 1.74it/s]

10%|# | 5.1/50.0 [00:01<00:14, 3.10it/s]
19%|#8 | 9.49/50.0 [00:02<00:10, 4.03it/s]
29%|##9 | 14.71/50.0 [00:03<00:08, 4.31it/s]
40%|###9 | 19.77/50.0 [00:04<00:06, 4.67it/s]
51%|##### | 25.36/50.0 [00:05<00:05, 4.74it/s]
61%|######1 | 30.64/50.0 [00:06<00:04, 4.77it/s]
72%|#######1 | 35.76/50.0 [00:07<00:02, 4.93it/s]
83%|########2 | 41.35/50.0 [00:08<00:01, 4.94it/s]
93%|#########3| 46.65/50.0 [00:09<00:00, 5.05it/s]
93%|#########3| 46.65/50.0 [00:09<00:00, 4.67it/s]

100%|##########| 50.0/50.0 [00:09<00:00, 5.01it/s]
100%|##########| 50.0/50.0 [00:09<00:00, 5.01it/s]

2.24. Custom PDE class: SIR model 35

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

py-pde Documentation, Release unknown

from pde import FieldCollection, PDEBase, PlotTracker, ScalarField, UnitGrid

class SIRPDE(PDEBase):
"""SIR-model with diffusive mobility"""

def __init__(
self, beta=0.3, gamma=0.9, diffusivity=0.1, bc="auto_periodic_neumann"

):
super().__init__()
self.beta = beta # transmission rate
self.gamma = gamma # recovery rate
self.diffusivity = diffusivity # spatial mobility
self.bc = bc # boundary condition

def get_state(self, s, i):
"""generate a suitable initial state"""
norm = (s + i).data.max() # maximal density
if norm > 1:

s /= norm
i /= norm

s.label = "Susceptible"
i.label = "Infected"

create recovered field
r = ScalarField(s.grid, data=1 - s - i, label="Recovered")
return FieldCollection([s, i, r])

def evolution_rate(self, state, t=0):
s, i, r = state
diff = self.diffusivity
ds_dt = diff * s.laplace(self.bc) - self.beta * i * s
di_dt = diff * i.laplace(self.bc) + self.beta * i * s - self.gamma * i
dr_dt = diff * r.laplace(self.bc) + self.gamma * i
return FieldCollection([ds_dt, di_dt, dr_dt])

eq = SIRPDE(beta=2, gamma=0.1)

initialize state
grid = UnitGrid([32, 32])
s = ScalarField(grid, 1)
i = ScalarField(grid, 0)
i.data[0, 0] = 1
state = eq.get_state(s, i)

simulate the pde
tracker = PlotTracker(interval=10, plot_args={"vmin": 0, "vmax": 1})
sol = eq.solve(state, t_range=50, dt=1e-2, tracker=["progress", tracker])

Total running time of the script: (0 minutes 10.297 seconds)

36 Chapter 2. Examples

py-pde Documentation, Release unknown

2.25 Brusselator - Using custom class

This example implements the Brusselator with spatial coupling,

∂tu = D0∇2u+ a− (1 + b)u+ vu2

∂tv = D1∇2v + bu− vu2

Here, D0 and D1 are the respective diffusivity and the parameters a and b are related to reaction rates.
Note that the PDE can also be implemented using the PDE class; see the example. However, that implementation is less
flexible and might be more difficult to extend later.

import numba as nb
import numpy as np

from pde import FieldCollection, PDEBase, PlotTracker, ScalarField, UnitGrid

class BrusselatorPDE(PDEBase):
"""Brusselator with diffusive mobility"""

def __init__(self, a=1, b=3, diffusivity=[1, 0.1], bc="auto_periodic_neumann"):
super().__init__()
self.a = a
self.b = b
self.diffusivity = diffusivity # spatial mobility
self.bc = bc # boundary condition

def get_initial_state(self, grid):
"""prepare a useful initial state"""
u = ScalarField(grid, self.a, label="Field u")
v = self.b / self.a + 0.1 * ScalarField.random_normal(grid, label="Field v")
return FieldCollection([u, v])

def evolution_rate(self, state, t=0):
"""pure python implementation of the PDE"""
u, v = state
rhs = state.copy()
d0, d1 = self.diffusivity
rhs[0] = d0 * u.laplace(self.bc) + self.a - (self.b + 1) * u + u**2 * v

(continues on next page)

2.25. Brusselator - Using custom class 37

https://en.wikipedia.org/wiki/Brusselator

py-pde Documentation, Release unknown

(continued from previous page)
rhs[1] = d1 * v.laplace(self.bc) + self.b * u - u**2 * v
return rhs

def _make_pde_rhs_numba(self, state):
"""nunmba-compiled implementation of the PDE"""
d0, d1 = self.diffusivity
a, b = self.a, self.b
laplace = state.grid.make_operator("laplace", bc=self.bc)

@nb.jit
def pde_rhs(state_data, t):

u = state_data[0]
v = state_data[1]

rate = np.empty_like(state_data)
rate[0] = d0 * laplace(u) + a - (1 + b) * u + v * u**2
rate[1] = d1 * laplace(v) + b * u - v * u**2
return rate

return pde_rhs

initialize state
grid = UnitGrid([64, 64])
eq = BrusselatorPDE(diffusivity=[1, 0.1])
state = eq.get_initial_state(grid)

simulate the pde
tracker = PlotTracker(interval=1, plot_args={"vmin": 0, "vmax": 5})
sol = eq.solve(state, t_range=20, dt=1e-3, tracker=tracker)

Total running time of the script: (0 minutes 10.573 seconds)

38 Chapter 2. Examples

CHAPTER

THREE

USER MANUAL

3.1 Mathematical basics

To solve partial differential equations (PDEs), the py-pde package provides differential operators to express spatial deriva-
tives. These operators are implemented using the finite difference method to support various boundary conditions. The
time evolution of the PDE is then calculated using the method of lines by explicitly discretizing space using the grid
classes. This reduces the PDEs to a set of ordinary differential equations, which can be solved using standard methods
as described below.

3.1.1 Curvilinear coordinates

The package supports multiple curvilinear coordinate systems. They allow to exploit symmetries present in physical
systems. Consequently, many grids implemented in py-pde inherently assume symmetry of the described fields. However,
a drawback of curvilinear coordinates are the fact that the basis vectors now depend on position, which makes tensor
fields less intuitive and complicates the expression of differential operators. To avoid confusion, we here specify the used
coordinate systems explictely:

Polar coordinates

Polar coordinates describe points by a radius r and an angle ϕ in a two-dimensional coordinates system. They are defined
by the transformation {

x = r cos(ϕ)
y = r sin(ϕ)

for r ∈ [0,∞] and ϕ ∈ [0, 2π)

The associated symmetric grid PolarSymGrid assumes that fields only depend on the radial coordinate r. Note that
vector and tensor fields can still have components in the polar direction. In particular, vector fields still have two compo-
nents: v⃗(r) = vr(r)e⃗r + vϕ(r)e⃗ϕ.

Spherical coordinates

Spherical coordinates describe points by a radius r, an azimuthal angle θ, and a polar angle ϕ. The conversion to ordinary
Cartesian coordinates reads

x = r sin(θ) cos(ϕ)
y = r sin(θ) sin(ϕ)
z = r cos(θ)

for r ∈ [0,∞], θ ∈ [0, π], and ϕ ∈ [0, 2π)

39

https://en.wikipedia.org/wiki/Finite_difference_method

py-pde Documentation, Release unknown

The associated symmetric grid SphericalSymGrid assumes that fields only depend on the radial coordinate r. Note
that vector and tensor fields can still have components in the two angular direction.

Warning: Not all results of differential operators on vectorial and tensorial fields can be expressed in terms of fields
that only depend on the radial coordinate r. In particular, the gradient of a vector field can only be calculated if the
azimuthal component of the vector field vanishes. Similarly, the divergence of a tensor field can only be taken in
special situations.

Cylindrical coordinates

Cylindrical coordinates describe points by a radius r, an axial coordinate z, and a polar angle ϕ. The conversion to
ordinary Cartesian coordinates reads

x = r cos(ϕ)
y = r sin(ϕ)
z = z

for r ∈ [0,∞], z ∈ R, and ϕ ∈ [0, 2π)

The associated symmetric grid CylindricalSymGrid assumes that fields only depend on the coordinates r and z.
Vector and tensor fields still specify all components in the three-dimensional space.

Warning: The order of components in the vector and tensor fields defined on cylindrical grids is different than in
ordinary math. While it is common to use (r, ϕ, z), we here use the order (r, z, ϕ). It might thus be best to access
components by name instead of index.

3.1.2 Spatial discretization

xmin

x0 x1 x2 xN−1xN−2

xmax

{ Δx

The finite differences scheme used by py-pde is currently restricted to orthogonal coordinate systems with uniform dis-
cretization. Because of the orthogonality, each axis of the grid can be discretized independently. For simplicity, we only
consider uniform grids, where the support points are spaced equidistantly along a given axis, i.e., the discretization∆x is
constant. If a given axis covers values in a range [xmin, xmax], a discretization with N support points can then be though
of as covering the axis with N equal-sized boxes; see inset. Field values are then specified for each box, i.e., the support
points lie at the centers of the box:

xi = xmin +

(
i+

1

2

)
∆x for i = 0, . . . , N − 1

∆x =
xmax − xmin

N

which is also indicated in the inset.
Differential operators are implemented using the usual second-order central differences. This requires the introducing of
virtual support points at x−1 and xN , which can be determined from the boundary conditions at x = xmin and x = xmax,
respectively. The field classes automate this transparently. However, if you need more control over boundary conditions,
you can access the full underlying data using the field._data_full, which will have N + 2 entries along an axis

40 Chapter 3. User manual

py-pde Documentation, Release unknown

that has N support points. In this case, the first and last entries (data_full[0] and data_full[N + 1]) denote
the lower and upper virtual point, respectively. The actual field data can be obtained using data_full[1:-1] or the
field.data attribute for convenience. Note that functions evaluating differential operators generally expect the full
data as input while they return only valid data.

3.1.3 Temporal evolution

Once the fields have been discretized, the PDE reduces to a set of coupled ordinary differential equations (ODEs), which
can be solved using standard methods. This reduction is also known as the method of lines. The py-pde package imple-
ments the simple Euler scheme and a more advanced Runge-Kutta scheme in the ExplicitSolver class. For the
simple implementations of these explicit methods, the user typically specifies a fixed time step, although adaptive meth-
ods, which adjust the time step automatically, are also often used and available in the package. One problem with explicit
solvers is that they require small time steps to stably evolve some PDEs; such PDEs are then often called ‘stiff’. Stiff PDEs
can sometimes be solved more efficiently by using implicit methods. This package provides a simple implementation of
the Backward Euler method in the ImplicitSolver class. Finally, more advanced methods are available by wrapping
the scipy.integrate.solve_ivp() in the ScipySolver class.

3.2 Basic usage

We here describe the typical workflow to solve a PDE using py-pde. Throughout this section, we assume that the package
has been imported using import pde.

3.2.1 Defining the geometry

The state of the system is described in a discretized geometry, also known as a grid. The package focuses on simple ge-
ometries, which work well for the employed finite difference scheme. Grids are defined by instance of various classes that
capture the symmetries of the underlying space. In particular, the package offers Cartesian grids of 1 to 3 dimensions via
CartesianGrid, as well as curvilinear coordinate for spherically symmetric systems in two dimension (PolarSym-
Grid) and three dimensions (SphericalSymGrid), as well as the special class CylindricalSymGrid for a
cylindrical geometry which is symmetric in the angle.
All grids allow to set the size of the underlying geometry and the number of support points along each axis, which
determines the spatial resolution. Moreover, most grids support periodic boundary conditions. For example, a rectangular
grid with one periodic boundary condition can be specified as

grid = pde.CartesianGrid([[0, 10], [0, 5]], [20, 10], periodic=[True, False])

This grid will have a rectangular shape of 10x5 with square unit cells of side length 0.5. Note that the grid will only be
periodic in the x-direction.

3.2.2 Initializing a field

Fields specifying the values at the discrete points of the grid defined in the previous section. Most PDEs discussed in
the package describe a scalar variable, which can be encoded th class ScalarField. However, tensors with rank 1
(vectors) and rank 2 are also supported using VectorField and Tensor2Field, respectively. In any case, a field
is initialized using a pre-defined grid, e.g., field = pde.ScalarField(grid). Optional values allow to set
the value of the grid, as well as a label that is later used in plotting, e.g., field1 = pde.ScalarField(grid,
data=1, label="Ones"). Moreover, fields can be initialized randomly (field2 = pde.ScalarField.
random_normal(grid, mean=0.5)) or from a mathematical expression, which may depend on the coordinates
of the grid (field3 = pde.ScalarField.from_expression(grid, "x * y")).

3.2. Basic usage 41

https://en.wikipedia.org/wiki/Runge–Kutta_methods
https://en.wikipedia.org/wiki/Backward_Euler_method
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp

py-pde Documentation, Release unknown

All field classes support basic arithmetic operations and can be used much like numpy arrays. Moreover, they have
methods for applying differential operators, e.g., the result of applying the Laplacian to a scalar field is returned by
calling the method laplace(), which returns another instance of ScalarField, whereas gradient() returns a
VectorField. Combining these functions with ordinary arithmetics on fields allows to represent the right hand side
of many partial differential equations that appear in physics. Importantly, the differential operators work with flexible
boundary conditions.

3.2.3 Specifying the PDE

PDEs are also instances of special classes and a number of classical PDEs are already pre-defined in the module pde.
pdes. Moreover, the special class PDE allows defining PDEs by simply specifying the expression on their right hand side.
To see how this works in practice, let us consider the Kuramoto–Sivashinsky equation, ∂tu = −∇4u−∇2u− 1

2 |∇u|
2,

which describes the time evolution of a scalar field u. A simple implementation of this equation reads

eq = pde.PDE({"u": "-gradient_squared(u) / 2 - laplace(u + laplace(u))"})

Here, the argument defines the evolution rate for all fields (in this case only u). The expression on the right hand side can
contain typical mathematical functions and the operators defined by the package.

3.2.4 Running the simulation

To solve the PDE, we first need to generate an initial condition, i.e., the initial values of the fields that are evolved forward
in time by the PDE. This field also defined the geometry on which the PDE is solved. In the simplest case, the solution is
then obtain by running

result = eq.solve(field, t_range=10, dt=1e-2)

Here, t_range specifies the duration over which the PDE is considered and dt specifies the time step. The result field will
be defined on the same grid as the initial condition field, but instead contain the data value at the final time. Note that all
intermediate states are discarded in the simulation above and no information about the dynamical evolution is retained.
To study the dynamics, one can either analyze the evolution on the fly or store its state for subsequent analysis. Both these
tasks are achieved using trackers, which analyze the simulation periodically. For instance, to store the state for some
time points in memory, one uses

storage = pde.MemoryStorage()
result = eq.solve(field, t_range=10, dt=1e-3, tracker=["progress", storage.
↪→tracker(1)])

Note that we also included the special identifier "progress" in the list of trackers, which shows a progress bar during
the simulation. Another useful tracker is "plot" which displays the state on the fly.

3.2.5 Analyzing the results

Sometimes is suffices to plot the final result, which can be done using result.plot(). The final result can of course
also be analyzed quantitatively, e.g., using result.average to obtain its mean value. If the intermediate states have
been saved as indicated above, they can be analyzed subsequently:

for time, field in storage.items():
print(f"t={time}, field={field.magnitude}")

Moreover, a movie of the simulation can be created using pde.movie(storage, filename=FILE), where FILE
determines where the movie is written.

42 Chapter 3. User manual

https://en.wikipedia.org/wiki/Kuramoto–Sivashinsky_equation

py-pde Documentation, Release unknown

3.3 Advanced usage

3.3.1 Boundary conditions

A crucial aspect of partial differential equations are boundary conditions, which need to be specified at the domain bound-
aries. For the simple domains contained in py-pde, all boundaries are orthogonal to one of the axes in the domain, so
boundary conditions need to be applied to both sides of each axis. Here, the lower side of an axis can have a differnt
condition than the upper side. For instance, one can enforce the value of a field to be 4 at the lower side and its derivative
(in the outward direction) to be 2 on the upper side using the following code:

bc_lower = {"value": 4}
bc_upper = {"derivative": 2}
bc = [bc_lower, bc_upper]

grid = pde.UnitGrid([16])
field = pde.ScalarField(grid)
field.laplace(bc)

Here, the Laplace operator applied to the field in the last line will respect the boundary conditions. Note that it suffices to
give one condition if both sides of the axis require the same condition. For instance, to enforce a value of 3 on both side,
one could simply use bc = {'value': 3}. Vectorial boundary conditions, e.g., to calculate the vector gradient
or tensor divergence, can have vectorial values for the boundary condition. Generally, only the normal components at
a boundary need to be specified if an operator reduces the rank of a field, e.g., for divergences. Otherwise, e.g., for
gradients and Laplacians, the full field needs to be specified at the boundary.
Boundary values that depend on space can be set by specifying a mathematical expression, which may depend on the
coordinates of all axes:

two different conditions for lower and upper end of x-axis
bc_x = [{"derivative": 0.1}, {"value": "sin(y / 2)"}]
the same condition on the lower and upper end of the y-axis
bc_y = {"value": "sqrt(1 + cos(x))"}

grid = UnitGrid([32, 32])
field = pde.ScalarField(grid)
field.laplace(bc=[bc_x, bc_y])

Warning: To interpret arbitrary expressions, the package uses exec(). It should therefore not be used in a context
where malicious input could occur.

Inhomogeneous values can also be specified by directly supplying an array, whose shape needs to be compatible with the
boundary, i.e., it needs to have the same shape as the grid but with the dimension of the axis along which the boundary
is specified removed.
There exist also special boundary conditions that impose a more complex value of the field
(bc='value_expression') or its derivative (bc='derivative_expression'). Beyond the spatial
coordinates that are already supported for the constant conditions above, the expressions of these boundary conditions
can depend on the time variable t. Note that PDEs need to supply the current time when setting the boundary conditions,
e.g., when applying the differential operators. The pre-defined PDEs and the general class PDE already support
time-dependent boundary conditions.
One important aspect about boundary conditions is that they need to respect the periodicity of the underlying grid. For
instance, in a 2d grid with one periodic axis, the following boundary condition can be used:

3.3. Advanced usage 43

https://docs.python.org/3/library/functions.html#exec

py-pde Documentation, Release unknown

grid = pde.UnitGrid([16, 16], periodic=[True, False])
field = pde.ScalarField(grid)
bc = ["periodic", {"derivative": 0}]
field.laplace(bc)

For convenience, this typical situation can be described with the special boundary condition auto_periodic_neumann,
e.g., calling the Laplace operator using field.laplace("auto_periodic_neumann") is identical to the ex-
ample above. Similarly, the special condition auto_periodic_dirichlet enforces periodic boundary conditions or Dirichlet
boundary condition (vanishing value), depending on the periodicity of the underlying grid.
In summary, we have the following options for boundary conditions on a field c

Table 1: Supported boundary conditions
Name Condition Example
Dirichlet c = 0 "dirichlet" or "value"

c = const {"value": 1.5}
c = f(x, t) {"value_expression": "sin(x)"}

Neumann ∂nc = 0 "neumann" or "derivative"
∂nc = const {"derivative": -2}
∂nc = f(x, t) {"derivative_expression": "exp(t)"}

Robin ∂nc+ value · c = const {"type": "mixed", "value": 2,
"const": 7}

Curvature ∂2nc = const {"curvature": 3}

Periodic c(0) = c(L) "periodic"
Anti-periodic c(0) = −c(L) "anti-periodic"

Periodic or Dirichlet c(0) = c(L) or c = 0 "auto_periodic_dirichlet"
Periodic or Neu-
mann

c(0) = c(L) or ∂nc = 0 "auto_periodic_neumann"

Here, ∂n denotes a derivative in outward normal direction, f denotes an arbitrary function given by an expression (see
next section), x denotes coordinates along the boundary, t denotes time.

3.3.2 Expressions

Expressions are strings that describe mathematical expressions. They can be used in several places, most prominently
in defining PDEs using PDE, in creating fields using from_expression(), and in defining boundary conditions; see
section above. Expressions are parsed using sympy, so the expected syntax is defined by this python package. While we
describe some common use cases below, it might be best to test the abilities using the evaluate() function.

Warning: To interpret arbitrary expressions, the package uses exec(). It should therefore not be used in a context
where malicious input could occur.

Simple expressions can contain many standard mathematical functions, e.g., sin(a) + b**2 is a valid expression.
PDE and evaluate() furthermore accept differential operators defined in this package. Note that operators need to
be specified with their full name, i.e., laplace for a scalar Laplacian and vector_laplace for a Laplacian operating on a
vector field. Moreover, the dot product between two vector fields can be denoted by using dot(field1, field2) in
the expression, and outer(field1, field2) calculates an outer product. In this case, boundary conditons for the
operators can be specified using the bc argument, in which case the same boundary conditions are applied to all operators.

44 Chapter 3. User manual

https://docs.sympy.org/latest/index.html#module-sympy
https://docs.python.org/3/library/functions.html#exec

py-pde Documentation, Release unknown

The additional argument bc_ops provides a more fine-grained control, where conditions for each individual operator can
be specified.
Field expressions can also directly depend on spatial coordinates. For instance, if a field is defined on a two-dimensional
Cartesian grid, the variables x and y denote the local coordinates. To initialize a step profile in the x-direction, one can
use either (x > 5) or heaviside(x - 5, 0.5), where the second argument denotes the returned value in case
the first argument is 0. Finally, expressions for equations in PDE can explicitely depend on time, which is denoted by the
variable t.
Expressions also support user-defined functions via the user_funcs argument, which is a dictionary that maps the name of
a function to an actual implementation. Finally, constants can be defined using the consts argument. Constants can either
be individual numbers or spatially extended data, which provide values for each grid point. Note that in the latter case
only the actual grid data should be supplied, i.e., the data attribute of a potential field class.

3.3.3 Custom PDE classes

To implement a new PDE in a way that all of the machinery of py-pde can be used, one needs to subclass PDEBase and
overwrite at least the evolution_rate()method. A simple implementation for the Kuramoto–Sivashinsky equation
could read

class KuramotoSivashinskyPDE(PDEBase):

def evolution_rate(self, state, t=0):
""" numpy implementation of the evolution equation """
state_lapacian = state.laplace(bc="auto_periodic_neumann")
state_gradient = state.gradient(bc="auto_periodic_neumann")
return (- state_lapacian.laplace(bc="auto_periodic_neumann")

- state_lapacian
- 0.5 * state_gradient.to_scalar("squared_sum"))

A slightly more advanced example would allow for attributes that for instance define the boundary conditions and the
diffusivity:

class KuramotoSivashinskyPDE(PDEBase):

def __init__(self, diffusivity=1, bc="auto_periodic_neumann", bc_laplace="auto_
↪→periodic_neumann"):

""" initialize the class with a diffusivity and boundary conditions
for the actual field and its second derivative """
self.diffusivity = diffusivity
self.bc = bc
self.bc_laplace = bc_laplace

def evolution_rate(self, state, t=0):
""" numpy implementation of the evolution equation """
state_lapacian = state.laplace(bc=self.bc)
state_gradient = state.gradient(bc=self.bc)
return (- state_lapacian.laplace(bc=self.bc_laplace)

- state_lapacian
- 0.5 * self.diffusivity * (state_gradient @ state_gradient))

We here replaced the call to to_scalar('squared_sum') by a dot product with itself (using the @ notation),
which is equivalent. Note that the numpy implementation of the right hand side of the PDE is rather slow since it runs
mostly in pure python and constructs a lot of intermediate field classes. While such an implementation is helpful for
testing initial ideas, actual computations should be performed with compiled PDEs as described below.

3.3. Advanced usage 45

py-pde Documentation, Release unknown

3.3.4 Low-level operators

This section explains how to use the low-level version of the field operators. This is necessary for the numba-accelerated
implementations described above and it might be necessary to use parts of the py-pde package in other packages.

Differential operators

Applying a differential operator to an instance of ScalarField is a simple as calling field.laplace(bc), where
bc denotes the boundary conditions. Calling this method returns another ScalarField, which in this case contains
the discretized Laplacian of the original field. The equivalent call using the low-level interface is

apply_laplace = field.grid.make_operator("laplace", bc)

laplace_data = apply_laplace(field.data)

Here, the first line creates a function apply_laplace for the given grid field.grid and the boundary conditions
bc. This function can be applied to numpy.ndarray instances, e.g. field.data. Note that the result of this call is
again a numpy.ndarray.
Similarly, a gradient operator can be defined

grid = UnitGrid([6, 8])
apply_gradient = grid.make_operator("gradient", bc="auto_periodic_neumann")

data = np.random.random((6, 8))
gradient_data = apply_gradient(data)
assert gradient_data.shape == (2, 6, 8)

Note that this example does not even use the field classes. Instead, it directly defines a grid and the respective gradient
operator. This operator is then applied to a randomfield and the resultingnumpy.ndarray represents the 2-dimensional
vector field.
The make_operator method of the grids generally supports the following differential operators: 'laplacian',
'gradient', 'gradient_squared', 'divergence', 'vector_gradient', 'vector_laplace',
and 'tensor_divergence'. However, a complete list of operators supported by a certain grid class can be obtained
from the class property GridClass.operators. New operators can be added using the class method GridClass.
register_operator().

Field integration

The integral of an instance of ScalarField is usually determined by accessing the property field.integral.
Since the integral of a discretized field is basically a sum weighted by the cell volumes, calculating the integral using only
numpy is easy:

cell_volumes = field.grid.cell_volumes
integral = (field.data * cell_volumes).sum()

Note that cell_volumes is a simple number for Cartesian grids, but is an array for more complicated grids, where
the cell volume is not uniform.

46 Chapter 3. User manual

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/index.html#module-numpy

py-pde Documentation, Release unknown

Field interpolation

The fields defined in the py-pde package also support linear interpolation by calling field.interpolate(point).
Similarly to the differential operators discussed above, this call can also be translated to code that does not use the full
package:

grid = UnitGrid([6, 8])
interpolate = grid.make_interpolator_compiled(bc="auto_periodic_neumann")

data = np.random.random((6, 8))
value = interpolate(data, np.array([3.5, 7.9]))

We first create a function interpolate, which is then used to interpolate the field data at a certain point. Note that
the coordinates of the point need to be supplied as a numpy.ndarray and that only the interpolation at single points
is supported. However, iteration over multiple points can be fast when the loop is compiled with numba.

Inner products

For vector and tensor fields, py-pde defines inner products that can be accessed conveniently using the@-syntax: field1
@ field2 determines the scalar product between the two fields. The package also provides an implementation for an
dot-operator:

grid = UnitGrid([6, 8])
field1 = VectorField.random_normal(grid)
field2 = VectorField.random_normal(grid)

dot_operator = field1.make_dot_operator()

result = dot_operator(field1.data, field2.data)
assert result.shape == (6, 8)

Here, result is the data of the scalar field resulting from the dot product.

3.3.5 Numba-accelerated PDEs

The compiled operators introduced in the previous section can be used to implement a compiled method for the evolution
rate of PDEs. As an example, we now extend the class KuramotoSivashinskyPDE introduced above:

from pde.tools.numba import jit

class KuramotoSivashinskyPDE(PDEBase):

def __init__(self, diffusivity=1, bc="auto_periodic_neumann", bc_laplace="auto_
↪→periodic_neumann"):

""" initialize the class with a diffusivity and boundary conditions
for the actual field and its second derivative """
self.diffusivity = diffusivity
self.bc = bc
self.bc_laplace = bc_laplace

def evolution_rate(self, state, t=0):
""" numpy implementation of the evolution equation """

(continues on next page)

3.3. Advanced usage 47

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

(continued from previous page)
state_lapacian = state.laplace(bc=self.bc)
state_gradient = state.gradient(bc="auto_periodic_neumann")
return (- state_lapacian.laplace(bc=self.bc_laplace)

- state_lapacian
- 0.5 * self.diffusivity * (state_gradient @ state_gradient))

def _make_pde_rhs_numba(self, state):
""" the numba-accelerated evolution equation """
make attributes locally available
diffusivity = self.diffusivity

create operators
laplace_u = state.grid.make_operator("laplace", bc=self.bc)
gradient_u = state.grid.make_operator("gradient", bc=self.bc)
laplace2_u = state.grid.make_operator("laplace", bc=self.bc_laplace)
dot = VectorField(state.grid).make_dot_operator()

@jit
def pde_rhs(state_data, t=0):

""" compiled helper function evaluating right hand side """
state_lapacian = laplace_u(state_data)
state_grad = gradient_u(state_data)
return (- laplace2_u(state_lapacian)

- state_lapacian
- diffusivity / 2 * dot(state_grad, state_grad))

return pde_rhs

To activate the compiled implementation of the evolution rate, we simply have to overwrite the
_make_pde_rhs_numba() method. This method expects an example of the state class (e.g., an instance of
ScalarField) and returns a function that calculates the evolution rate. The state argument is necessary to define the
grid and the dimensionality of the data that the returned function is supposed to be handling. The implementation of the
compiled function is split in several parts, where we first copy the attributes that are required by the implementation. This
is necessary, since numba freezes the values when compiling the function, so that in the example above the diffusivity
cannot be altered without recompiling. In the next step, we create all operators that we need subsequently. Here, we use
the boundary conditions defined by the attributes, which requires two different laplace operators, since their boundary
conditions might differ. In the last step, we define the actual implementation of the evolution rate as a local function that
is compiled using the jit decorator. Here, we use the implementation shipped with py-pde, which sets some default
values. However, we could have also used the usual numba implementation. It is important that the implementation of
the evolution rate only uses python constructs that numba can compile.
One advantage of the numba compiled implementation is that we can now use loops, which will be much faster than their
python equivalents. For instance, we could have written the dot product in the last line as an explicit loop:

[...]

def _make_pde_rhs_numba(self, state):
""" the numba-accelerated evolution equation """
make attributes locally available
diffusivity = self.diffusivity

create operators
laplace_u = state.grid.make_operator("laplace", bc=self.bc)
gradient_u = state.grid.make_operator("gradient", bc=self.bc)
laplace2_u = state.grid.make_operator("laplace", bc=self.bc_laplace)

(continues on next page)

48 Chapter 3. User manual

py-pde Documentation, Release unknown

(continued from previous page)
dot = VectorField(state.grid).make_dot_operator()
dim = state.grid.dim

@jit
def pde_rhs(state_data, t=0):

""" compiled helper function evaluating right hand side """
state_lapacian = laplace_u(state_data)
state_grad = gradient_u(state_data)
result = - laplace2_u(state_lapacian) - state_lapacian

for i in range(state_data.size):
for j in range(dim):

result.flat[i] -= diffusivity / 2 * state_grad[j].flat[i]**2

return result

return pde_rhs

Here, we extract the total number of elements in the state using its size attribute and we obtain the dimensionality
of the space from the grid attribute dim. Note that we access numpy arrays using their flat attribute to provide an
implementation that works for all dimensions.

3.3.6 Configuration parameters

Configuration parameters affect how the package behaves. They can be set using a dictionary-like interface of the con-
figuration config, which can be imported from the base package. Here is a list of all configuration options that can be
adjusted in the package:
numba.debug

Determines whether numba used the debug mode for compilation. If enabled, this emits extra information that
might be useful for debugging. (Default value: False)

numba.fastmath
Determines whether the fastmath flag is set during compilation. This affects the precision of the mathematical
calculations. (Default value: True)

numba.multithreading
Determines whether multiple threads are used in numba-compiled code. (Default value: True)

numba.multithreading_threshold
Minimal number of support points before multithreading is enabled in numba compilations. (Default value:
65536)

Tip: To disable parallel computing in the package, the following code could be added to the start of the script:

from pde import config
config["numba.multithreading"] = False

actual code using py-pde

3.3. Advanced usage 49

py-pde Documentation, Release unknown

3.4 Performance

3.4.1 Measuring performance

The performance of the py-pde package depends on many details and general statements are thus difficult to make.
However, since the core operators are just-in-time compiled using numba, many operations of the package proceed at
performances close to most compiled languages. For instance, a simple Laplace operator applied to fields defined on a
Cartesian grid has performance that is similar to the operators supplied by the popular OpenCV package. The following
figures illustrate this by showing the duration of evaluating the Laplacian on grids of increasing number of support points
for two different boundary conditions (lower duration is better):

102 103 104 105 106 107

Number of grid points

10-6

10-5

10-4

10-3

10-2

10-1

Ru
nt

im
e

[m
s]

2D Laplacian (periodic BCs)
scipy
opencv
py-pde
py-pde (no BCs)

102 103 104 105 106 107

Number of grid points

10-6

10-5

10-4

10-3

10-2

10-1

Ru
nt

im
e

[m
s]

2D Laplacian (reflecting BCs)
scipy
opencv
py-pde
py-pde (no BCs)

Note that the call overhead is lower in the py-pde package, so that the performance on small grids is particularly good.
However, realistic use-cases probably need more complicated operations and it is thus always necessary to profile the re-
spective code. This can be done using the function estimate_computation_speed() or the traditional timeit,
profile, or even more sophisticated profilers like pyinstrument.

50 Chapter 3. User manual

https://opencv.org
https://docs.python.org/3/library/timeit.html#module-timeit
https://docs.python.org/3/library/profile.html#module-profile
https://github.com/joerick/pyinstrument

py-pde Documentation, Release unknown

3.4.2 Improving performance

Beside the underlying implementation of the operators, a major factor for performance is numerical problem at hand
and the methods that are used to solve it. As a rule of thumb, simulations run faster when there are fewer degrees of
freedom. In the case of partial differential equations, this often means using a coarser grid with fewer support points.
However, there often also is an lower bound to the number of support points if structures of a certain length scales need
to be resolved. Reducing the number of support points not only reduces the number of variables to be treated, but it can
also allow for larger time steps. This is particularly transparent for the simple diffusion equation, where a von Neumann
stability analysis reveals that the maximal time step scales as one over the discretization length squared! Choosing the
right time step obviously also affects performance of a simulation. The package supports automatic choice of suitable
time steps, using adaptive stepping schemes. To enable those, it’s best to specify an initial time step, like so

eq.solve(t_range=10, dt=1e-3, adaptive=True)

An additional advantage of this choice is that it selects ExplicitSolver, which is also compiled with numba for
speed. Alternatively, if only t_range is specified, the generic scipy-solver ScipySolver, which can be significantly
slower.
Additional factors influencing the performance of the package include the compiler used for numpy, scipy, and of
course numba. Moreover, the BLAS and LAPACK libraries might make a difference. The package has some basic
support for multithreading, which can be accelerated using the Threading Building Blocks library. Finally, it can help to
install the intel short vector math library (SVML). However, this is not distributed with macports and might thus be
more difficult to enable.
Using macports, one could for instance install the following variants of typical packages

port install py37-numpy +gcc8+openblas
port install py37-scipy +gcc8+openblas
port install py37-numba +tbb

Note that you can disable the automatic multithreading via Configuration parameters.

3.4.3 Multiprocessing using MPI

The package also supports parallel simulations of PDEs using the Message Passing Interface (MPI), which allows com-
bining the power of CPU cores that do not share memory. To use this advanced simulation technique, a working imple-
mentation of MPI needs to be installed on the computer. Usually, this is done automatically, when the optional package
numba-mpi is installed via pip or conda.
To run simulations in parallel, the special solver ExplicitMPISolver needs to be used and the entire script needs
to be started using mpiexec. Taken together, a minimal example reads

from pde import DiffusionPDE, ScalarField, UnitGrid

grid = UnitGrid([64, 64])
state = ScalarField.random_uniform(grid, 0.2, 0.3)

eq = DiffusionPDE(diffusivity=0.1)
result = eq.solve(state, t_range=10, dt=0.1, method="explicit_mpi")

if result is not None:
result.plot()

Saving this script as multiprocessing.py, we can evoke a parallel simulation using

3.4. Performance 51

https://en.wikipedia.org/wiki/Von_Neumann_stability_analysis
https://en.wikipedia.org/wiki/Von_Neumann_stability_analysis
https://numpy.org/doc/stable/reference/index.html#module-numpy
https://docs.scipy.org/doc/scipy/index.html#module-scipy
https://en.wikipedia.org/wiki/Message_Passing_Interface

py-pde Documentation, Release unknown

mpiexec -n 2 python3 multiprocessing.py

Here, the number 2 determines the number of cores that will be used. Note that macOS might require an additional hint
on how to connect the processes even when they are run on the same machine (e.g., your workstation). It might help to
run mpiexec -n 2 -host localhost python3 multiprocessing.py in this case.
In the example above, two python processes will start in parallel and run independently at first. In particular, both processes
will load all packages and create the initial state field as well as the PDE class eq. Once the explicit_mpi solver is evoked,
the processes will start communicating. py-pde will split up the full grid into two sub-grids, in this case of shape 32x64,
distribute the associated sub-fields to both processes and ask each process to evolve the PDE for their sub-field. Note
that boundary conditions are treated and boundary values are exchanged between neighboring sub-grids automatically.
To avoid confusion, trackers will only be used on one process and also the result is only returned in one process to avoid
problems where multiple process write data simultaneously. Consequently, the example above checked whether result is
None (in which case the corresponnding process is a child process) and only resumes analysis when the result is actually
present.
The automatic treatment tries to use sensible default values, so typical simulations work out of the box. However, in some
situations it might be advantageous to adjust these values. For instance, the decomposition of the grid can be affected by an
argument decomposition, which can be passed to the solve() method or the ExplicitMPISolver. The argument
should be a list with one integer for each axis in the grid, which specifies how often the particular axis is divided.

Warning: The automatic division of the grid into sub-grids can lead to unexpected behavior, particularly in custom
PDEs that were not designed for this use case. As a rule of thumb, all local operations are fine (since they can be
performed on each subgrid), while global operations might need synchronization between all subgrids. One example
is integration, which has been implemented properly in py-pde. Consequently, it is safe to use integral.

3.5 Contributing code

3.5.1 Structure of the package

The functionality of the pde package is split into multiple sub-package. The domain, together with its symmetries,
periodicities, and discretizations, is described by classes defined in grids. Discretized fields are represented by classes
in fields, which have methods for differential operators with various boundary conditions collected in boundaries.
The actual pdes are collected in pdes and the respective solvers are defined in solvers.

3.5.2 Extending functionality

All code is build on a modular basis, making it easy to introduce new classes that integrate with the rest of the package.
For instance, it is simple to define a new partial differential equation by subclassing PDEBase. Alternatively, PDEs
can be defined by specifying their evolution rates using mathematical expressions by creating instances of the class PDE.
Moreover, new grids can be introduced by subclassing GridBase. It is also possible to only use parts of the package,
e.g., the discretized differential operators from operators.
New operators can be associated with grids by registering them usingregister_operator(). For instance, to create
a new operator for the cylindrical grid one needs to define a factory function that creates the operator. This factory function
takes an instance of Boundaries as an argument and returns a function that takes as an argument the actual data array
for the grid. Note that the grid itself is an attribute of Boundaries. This operator would be registered with the grid by
calling CylindricalSymGrid.register_operator("operator", make_operator), where the first
argument is the name of the operator and the second argument is the factory function.

52 Chapter 3. User manual

py-pde Documentation, Release unknown

3.5.3 Design choices

The data layout of field classes (subclasses of FieldBase) was chosen to allow for a simple decomposition of different
fields and tensor components. Consequently, the data is laid out in memory such that spatial indices are last. For instance,
the data of a vector field field defined on a 2d Cartesian grid will have three dimensions and can be accessed as
field.data[vector_component, x, y], where vector_component is either 0 or 1.

3.5.4 Coding style

The coding style is enforced using isort and black. Moreover, we use Google Style docstrings, which might be best
learned by example. The documentation, including the docstrings, are written using reStructuredText, with examples in
the following cheatsheet. To ensure the integrity of the code, we also try to providemany test functions, which are typically
contained in separate modules in sub-packages called tests. These tests can be ran using scripts in the tests subfolder
in the root folder. This folder also contain a script tests_types.sh, which uses mypy to check the consistency of
the python type annotations. We use these type annotations for additional documentation and they have also already been
useful for finding some bugs.
We also have some conventions that should make the package more consistent and thus easier to use. For instance, we
try to use properties instead of getter and setter methods as often as possible. Because we use a lot of numba just-
in-time compilation to speed up computations, we need to pass around (compiled) functions regularly. The names of the
methods and functions that make such functions, i.e. that return callables, should start with ‘make_*’ where the wildcard
should describe the purpose of the function being created.

3.5.5 Running unit tests

The pde package contains several unit tests, typically contained in sub-module tests in the folder of a given module.
These tests ensure that basic functions work as expected, in particular when code is changed in future versions. To run all
tests, there are a few convenience scripts in the root directory tests. The most basic script is tests_run.sh, which
uses pytest to run the tests in the sub-modules of the pde package. Clearly, the python package pytest needs to be
installed. There are also additional scripts that for instance run tests in parallel (need the python packagepytest-xdist
installed), measure test coverage (need package pytest-cov installed), and make simple performance measurements.
Moreover, there is a script test_types.sh, which uses mypy to check the consistency of the python type annotations
and there is a script format_code.sh, which formats the code automatically to adhere to our style.
Before committing a change to the code repository, it is good practice to run the tests, check the type annotations, and
the coding style with the scripts described above.

3.6 Citing the package

To cite or reference py-pde in other work, please refer to the publication in the Journal of Open Source Software. Here
are the respective bibliographic records in Bibtex format:

@article{py-pde,
Author = {David Zwicker},
Doi = {10.21105/joss.02158},
Journal = {Journal of Open Source Software},
Number = {48},
Pages = {2158},
Publisher = {The Open Journal},
Title = {py-pde: A Python package for solving partial differential equations},
Url = {https://doi.org/10.21105/joss.02158},

(continues on next page)

3.6. Citing the package 53

https://timothycrosley.github.io/isort/
https://black.readthedocs.io/
https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://de.wikipedia.org/wiki/ReStructuredText
https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst
https://doi.org/10.21105/joss.02158

py-pde Documentation, Release unknown

(continued from previous page)
Volume = {5},
Year = {2020}

}

and in RIS format:

TY - JOUR
AU - Zwicker, David
JO - Journal of Open Source Software
IS - 48
SP - 2158
PB - The Open Journal
T1 - py-pde: A Python package for solving partial differential equations
UR - https://doi.org/10.21105/joss.02158
VL - 5
PY - 2020

3.7 Code of Conduct

3.7.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

3.7.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:
• Using welcoming and inclusive language
• Being respectful of differing viewpoints and experiences
• Gracefully accepting constructive criticism
• Focusing on what is best for the community
• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:
• The use of sexualized language or imagery and unwelcome sexual attention or advances
• Trolling, insulting/derogatory comments, and personal or political attacks
• Public or private harassment
• Publishing others’ private information, such as a physical or electronic address, without explicit permission
• Other conduct which could reasonably be considered inappropriate in a professional setting

54 Chapter 3. User manual

py-pde Documentation, Release unknown

3.7.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate
and fair corrective action in response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

3.7.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline event.
Representation of a project may be further defined and clarified by project maintainers.

3.7.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
david.zwicker@ds.mpg.de. All complaints will be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to
the reporter of an incident. Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

3.7.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html
For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

3.7. Code of Conduct 55

mailto:david.zwicker@ds.mpg.de
https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/faq

py-pde Documentation, Release unknown

56 Chapter 3. User manual

CHAPTER

FOUR

REFERENCE MANUAL

The py-pde package provides classes and methods for solving partial differential equations.
Subpackages:

4.1 pde.fields package

Defines fields, which contain the actual data stored on a discrete grid.

ScalarField Scalar field discretized on a grid
VectorField Vector field discretized on a grid
Tensor2Field Tensor field of rank 2 discretized on a grid
FieldCollection Collection of fields defined on the same grid

Inheritance structure of the classes:

DataFieldBase

ScalarField

Tensor2Field

VectorField

FieldBase

FieldCollection

The details of the classes are explained below:

57

py-pde Documentation, Release unknown

4.1.1 pde.fields.base module

Defines base classes of fields, which are discretized on grids
class DataFieldBase(grid, data='zeros', *, label=None, dtype=None, with_ghost_cells=False)

Bases: FieldBase
abstract base class for describing fields of single entities

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined.
• data (Number or ndarray, optional) – Field values at the support points of the grid. The
flag with_ghost_cells determines whether this data array contains values for the ghost cells,
too. The resulting field will contain real data unless the data argument contains complex values.
Special values are “zeros” or None, initializing the field with zeros, and “empty”, just allocating
memory with unspecified values.

• label (str, optional) – Name of the field
• dtype (numpy dtype) – The data type of the field. If omitted, it will be determined from
data automatically.

• with_ghost_cells (bool) – Indicates whether the ghost cells are included in data
property average: Union[int, float, complex, ndarray]

determine the average of data
This is calculated by integrating each component of the field over space and dividing by the grid volume

copy(*, label=None, dtype=None)
return a copy of the data, but not of the grid

Parameters
• label (str, optional) – Name of the returned field
• dtype (numpy dtype) – The data type of the field. If omitted, it will be determined
from data automatically or the dtype of the current field is used.

• self (TDataField) –
Return type

TDataField

property data_shape: Tuple[int, ...]

the shape of the data at each grid point
Type

tuple
property fluctuations: Union[int, float, complex, ndarray]

fluctuations over the entire space.
The fluctuations are defined as the standard deviation of the data scaled by the cell volume. This definition
makes the fluctuations independent of the discretization. It corresponds to the physical scaling available in
the random_normal().

Returns
A tensor with the same rank of the field, specifying the fluctuations of each component of the
tensor field individually. Consequently, a simple scalar is returned for a ScalarField.

58 Chapter 4. Reference manual

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

Return type
ndarray

Type
ndarray

classmethod from_state(attributes, data=None)
create a field from given state.

Parameters
• attributes (dict) – The attributes that describe the current instance
• data (ndarray, optional) – Data values at the support points of the grid defining the field

Return type
TDataField

get_boundary_values(axis, upper, bc=None)
get the field values directly on the specified boundary

Parameters
• axis (int) – The axis perpendicular to the boundary
• upper (bool) – Whether the boundary is at the upper side of the axis
• bc (Optional[Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]]) – The boundary conditions applied to the field. Boundary
conditions are generally given as a list with one condition for each axis. For periodic axis,
only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’).
For non-periodic axes, different boundary conditions can be specified for the lower and up-
per end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value
NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the value DERIV
for the derivative in the normal direction (specified by {‘derivative’: DERIV}) are supported.
Note that the special value ‘natural’ imposes periodic boundary conditions for periodic axis
and a vanishing derivative otherwise. More information can be found in the boundaries doc-
umentation. If the special value None is given, no boundary conditions are enforced. The
user then needs to ensure that the ghost cells are set accordingly.

Returns
The discretized values on the boundary

Return type
ndarray

classmethod get_class_by_rank(rank)
return a DataFieldBase subclass describing a field with a given rank

Parameters
rank (int) – The rank of the tensor field

Return type
Type[DataFieldBase]

get_image_data(scalar='auto', transpose=False, **kwargs)
return data for plotting an image of the field

4.1. pde.fields package 59

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Type

py-pde Documentation, Release unknown

Parameters
• scalar (str or int) – The method for extracting scalars as described in
DataFieldBase.to_scalar().

• transpose (bool) – Determines whether the transpose of the data should is plotted
• **kwargs – Additional parameters are forwarded to grid.get_image_data

Returns
Information useful for plotting an image of the field

Return type
dict

get_line_data(scalar='auto', extract='auto')
return data for a line plot of the field

Parameters
• scalar (str or int) – The method for extracting scalars as described in
DataFieldBase.to_scalar().

• extract (str) – The method used for extracting the line data. See the docstring of the
grid method get_line_data to find supported values.

Returns
Information useful for performing a line plot of the field

Return type
dict

get_vector_data(**kwargs)
return data for a vector plot of the field

Parameters
**kwargs – Additional parameters are forwarded to grid.get_image_data

Returns
Information useful for plotting an vector field

Return type
dict

insert(point, amount)
adds an (integrated) value to the field at an interpolated position

Parameters
• point (ndarray) – The point inside the grid where the value is added. This is given in
grid coordinates.

• amount (Number or ndarray) – The amount that will be added to the field. The value
describes an integrated quantity (given by the field value times the discretization volume).
This is important for consistency with different discretizations and in particular grids with
non-uniform discretizations.

Return type
None

abstract property integral: Union[int, float, complex, ndarray]

60 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

interpolate(point, *, bc=None, fill=None, **kwargs)
interpolate the field to points between support points

Parameters
• point (ndarray) – The points at which the values should be obtained. This is given in
grid coordinates.

• bc (Optional[Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]]) – The boundary conditions applied to the field, which af-
fects values close to the boundary. If omitted, the argument fill is used. Boundary condi-
tions are generally given as a list with one condition for each axis. For periodic axis, only
periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’). For
non-periodic axes, different boundary conditions can be specified for the lower and upper
end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value
NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the value DERIV
for the derivative in the normal direction (specified by {‘derivative’: DERIV}) are supported.
Note that the special value ‘natural’ imposes periodic boundary conditions for periodic axis
and a vanishing derivative otherwise. More information can be found in the boundaries doc-
umentation. If the special value None is given, no boundary conditions are enforced. The
user then needs to ensure that the ghost cells are set accordingly.

• fill (Number, optional) – Determines how values out of bounds are handled. If
None, a ValueError is raised when out-of-bounds points are requested. Otherwise, the given
value is returned.

• **kwargs – Additional keyword arguments are forwarded to the method
DataFieldBase.make_interpolator().

Returns
the values of the field

Return type
ndarray

interpolate_to_grid(grid, *, fill=None, label=None)
interpolate the data of this field to another grid.

Parameters
• grid (GridBase) – The grid of the new field onto which the current field is interpolated.
• fill (Number, optional) – Determines how values out of bounds are handled. If
None, a ValueError is raised when out-of-bounds points are requested. Otherwise, the given
value is returned.

• label (str, optional) – Name of the returned field
• self (TDataField) –

Returns
Field of the same rank as the current one.

Return type
TDataField

4.1. pde.fields package 61

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

property magnitude: float

determine the magnitude of the field.
This is calculated by getting a scalar field using the default arguments of the to_scalar() method, aver-
aging the result over the whole grid, and taking the absolute value.

Type
float

make_interpolator(*, fill=None, with_ghost_cells=False)
returns a function that can be used to interpolate values.

Parameters
• fill (Number, optional) – Determines how values out of bounds are handled. If
None, a ValueError is raised when out-of-bounds points are requested. Otherwise, the given
value is returned.

• with_ghost_cells (bool) – Flag indicating that the interpolator should work on the
full data array that includes values for the ghost points. If this is the case, the boundaries are
not checked and the coordinates are used as is.

Returns
A function which returns interpolated values when called with arbitrary positions within the
space of the grid.

Return type
Callable[[ndarray, ndarray], Union[int, float, complex, ndarray]]

plot(kind='auto', *args, title=None, filename=None, action='auto', ax_style=None, fig_style=None, ax=None,
**kwargs)

visualize the field
Parameters

• kind (str) – Determines the visualizations. Supported values are image, line, vector, or
interactive. Alternatively, auto determines the best visualization based on the field itself.

• title (str) – Title of the plot. If omitted, the title might be chosen automatically.
• filename (str, optional) – If given, the plot is written to the specified file.
• action (str) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() will be called to show the plot. If the value is none,
the figure will be created, but not necessarily shown. The value close closes the figure, after
saving it to a file when filename is given. The default value auto implies that the plot is shown
if it is not a nested plot call.

• ax_style (dict) – Dictionary with properties that will be changed on the axis after the
plot has been drawn by calling matplotlib.pyplot.setp(). A special item i this
dictionary is use_offset, which is flag that can be used to control whether offset are shown
along the axes of the plot.

• fig_style (dict) – Dictionary with properties that will be changed on the figure after
the plot has been drawn by calling matplotlib.pyplot.setp(). For instance, using
fig_style={‘dpi’: 200} increases the resolution of the figure.

• ax (matplotlib.axes.Axes) – Figure axes to be used for plotting. The special value
“create” creates a new figure, while “reuse” attempts to reuse an existing figure, which is the
default.

• **kwargs –All additional keyword arguments are forwarded to the actual plotting function.

62 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes

py-pde Documentation, Release unknown

Returns
Instance that contains information to update the plot with new data later.

Return type
PlotReference

classmethod random_colored(grid, exponent=0, scale=1, *, label=None, dtype=None, rng=None)
create a field of random values with colored noise
The spatially correlated values obey

⟨ci(k)cj(k’)⟩ = Γ2|k|νδijδ(k − k’)

in spectral space, where k is the wave vector. The special case ν = 0 corresponds to white noise. Note that
the components of vector or tensor fields are uncorrelated.

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined
• exponent (float) – Exponent ν of the power spectrum
• scale (float) – Scaling factor Γ determining noise strength
• label (str, optional) – Name of the field
• dtype (numpy dtype) – The data type of the field. If omitted, it defaults to double.
• rng (Generator) – Random number generator (default: default_rng())

Return type
TDataField

classmethod random_harmonic(grid, modes=3, harmonic=<ufunc 'cos'>, axis_combination=<ufunc
'multiply'>, *, label=None, dtype=None, rng=None)

create a random field build from harmonics
The resulting fields will be highly correlated in space and can thus serve for testing differential operators.
With the default settings, the resulting field ci(x) is given by

ci(x) =
N∏

α=1

M∑
j=1

aijα cos
(
2πxα
jLα

)
,

where N is the number of spatial dimensions, each with length Lα, M is the number of modes given by
modes, and aijα are random amplitudes, chosen from a uniform distribution over the interval [0, 1].
Note that the product could be replaced by a sum when axis_combination = numpy.add and the cos() could
be any other function given by the parameter harmonic.

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined
• modes (int) – NumberM of harmonic modes
• harmonic (callable) – Determines which harmonic function is used. Typical values
are numpy.sin() and numpy.cos(), which basically relate to different boundary con-
ditions applied at the grid boundaries.

• axis_combination (callable) – Determines how values from different axis are
combined. Typical choices are numpy.multiply() and numpy.add() resulting in
products and sums of the values along axes, respectively.

4.1. pde.fields package 63

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

• label (str, optional) – Name of the field
• dtype (numpy dtype) – The data type of the field. If omitted, it defaults to double.
• rng (Generator) – Random number generator (default: default_rng())

Return type
TDataField

classmethod random_normal(grid, mean=0, std=1, *, scaling='none', label=None, dtype=None,
rng=None)

create field with normal distributed random values
These values are uncorrelated in space. A complex field is returned when eithermean or std is a complex num-
ber. In this case, the real and imaginary parts of these arguments are used to determine the distribution of the
real and imaginary parts of the resulting field. Consequently, ScalarField.random_normal(grid,
0, 1 + 1j) creates a complex field where the real and imaginary parts are chosen from a standard normal
distribution.

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined
• mean (float) – Mean of the Gaussian distribution
• std (float) – Standard deviation of the Gaussian distribution.
• scaling (str) – Determines how the values are scaled. Possible choices are ‘none’ (values
are drawn from a normal distribution with given mean and standard deviation) or ‘physical’
(the variance of the random number is scaled by the inverse volume of the grid cell; this is
for instance useful for concentration fields, which vary less in larger volumes).

• label (str, optional) – Name of the field
• dtype (numpy dtype) – The data type of the field. If omitted, it defaults to double if
both mean and std are real, otherwise it is complex.

• rng (Generator) – Random number generator (default: default_rng())
Return type

TDataField

classmethod random_uniform(grid, vmin=0, vmax=1, *, label=None, dtype=None, rng=None)
create field with uniform distributed random values
These values are uncorrelated in space.

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined
• vmin (float) – Smallest possible random value
• vmax (float) – Largest random value
• label (str, optional) – Name of the field
• dtype (numpy dtype) – The data type of the field. If omitted, it defaults to double if
both vmin and vmax are real, otherwise it is complex.

• rng (Generator) – Random number generator (default: default_rng())
Return type

TDataField

64 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng

py-pde Documentation, Release unknown

rank: int

set_ghost_cells(bc, *, args=None)
set the boundary values on virtual points for all boundaries

Parameters
• bc (str or list or tuple or dict) – The boundary conditions applied to
the field. Boundary conditions are generally given as a list with one condition for each axis.
For periodic axis, only periodic boundary conditions are allowed (indicated by ‘periodic’ and
‘anti-periodic’). For non-periodic axes, different boundary conditions can be specified for
the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions
enforcing a value NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by {‘derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation.

• args – Additional arguments that might be supported by special boundary conditions.
Return type

None
smooth(sigma=1, *, out=None, label=None)

applies Gaussian smoothing with the given standard deviation
This function respects periodic boundary conditions of the underlying grid, using reflection when no period-
icity is specified.
sigma (float):

Gives the standard deviation of the smoothing in real length units (default: 1)
out (FieldBase, optional):

Optional field into which the smoothed data is stored. Setting this to the input field enables in-place
smoothing.

label (str, optional):
Name of the returned field

Returns
Field with smoothed data. This is stored at out if given.

Parameters
• self (TDataField) –
• sigma (float) –
• out (Optional[TDataField]) –
• label (Optional[str]) –

Return type
TDataField

abstract to_scalar(scalar='auto', *, label=None)

Parameters
• scalar (str) –
• label (Optional[str]) –

4.1. pde.fields package 65

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

Return type
ScalarField

classmethod unserialize_attributes(attributes)
unserializes the given attributes

Parameters
attributes (dict) – The serialized attributes

Returns
The unserialized attributes

Return type
dict

class FieldBase(grid, data, *, label=None)
Bases: object
abstract base class for describing (discretized) fields

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined
• data (ndarray, optional) – Field values at the support points of the grid and the ghost cells
• label (str, optional) – Name of the field

apply(func, out=None, label=None)
applies a function to the data and returns it as a field

Parameters
• func (callable or str) – The (vectorized) function being applied to the data or the
name of an operator that is defined for the grid of this field.

• out (FieldBase, optional) – Optional field into which the data is written
• label (str, optional) – Name of the returned field
• self (TField) –

Returns
Field with new data. This is stored at out if given.

Return type
TField

assert_field_compatible(other, accept_scalar=False)
checks whether other is compatible with the current field

Parameters
• other (FieldBase) – The other field this one is compared to
• accept_scalar (bool, optional) – Determines whether it is acceptable that other
is an instance of ScalarField.

property attributes: Dict[str, Any]

describes the state of the instance (without the data)
Type

dict

66 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

property attributes_serialized: Dict[str, str]

serialized version of the attributes
Type

dict
conjugate()

returns complex conjugate of the field
Parameters

self (TField) –
Return type

TField

abstract copy(*, label=None, dtype=None)

Parameters
• self (TField) –
• label (Optional[str]) –
• dtype (Union[dtype[Any], None, Type[Any], _Supports-
DType[dtype[Any]], str, Tuple[Any, int], Tuple[Any,
Union[SupportsIndex, Sequence[SupportsIndex]]], List[Any],
_DTypeDict, Tuple[Any, Any]]) –

Return type
TField

property data: ndarray

discretized data at the support points
Type

ndarray

property dtype: Union[dtype[Any], None, Type[Any],
_SupportsDType[dtype[Any]], str, Tuple[Any, int], Tuple[Any,
Union[SupportsIndex, Sequence[SupportsIndex]]], List[Any], _DTypeDict,
Tuple[Any, Any]]

the numpy dtype of the underlying data
Type

DTypeLike

classmethod from_file(filename)
create field from data stored in a file
Field can be written to a file using FieldBase.to_file().

Example
Write a field to a file and then read it back:

field = pde.ScalarField(...)
field.write_to("test.hdf5")

field_copy = pde.FieldBase.from_file("test.hdf5")

4.1. pde.fields package 67

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.SupportsIndex
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.SupportsIndex
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.SupportsIndex
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.SupportsIndex
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

py-pde Documentation, Release unknown

Parameters
filename (str) – Path to the file being read

Returns
The field with the appropriate sub-class

Return type
FieldBase

classmethod from_state(attributes, data=None)
create a field from given state.

Parameters
• attributes (dict) – The attributes that describe the current instance
• data (ndarray, optional) – Data values at the support points of the grid defining the field

Return type
FieldBase

abstract get_image_data()

Return type
Dict[str, Any]

abstract get_line_data(scalar='auto', extract='auto')

Parameters
• scalar (str) –
• extract (str) –

Return type
Dict[str, Any]

property grid: GridBase

The grid on which the field is defined
Type

GridBase

property imag: TField

Imaginary part of the field
Type

FieldBase

property is_complex: bool

whether the field contains real or complex data
Type

bool
property label: Optional[str]

the name of the field
Type

str
abstract plot(*args, **kwargs)

68 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

plot_interactive(viewer_args=None, **kwargs)
create an interactive plot of the field using napari
For a detailed description of the launched program, see the napari webpage.

Parameters
• viewer_args (dict) – Arguments passed to napari.viewer.Viewer to affect the
viewer.

• **kwargs – Extra arguments passed to the plotting function
property real: TField

Real part of the field
Type

FieldBase

split_mpi(decomposition=-1)
splits the field onto subgrids in an MPI run
In a normal serial simulation, the method simply returns the field itself. In contrast, in an MPI simulation, the
field provided on the main node is split onto all nodes using the given decomposition. The field data provided
on all other nodes is not used.

Parameters
• decomposition (list of ints) – Number of subdivision in each direction. Should
be a list of length field.grid.num_axes specifying the number of nodes for this axis. If one
value is -1, its value will be determined from the number of available nodes. The default
value decomposed the first axis using all available nodes

• self (TField) –
Returns

The part of the field that corresponds to the subgrid associated with the current MPI node.
Return type

FieldBase

to_file(filename, **kwargs)
store field in a file
The extension of the filename determines what format is being used. If it ends in .h5 or .hdf, the Hierarchi-
cal Data Format is used. The other supported format are images, where only the most typical formats are
supported.
To load the field back from the file, you may use FieldBase.from_file().

Example
Write a field to a file and then read it back:

field = pde.ScalarField(...)
field.write_to("test.hdf5")

field_copy = pde.FieldBase.from_file("test.hdf5")

Parameters
• filename (str) – Path where the data is stored

4.1. pde.fields package 69

https://napari.org/api/napari.html#module-napari
http://napari.org/
https://docs.python.org/3/library/stdtypes.html#dict
https://napari.org/api/napari.view_layers.Viewer.html#napari.view_layers.Viewer
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

• **kwargs – Additional parameters may be supported for some formats

classmethod unserialize_attributes(attributes)

unserializes the given attributes
Parameters

attributes (dict) – The serialized attributes
Returns

The unserialized attributes
Return type

dict
property writeable: bool

whether the field data can be changed or not
Type

bool
exception RankError

Bases: TypeError
error indicating that the field has the wrong rank

4.1.2 pde.fields.collection module

Defines a collection of fields to represent multiple fields defined on a common grid.
class FieldCollection(fields, *, copy_fields=False, label=None, labels=None, dtype=None)

Bases: FieldBase
Collection of fields defined on the same grid

Note: All fields in a collection must have the same data type. This might lead to up-casting, where for instance a
combination of a real-valued and a complex-valued field will be both stored as complex fields.

Parameters
• fields (Sequence[DataFieldBase]) – Sequence of the individual fields
• copy_fields (bool) – Flag determining whether the individual fields given in fields are
copied. Note that fields are always copied if some of the supplied fields are identical. If fields
are copied the original fields will be left untouched. Conversely, if copy_fields == False, the
original fields are modified so their data points to the collection. It is thus basically impossible
to have fields that are linked to multiple collections at the same time.

• label (str) – Label of the field collection
• labels (list of str) – Labels of the individual fields. If omitted, the labels from the
fields argument are used.

• dtype (numpy dtype) – The data type of the field. All the numpy dtypes are supported.
If omitted, it will be determined from data automatically.

70 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

assert_field_compatible(other, accept_scalar=False)
checks whether other is compatible with the current field

Parameters
• other (FieldBase) – Other field this is compared to
• accept_scalar (bool, optional) – Determines whether it is acceptable that other
is an instance of ScalarField.

property attributes: Dict[str, Any]

describes the state of the instance (without the data)
Type

dict
property attributes_serialized: Dict[str, str]

serialized version of the attributes
Type

dict
property averages: List

averages of all fields
copy(*, label=None, dtype=None)

return a copy of the data, but not of the grid
Parameters

• label (str, optional) – Name of the returned field
• dtype (numpy dtype) – The data type of the field. If omitted, it will be determined
from data automatically.

• self (FieldCollection) –
Return type

FieldCollection
property fields: List[DataFieldBase]

the fields of this collection
Type

list
classmethod from_data(field_classes, grid, data, *, with_ghost_cells=True, label=None, labels=None,

dtype=None)

create a field collection from classes and data
Parameters

• field_classes (list) – List of the classes that define the individual fields
• data (ndarray, optional) – Data values of all fields at support points of the grid
• grid (GridBase) – Grid defining the space on which this field is defined.
• with_ghost_cells (bool) – Indicates whether the ghost cells are included in data
• label (str) – Label of the field collection
• labels (list of str) – Labels of the individual fields. If omitted, the labels from the
fields argument are used.

4.1. pde.fields package 71

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

• dtype (numpy dtype) – The data type of the field. All the numpy dtypes are supported.
If omitted, it will be determined from data automatically.

classmethod from_dict(fields, *, copy_fields=False, label=None, dtype=None)
create a field collection from a dictionary of fields

Parameters
• fields (dict) – Dictionary of fields where keys determine field labels
• copy_fields (bool) – Flag determining whether the individual fields given in fields are
copied. Note that fields are always copied if some of the supplied fields are identical.

• label (str) – Label of the field collection
• dtype (numpy dtype) – The data type of the field. All the numpy dtypes are supported.
If omitted, it will be determined from data automatically.

Return type
FieldCollection

classmethod from_scalar_expressions(grid, expressions, *, label=None, labels=None,
dtype=None)

create a field collection on a grid from given expressions

Warning: This implementation uses exec() and should therefore not be used in a context where
malicious input could occur.

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined
• expressions (list of str) – A list of mathematical expression, one for each field
in the collection. The expressions determine the values as a function of the position on the
grid. The expressions may contain standard mathematical functions and they may depend on
the axes labels of the grid. More information can be found in the expression documentation.

• label (str, optional) – Name of the whole collection
• labels (list of str, optional) – Names of the individual fields
• dtype (numpy dtype) – The data type of the field. All the numpy dtypes are supported.
If omitted, it will be determined from data automatically.

Return type
FieldCollection

classmethod from_state(attributes, data=None)
create a field collection from given state.

Parameters
• attributes (dict) – The attributes that describe the current instance
• data (ndarray, optional) – Data values at support points of the grid defining all fields

Return type
FieldCollection

72 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

get_image_data(index=0, **kwargs)
return data for plotting an image of the field

Parameters
• index (int) – Index of the field whose data is returned
• **kwargs – Arguments forwarded to the get_image_data method

Returns
Information useful for plotting an image of the field

Return type
dict

get_line_data(index=0, scalar='auto', extract='auto')
return data for a line plot of the field

Parameters
• index (int) – Index of the field whose data is returned
• scalar (str or int) – The method for extracting scalars as described in
DataFieldBase.to_scalar().

• extract (str) – The method used for extracting the line data. See the docstring of the
grid method get_line_data to find supported values.

Returns
Information useful for performing a line plot of the field

Return type
dict

property integrals: List

integrals of all fields
interpolate_to_grid(grid, *, fill=None, label=None)

interpolate the data of this field collection to another grid.
Parameters

• grid (GridBase) – The grid of the new field onto which the current field is interpolated.
• fill (Number, optional) – Determines how values out of bounds are handled. If
None, a ValueError is raised when out-of-bounds points are requested. Otherwise, the given
value is returned.

• label (str, optional) – Name of the returned field collection
Returns

Interpolated data
Return type

FieldCollection

property labels: _FieldLabels

the labels of all fields

Note: The attribute returns a special class _FieldLabels to allow specific manipulations of the field
labels. The returned object behaves much like a list, but assigning values will modify the labels of the fields
in the collection.

4.1. pde.fields package 73

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

Type
_FieldLabels

property magnitudes: ndarray

scalar magnitudes of all fields
Type

ndarray

plot(kind='auto', figsize='auto', arrangement='horizontal', subplot_args=None, *args, title=None,
constrained_layout=True, filename=None, action='auto', fig_style=None, fig=None, **kwargs)

visualize all the fields in the collection
Parameters

• kind (str or list of str) – Determines the kind of the visualizations. Supported
values are image, line, vector, or interactive. Alternatively, auto determines the best visual-
ization based on each field itself. Instead of a single value for all fields, a list with individual
values can be given.

• figsize (str or tuple of numbers) – Determines the figure size. The figure size
is unchanged if the string default is passed. Conversely, the size is adjusted automatically
when auto is passed. Finally, a specific figure size can be specified using two values, using
matplotlib.figure.Figure.set_size_inches().

• arrangement (str) – Determines how the subpanels will be arranged. The default value
horizontal places all subplots next to each other. The alternative value vertical puts them
below each other.

• title (str) – Title of the plot. If omitted, the title might be chosen automatically. This
is shown above all panels.

• constrained_layout (bool) – Whether to use constrained_layout in
matplotlib.pyplot.figure() call to create a figure. This affects the layout
of all plot elements. Generally, spacing might be better with this flag enabled, but it can also
lead to problems when plotting multiple plots successively, e.g., when creating a movie.

• filename (str, optional) – If given, the figure is written to the specified file.
• action (str) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() will be called to show the plot. If the value is none,
the figure will be created, but not necessarily shown. The value close closes the figure, after
saving it to a file when filename is given. The default value auto implies that the plot is shown
if it is not a nested plot call.

• fig_style (dict) – Dictionary with properties that will be changed on the figure after
the plot has been drawn by calling matplotlib.pyplot.setp(). For instance, using
fig_style={‘dpi’: 200} increases the resolution of the figure.

• fig (matplotlib.figures.Figure) – Figure that is used for plotting. If omitted, a
new figure is created.

• subplot_args (list) – Additional arguments for the specific subplots. Should be a list
with a dictionary of arguments for each subplot. Supplying an empty dict allows to keep the
default setting of specific subplots.

• **kwargs – All additional keyword arguments are forwarded to the actual plotting function
of all subplots.

Returns
Instances that contain information to update all the plots with new data later.

74 Chapter 4. Reference manual

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

py-pde Documentation, Release unknown

Return type
List of PlotReference

classmethod scalar_random_uniform(num_fields, grid, vmin=0, vmax=1, *, label=None,
labels=None, rng=None)

create scalar fields with random values between vmin and vmax
Parameters

• num_fields (int) – The number of fields to create
• grid (GridBase) – Grid defining the space on which the fields are defined
• vmin (float) – Lower bound. Can be complex to create complex fields
• vmax (float) – Upper bound. Can be complex to create complex fields
• label (str, optional) – Name of the field collection
• labels (list of str, optional) – Names of the individual fields
• rng (Generator) – Random number generator (default: default_rng())

Return type
FieldCollection

smooth(sigma=1, *, out=None, label=None)
applies Gaussian smoothing with the given standard deviation
This function respects periodic boundary conditions of the underlying grid, using reflection when no period-
icity is specified.
sigma (float):

Gives the standard deviation of the smoothing in real length units (default: 1)
out (FieldCollection, optional):

Optional field into which the smoothed data is stored
label (str, optional):

Name of the returned field

Returns
Field collection with smoothed data, stored at out if given.

Parameters
• sigma (float) –
• out (Optional[FieldCollection]) –
• label (Optional[str]) –

Return type
FieldCollection

classmethod unserialize_attributes(attributes)
unserializes the given attributes

Parameters
attributes (dict) – The serialized attributes

Returns
The unserialized attributes

4.1. pde.fields package 75

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

Return type
dict

4.1.3 pde.fields.scalar module

Defines a scalar field over a grid
class ScalarField(grid, data='zeros', *, label=None, dtype=None, with_ghost_cells=False)

Bases: DataFieldBase
Scalar field discretized on a grid

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined.
• data (Number or ndarray, optional) – Field values at the support points of the grid. The
flag with_ghost_cells determines whether this data array contains values for the ghost cells,
too. The resulting field will contain real data unless the data argument contains complex values.
Special values are “zeros” or None, initializing the field with zeros, and “empty”, just allocating
memory with unspecified values.

• label (str, optional) – Name of the field
• dtype (numpy dtype) – The data type of the field. If omitted, it will be determined from
data automatically.

• with_ghost_cells (bool) – Indicates whether the ghost cells are included in data
classmethod from_expression(grid, expression, *, label=None, dtype=None)

create a scalar field on a grid from a given expression

Warning: This implementation uses exec() and should therefore not be used in a context where
malicious input could occur.

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined
• expression (str) – Mathematical expression for the scalar value as a function of the
position on the grid. The expression may contain standard mathematical functions and it
may depend on the axes labels of the grid. More information can be found in the expression
documentation.

• label (str, optional) – Name of the field
• dtype (numpy dtype) – The data type of the field. If omitted, it will be determined
from data automatically.

Return type
ScalarField

classmethod from_image(path, bounds=None, periodic=False, *, label=None)
create a scalar field from an image

Parameters
• path (Path or str) – The path to the image file

76 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

• bounds (tuple, optional) – Gives the coordinate range for each axis. This should
be two tuples of two numbers each, which mark the lower and upper bound for each axis.

• periodic (bool or list) – Specifies which axes possess periodic boundary condi-
tions. This is either a list of booleans defining periodicity for each individual axis or a single
boolean value specifying the same periodicity for all axes.

• label (str, optional) – Name of the field
Return type

ScalarField
gradient(bc, out=None, **kwargs)

apply gradient operator and return result as a field
Parameters

• bc (Optional[BoundariesData]) – The boundary conditions applied to the field.
Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axis, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by {‘derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

• out (VectorField, optional) – Optional vector field to which the result is written.
• label (str, optional) – Name of the returned field

Returns
result of applying the operator

Return type
VectorField

gradient_squared(bc, out=None, **kwargs)
apply squared gradient operator and return result as a field
This evaluates |∇ϕ|2 for the scalar field ϕ

Parameters
• bc (Optional[BoundariesData]) – The boundary conditions applied to the field.
Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axis, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by {‘derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

• out (ScalarField, optional) – Optional vector field to which the result is written.
• label (str, optional) – Name of the returned field

4.1. pde.fields package 77

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

• central (bool) – Determines whether a central difference approximation is used for the
gradient operator or not. If not, the squared gradient is calculated as the mean of the squared
values of the forward and backward derivatives, which thus includes the value at a support
point in the result at the same point.

Returns
the squared gradient of the field

Return type
ScalarField

property integral: Union[int, float, complex]

integral of the scalar field over space
Type

Number
laplace(bc, out=None, **kwargs)

apply Laplace operator and return result as a field
Parameters

• bc (Optional[BoundariesData]) – The boundary conditions applied to the field.
Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axis, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by {‘derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

• out (ScalarField, optional) – Optional scalar field to which the result is written.
• label (str, optional) – Name of the returned field
• backend (str) – The backend (e.g., ‘numba’ or ‘scipy’) used for this operator.

Returns
the Laplacian of the field

Return type
ScalarField

project(axes, method='integral', label=None)
project scalar field along given axes

Parameters
• axes (list of str) – The names of the axes that are removed by the projection oper-
ation. The valid names for a given grid are the ones in the GridBase.axes attribute.

• method (str) – The projection method. This can be either ‘integral’ to integrate over the
removed axes or ‘average’ to perform an average instead.

• label (str, optional) – The label of the returned field
Returns

The projected data in a scalar field with a subgrid of the original grid.

78 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

Return type
ScalarField

rank: int = 0

slice(position, *, method='nearest', label=None)
slice data at a given position

Parameters
• position (dict) – Determines the location of the slice using a dictionary supplying co-
ordinate values for a subset of axes. Axes not mentioned in the dictionary are retained and
form the slice. For instance, in a 2d Cartesian grid, position = {‘x’: 1} slices along the y-
direction at x=1. Additionally, the special positions ‘low’, ‘mid’, and ‘high’ are supported to
reference relative positions along the axis.

• method (str) – The method used for slicing. nearest takes data from cells defined on the
grid.

• label (str, optional) – The label of the returned field
Returns

The sliced data in a scalar field with a subgrid of the original grid.
Return type

ScalarField

to_scalar(scalar='auto', *, label=None)
return a modified scalar field by applying method scalar

Parameters
• scalar (str or callable) – Determines the method used for obtaining the scalar.
If this is a callable, it is simply applied to self.data and a new scalar field with this data is
returned. Alternatively, pre-defined methods can be selected using strings. Here, abs and
norm denote the norm of each entry of the field, while norm_squared returns the squared
norm. The default auto is to return a (unchanged) copy of a real field and the norm of a
complex field.

• label (str, optional) – Name of the returned field
Returns

Scalar field after applying the operation
Return type

ScalarField

4.1.4 pde.fields.tensorial module

Defines a tensorial field of rank 2 over a grid
class Tensor2Field(grid, data='zeros', *, label=None, dtype=None, with_ghost_cells=False)

Bases: DataFieldBase
Tensor field of rank 2 discretized on a grid

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined.

4.1. pde.fields package 79

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

• data (Number or ndarray, optional) – Field values at the support points of the grid. The
flag with_ghost_cells determines whether this data array contains values for the ghost cells,
too. The resulting field will contain real data unless the data argument contains complex values.
Special values are “zeros” or None, initializing the field with zeros, and “empty”, just allocating
memory with unspecified values.

• label (str, optional) – Name of the field
• dtype (numpy dtype) – The data type of the field. If omitted, it will be determined from
data automatically.

• with_ghost_cells (bool) – Indicates whether the ghost cells are included in data
divergence(bc, out=None, **kwargs)

apply tensor divergence and return result as a field
The tensor divergence is a vector field vα resulting from a contracting of the derivative of the tensor field tαβ :

vα =
∑
β

∂tαβ
∂xβ

Parameters
• bc (Optional[BoundariesData]) – The boundary conditions applied to the field.
Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axis, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by {‘derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

• out (VectorField, optional) – Optional scalar field to which the result is written.
• label (str, optional) – Name of the returned field
• **kwargs – Additional arguments affecting how the operator behaves.

Returns
result of applying the operator

Return type
VectorField

dot(other, out=None, *, conjugate=True, label='dot product')
calculate the dot product involving a tensor field
This supports the dot product between two tensor fields as well as the product between a tensor and a vector.
The resulting fields will be a tensor or vector, respectively.

Parameters
• other (VectorField or Tensor2Field) – the second field
• out (VectorField or Tensor2Field, optional) – Optional field to which the
result is written.

• conjugate (bool) – Whether to use the complex conjugate for the second operand
• label (str, optional) – Name of the returned field

80 Chapter 4. Reference manual

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

Returns
VectorField or Tensor2Field: result of applying the dot operator

Return type
Union[VectorField, Tensor2Field]

classmethod from_expression(grid, expressions, *, label=None, dtype=None)
create a tensor field on a grid from given expressions

Warning: This implementation uses exec() and should therefore not be used in a context where
malicious input could occur.

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined
• expressions (list of str) – A 2d list of mathematical expression, one for each
component of the tensor field. The expressions determine the values as a function of the
position on the grid. The expressions may contain standard mathematical functions and they
may depend on the axes labels of the grid. More information can be found in the expression
documentation.

• label (str, optional) – Name of the field
• dtype (numpy dtype) – The data type of the field. If omitted, it will be determined
from data automatically.

Return type
Tensor2Field

property integral: ndarray

integral of each component over space
Type

ndarray

make_dot_operator(backend='numba', *, conjugate=True)
return operator calculating the dot product involving vector fields
This supports both products between two vectors as well as products between a vector and a tensor.

Warning: This function does not check types or dimensions.

Parameters
• conjugate (bool) – Whether to use the complex conjugate for the second operand
• backend (str) –

Returns
function that takes two instance of ndarray, which contain the discretized data of the two
operands. An optional third argument can specify the output array to which the result is written.
Note that the returned function is jitted with numba for speed.

Return type
Callable[[ndarray, ndarray, Optional[ndarray]], ndarray]

4.1. pde.fields package 81

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Callable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Optional
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

plot_components(kind='auto', *args, title=None, constrained_layout=True, filename=None, action='auto',
fig_style=None, fig=None, **kwargs)

visualize all the components of this tensor field
Parameters

• kind (str or list of str) – Determines the kind of the visualizations. Supported
values are image or line. Alternatively, auto determines the best visualization based on the
grid.

• title (str) – Title of the plot. If omitted, the title might be chosen automatically. This
is shown above all panels.

• constrained_layout (bool) – Whether to use constrained_layout in
matplotlib.pyplot.figure() call to create a figure. This affects the layout
of all plot elements. Generally, spacing might be better with this flag enabled, but it can also
lead to problems when plotting multiple plots successively, e.g., when creating a movie.

• filename (str, optional) – If given, the figure is written to the specified file.
• action (str) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() will be called to show the plot. If the value is none,
the figure will be created, but not necessarily shown. The value close closes the figure, after
saving it to a file when filename is given. The default value auto implies that the plot is shown
if it is not a nested plot call.

• fig_style (dict) – Dictionary with properties that will be changed on the figure after
the plot has been drawn by calling matplotlib.pyplot.setp(). For instance, using
fig_style={‘dpi’: 200} increases the resolution of the figure.

• fig (matplotlib.figures.Figure) – Figure that is used for plotting. If omitted, a
new figure is created.

• **kwargs – All additional keyword arguments are forwarded to the actual plotting function
of all subplots.

Returns
Instances that contain information to update all the plots with new data later.

Return type
2d list of PlotReference

rank: int = 2

symmetrize(make_traceless=False, inplace=False)
symmetrize the tensor field in place

Parameters
• make_traceless (bool) – Determines whether the result is also traceless
• inplace (bool) – Flag determining whether to symmetrize the current field or return a
new one

Returns
result of the operation

Return type
Tensor2Field

82 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

to_scalar(scalar='auto', *, label='scalar `{scalar}`')
return a scalar field by applying method
The invariants of the tensor fieldA are

I1 = tr(A)

I2 =
1

2

[
(tr(A)2 − tr(A2)

]
I3 = det(A)

where tr denotes the trace and det denotes the determinant. Note that the three invariants can only be distinct
and non-zero in three dimensions. In two dimensional spaces, we have the identity 2I2 = I3 and in one-
dimensional spaces, we have I1 = I3 as well as I2 = 0.

Parameters
• scalar (str) – The method to calculate the scalar. Possible choices include norm (the
default chosen when the value is auto), min, max, squared_sum, norm_squared, trace (or
invariant1), invariant2, and determinant (or invariant3)

• label (str, optional) – Name of the returned field
Returns

the scalar field after applying the operation
Return type

ScalarField

trace(label='trace')
return the trace of the tensor field as a scalar field

Parameters
label (str, optional) – Name of the returned field

Returns
scalar field of traces

Return type
ScalarField

transpose(label='transpose')
return the transpose of the tensor field

Parameters
label (str, optional) – Name of the returned field

Returns
transpose of the tensor field

Return type
Tensor2Field

4.1. pde.fields package 83

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

4.1.5 pde.fields.vectorial module

Defines a vectorial field over a grid
class VectorField(grid, data='zeros', *, label=None, dtype=None, with_ghost_cells=False)

Bases: DataFieldBase
Vector field discretized on a grid

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined.
• data (Number or ndarray, optional) – Field values at the support points of the grid. The
flag with_ghost_cells determines whether this data array contains values for the ghost cells,
too. The resulting field will contain real data unless the data argument contains complex values.
Special values are “zeros” or None, initializing the field with zeros, and “empty”, just allocating
memory with unspecified values.

• label (str, optional) – Name of the field
• dtype (numpy dtype) – The data type of the field. If omitted, it will be determined from
data automatically.

• with_ghost_cells (bool) – Indicates whether the ghost cells are included in data
divergence(bc, out=None, **kwargs)

apply divergence operator and return result as a field
Parameters

• bc (Optional[BoundariesData]) – The boundary conditions applied to the field.
Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axis, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by {‘derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

• out (ScalarField, optional) – Optional scalar field to which the result is written.
• label (str, optional) – Name of the returned field
• **kwargs – Additional arguments affecting how the operator behaves.

Returns
result of applying the operator

Return type
ScalarField

dot(other, out=None, *, conjugate=True, label='dot product')
calculate the dot product involving a vector field
This supports the dot product between two vectors fields as well as the product between a vector and a tensor.
The resulting fields will be a scalar or vector, respectively.

Parameters

84 Chapter 4. Reference manual

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

• other (VectorField or Tensor2Field) – the second field
• out (ScalarField or VectorField, optional) – Optional field to which the
result is written.

• conjugate (bool) – Whether to use the complex conjugate for the second operand
• label (str, optional) – Name of the returned field

Returns
ScalarField or VectorField: result of applying the operator

Return type
Union[ScalarField, VectorField]

classmethod from_expression(grid, expressions, *, label=None, dtype=None)
create a vector field on a grid from given expressions

Warning: This implementation uses exec() and should therefore not be used in a context where
malicious input could occur.

Parameters
• grid (GridBase) – Grid defining the space on which this field is defined
• expressions (list of str) – A list of mathematical expression, one for each com-
ponent of the vector field. The expressions determine the values as a function of the position
on the grid. The expressions may contain standard mathematical functions and they may
depend on the axes labels of the grid. More information can be found in the expression
documentation.

• label (str, optional) – Name of the field
• dtype (numpy dtype) – The data type of the field. If omitted, it will be determined
from data automatically.

Return type
VectorField

classmethod from_scalars(fields, *, label=None, dtype=None)
create a vector field from a list of ScalarFields
Note that the data of the scalar fields is copied in the process

Parameters
• fields (list) – The list of (compatible) scalar fields
• label (str, optional) – Name of the returned field
• dtype (numpy dtype) – The data type of the field. If omitted, it will be determined
from data automatically.

Returns
the resulting vector field

Return type
VectorField

4.1. pde.fields package 85

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

get_vector_data(transpose=False, max_points=None, **kwargs)
return data for a vector plot of the field

Parameters
• transpose (bool) – Determines whether the transpose of the data should be plotted.
• max_points (int) – The maximal number of points that is used along each axis. This
option can be used to sub-sample the data.

• **kwargs – Additional parameters are forwarded to grid.get_image_data
Returns

Information useful for plotting an vector field
Return type

dict
gradient(bc, out=None, **kwargs)

apply vector gradient operator and return result as a field
The vector gradient field is a tensor field tαβ that specifies the derivatives of the vector field vα with respect
to all coordinates xβ .

Parameters
• bc (Optional[BoundariesData]) – The boundary conditions applied to the field.
Boundary conditions need to determine all components of the vector field. Boundary con-
ditions are generally given as a list with one condition for each axis. For periodic axis, only
periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’). For
non-periodic axes, different boundary conditions can be specified for the lower and upper
end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value
NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the value DERIV
for the derivative in the normal direction (specified by {‘derivative’: DERIV}) are supported.
Note that the special value ‘natural’ imposes periodic boundary conditions for periodic axis
and a vanishing derivative otherwise. More information can be found in the boundaries doc-
umentation. If the special value None is given, no boundary conditions are enforced. The
user then needs to ensure that the ghost cells are set accordingly.

• out (VectorField, optional) – Optional vector field to which the result is written.
• label (str, optional) – Name of the returned field
• **kwargs – Additional arguments affecting how the operator behaves.

Returns
result of applying the operator

Return type
Tensor2Field

property integral: ndarray

integral of each component over space
Type

ndarray

laplace(bc, out=None, **kwargs)
apply vector Laplace operator and return result as a field

86 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

The vector Laplacian is a vector field Lα containing the second derivatives of the vector field vα with respect
to the coordinates xβ :

Lα =
∑
β

∂2vα
∂xβ∂xβ

Parameters
• bc (Optional[BoundariesData]) – The boundary conditions applied to the field.
Boundary conditions are generally given as a list with one condition for each axis. For peri-
odic axis, only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-
periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by {‘derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation. If the special value None is given, no boundary conditions are
enforced. The user then needs to ensure that the ghost cells are set accordingly.

• out (VectorField, optional) – Optional vector field to which the result is written.
• label (str, optional) – Name of the returned field
• **kwargs – Additional arguments affecting how the operator behaves.

Returns
result of applying the operator

Return type
VectorField

make_dot_operator(backend='numba', *, conjugate=True)
return operator calculating the dot product involving vector fields
This supports both products between two vectors as well as products between a vector and a tensor.

Warning: This function does not check types or dimensions.

Parameters
• backend (str) – The backend (e.g., ‘numba’ or ‘scipy’) used for this operator.
• conjugate (bool) – Whether to use the complex conjugate for the second operand

Returns
function that takes two instance of ndarray, which contain the discretized data of the two
operands. An optional third argument can specify the output array to which the result is written.
Note that the returned function is jitted with numba for speed.

Return type
Callable[[ndarray, ndarray, Optional[ndarray]], ndarray]

make_outer_prod_operator(backend='numba')
return operator calculating the outer product of two vector fields

4.1. pde.fields package 87

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Callable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Optional
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

Warning: This function does not check types or dimensions.

Parameters
backend (str) – The backend (e.g., ‘numba’ or ‘scipy’) used for this operator.

Returns
function that takes two instance of ndarray, which contain the discretized data of the two
operands. An optional third argument can specify the output array to which the result is written.
Note that the returned function is jitted with numba for speed.

Return type
Callable[[ndarray, ndarray, Optional[ndarray]], ndarray]

outer_product(other, out=None, *, label=None)
calculate the outer product of this vector field with another

Parameters
• other (VectorField) – The second vector field
• out (Tensor2Field, optional) – Optional tensorial field to which the result is written.
• label (str, optional) – Name of the returned field

Returns
result of the operation

Return type
Tensor2Field

rank: int = 1

to_scalar(scalar='auto', *, label='scalar `{scalar}`')
return a scalar field by applying method

Parameters
• scalar (str) – Choose the method to use. Possible choices are norm, max, min,
squared_sum, norm_squared, or an integer specifying which component is returned (index-
ing starts at 0). The default value auto picks the method automatically: The first (and only)
component is returned for real fields on one-dimensional spaces, while the norm of the vector
is returned otherwise.

• label (str, optional) – Name of the returned field
Returns

the scalar field after applying the operation
Return type

pde.fields.scalar.ScalarField

88 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Callable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Optional
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

4.2 pde.grids package

Grids define the domains on which PDEs will be solved. In particular, symmetries, periodicities, and the discretizations
are defined by the underlying grid.
We only consider regular, orthogonal grids, which are constructed from orthogonal coordinate systems with equidis-
tant discretizations along each axis. The dimension of the space that the grid describes is given by the attribute dim.
Cartesian coordinates can be mapped to grid coordinates and the corresponding discretization cells using the method
transform().

UnitGrid d-dimensional Cartesian grid with unit discretization in all
directions

CartesianGrid d-dimensional Cartesian grid with uniform discretization
for each axis

PolarSymGrid 2-dimensional polar grid assuming angular symmetry
SphericalSymGrid 3-dimensional spherical grid assuming spherical symme-

try
CylindricalSymGrid 3-dimensional cylindrical grid assuming polar symmetry

Inheritance structure of the classes:

CartesianGrid UnitGrid

GridBase CylindricalSymGrid

SphericalSymGridBase

PolarSymGrid

SphericalSymGrid

Subpackages:

4.2. pde.grids package 89

py-pde Documentation, Release unknown

4.2.1 pde.grids.boundaries package

This package contains classes for handling the boundary conditions of fields.

Boundary conditions

The mathematical details of boundary conditions for partial differential equations are treated in more detail in the doc-
umentation document. Since the pde package only supports orthogonal grids, boundary conditions need to be
applied at the end of each axis. Consequently, methods expecting boundary conditions typically receive a list of conditions
for each axes:

field = ScalarField(UnitGrid([16, 16], periodic=[True, False]))
field.laplace(bc=[bc_x, bc_y])

If an axis is periodic (like the first one in the example above), the only valid boundary conditions are ‘periodic’ and its
cousin ‘anti-periodic’, which imposes opposite signs on both sides. For non-periodic axes (e.g., the second axis), different
boundary conditions can be specified for the lower and upper end of the axis, which is done using a tuple of two conditions.
Typical choices for individual conditions are Dirichlet conditions that enforce a value NUM (specified by {‘value’: NUM})
and Neumann conditions that enforce the value DERIV for the derivative in the normal direction (specified by {‘derivative’:
DERIV}). The specific choices for the example above could be

bc_x = "periodic"
bc_y = ({"value": 2}, {"derivative": -1})

which enforces a value of 2 at the lower side of the y-axis and a derivative (in outward normal direction) of -1 on the upper
side. Instead of plain numbers, which enforce the same condition along the whole boundary, expressions can be used to
support inhomogeneous boundary conditions. These mathematical expressions are given as a string that can be parsed by
sympy. They can depend on all coordinates of the grid. An alternative boundary condition to the example above could
thus read

bc_y = ({"value": "y**2"}, {"derivative": "-sin(x)"})

Warning: To interpret arbitrary expressions, the package uses exec(). It should therefore not be used in a context
where malicious input could occur.

Inhomogeneous values can also be specified by directly supplying an array, whose shape needs to be compatible with the
boundary, i.e., it needs to have the same shape as the grid but with the dimension of the axis along which the boundary
is specified removed.
The package also supports mixed boundary conditions (depending on both the value and the derivative of the field) and
imposing a second derivative. An example is

bc_y = ({"type": "mixed", "value": 2, "const": 7},
{"curvature": 2})

which enforces the condition ∂nc + 2c = 7 and ∂2nc = 2 onto the field c on the lower and upper side of the axis,
respectively.
Beside the full specification of the boundary conditions, various short-hand notations are supported. If both sides of
an axis have the same boundary condition, only one needs to be specified (instead of the tuple). For instance, bc_y
= {'value': 2} imposes a value of 2 on both sides of the y-axis. Similarly, if all axes have the same boundary
conditions, only one axis needs to be specified (instead of the list). For instance, the following example

90 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#exec

py-pde Documentation, Release unknown

field = ScalarField(UnitGrid([16, 16], periodic=False))
field.laplace(bc={"value": 2})

imposes a value of 2 on all sides of the grid. Finally, the special values ‘auto_periodic_neumann’ and
‘auto_periodic_dirichlet’ impose periodic boundary conditions for periodic axis and a vanishing derivative or value oth-
erwise. For example,

field = ScalarField(UnitGrid([16, 16], periodic=[True, False]))
field.laplace(bc="auto_periodic_neumann")

enforces periodic boundary conditions on the first axis, while the second one has standard Neumann conditions.

Note: Derivatives are given relative to the outward normal vector, such that positive derivatives correspond to a function
that increases across the boundary.

Boundaries overview

The boundaries package defines the following classes:
Local boundary conditions:

• DirichletBC: Imposing a constant value of the field at the boundary
• ExpressionValueBC: Imposing the value of the field at the boundary given by an expression
• NeumannBC: Imposing a constant derivative of the field in the outward normal direction at the boundary
• ExpressionDerivativeBC: Imposing the derivative of the field in the outward normal direction at the bound-
ary given by an expression

• MixedBC: Imposing the derivative of the field in the outward normal direction proportional to its value at the
boundary

• CurvatureBC: Imposing a constant second derivative (curvature) of the field at the boundary
There are corresponding classes that only affect the normal component of a field, which can be useful when dealing with
vector and tensor fields: NormalDirichletBC, NormalNeumannBC, NormalMixedBC, and NormalCurva-
tureBC.
Boundaries for an axis:

• BoundaryPair: Uses the local boundary conditions to specify the two boundaries along an axis
• BoundaryPeriodic: Indicates that an axis has periodic boundary conditions

Boundaries for all axes of a grid:
• Boundaries: Collection of boundaries to describe conditions for all axes

Inheritance structure of the classes:

4.2. pde.grids package 91

py-pde Documentation, Release unknown

axes.Boundaries

axis.BoundaryAxisBase axis.BoundaryPair axis.BoundaryPeriodic

local.BCBase

local.ConstBCBase

local.ExpressionBC

local.UserBC

local.BCDataError

local.ConstBC1stOrderBase

local.DirichletBC

local.MixedBC

local.NeumannBC

local.ConstBC2ndOrderBase
local.CurvatureBC local.NormalCurvatureBC

local.NormalDirichletBC

local.ExpressionDerivativeBC

local.ExpressionValueBC

local.NormalMixedBC

local.NormalNeumannBC

The details of the classes are explained below:

pde.grids.boundaries.axes module

This module handles the boundaries of all axes of a grid. It only defines Boundaries, which acts as a list of Bound-
aryAxisBase.
class Boundaries(boundaries)

Bases: list
class that bundles all boundary conditions for all axes
initialize with a list of boundaries
check_value_rank(rank)

check whether the values at the boundaries have the correct rank
Parameters

rank (int) – The tensorial rank of the field for this boundary condition
Return type

None

Throws:
RuntimeError: if any value does not have rank rank

copy()

create a copy of the current boundaries
Return type

Boundaries
classmethod from_data(grid, boundaries, rank=0)

Creates all boundaries from given data
Parameters

• grid (GridBase) – The grid with which the boundary condition is associated

92 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

• boundaries (str or list or tuple or dict) – Data that describes the
boundaries. This can either be a list of specifications for each dimension or a single one,
which is then applied to all dimensions. The boundary for a dimensions can be specified by
one of the following formats:
– string specifying a single type for all boundaries
– dictionary specifying the type and values for all boundaries
– tuple pair specifying the low and high boundary individually

• rank (int) – The tensorial rank of the field for this boundary condition
Return type

Boundaries
classmethod get_help()

Return information on how boundary conditions can be set
Return type

str
get_mathematical_representation(field_name='C')

return mathematical representation of the boundary condition
Parameters

field_name (str) –
Return type

str
grid: GridBase

grid for which boundaries are defined
Type

GridBase

make_ghost_cell_setter()

return function that sets the ghost cells on a full array
Return type

GhostCellSetter
property periodic: List[bool]

a boolean array indicating which dimensions are periodic according to the boundary conditions
Type

ndarray

set_ghost_cells(data_full, *, args=None)
set the ghost cells for all boundaries

Parameters
• data_full (ndarray) – The full field data including ghost points
• args – Additional arguments that might be supported by special boundary conditions.

Return type
None

4.2. pde.grids package 93

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

pde.grids.boundaries.axis module

This module handles the boundaries of a single axis of a grid. There are generally only two options, depending on whether
the axis of the underlying grid is defined as periodic or not. If it is periodic, the class BoundaryPeriodic should be
used, while non-periodic axes have more option, which are represented by BoundaryPair.
class BoundaryAxisBase(low, high)

Bases: object
base class for defining boundaries of a single axis in a grid

Parameters
• low (BCBase) – Instance describing the lower boundary
• high (BCBase) – Instance describing the upper boundary

property axis: int

The axis along which the boundaries are defined
Type

int
copy()

return a copy of itself, but with a reference to the same grid
Return type

BoundaryAxisBase
get_data(idx)

sets the elements of the sparse representation of this condition
Parameters

idx (tuple) – The index of the point that must lie on the boundary condition
Returns

A constant value and a dictionary with indices and factors that can be used to calculate this
virtual point

Return type
float, dict

classmethod get_help()

Return information on how boundary conditions can be set
Return type

str
get_mathematical_representation(field_name='C')

return mathematical representation of the boundary condition
Parameters

field_name (str) –
Return type

Tuple[str, str]
property grid: GridBase

Underlying grid
Type

GridBase

94 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

high: BCBase

Boundary condition at upper end
Type

BCBase

low: BCBase

Boundary condition at lower end
Type

BCBase

make_ghost_cell_setter()

return function that sets the ghost cells for this axis on a full array
Return type

GhostCellSetter
property periodic: bool

whether the axis is periodic
Type

bool
property rank: int

rank of the associated boundary condition
Type

int
set_ghost_cells(data_full, *, args=None)

set the ghost cell values for all boundaries
Parameters

• data_full (ndarray) – The full field data including ghost points
• args – Additional arguments that might be supported by special boundary conditions.

Return type
None

class BoundaryPair(low, high)
Bases: BoundaryAxisBase
represents the two boundaries of an axis along a single dimension

Parameters
• low (BCBase) – Instance describing the lower boundary
• high (BCBase) – Instance describing the upper boundary

check_value_rank(rank)

check whether the values at the boundaries have the correct rank
Parameters

rank (int) – The tensorial rank of the field for this boundary condition
Return type

None

4.2. pde.grids package 95

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

Throws:
RuntimeError: if the value does not have rank rank

classmethod from_data(grid, axis, data, rank=0)
create boundary pair from some data

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• data (str or dict) – Data that describes the boundary pair
• rank (int) – The tensorial rank of the field for this boundary condition

Returns
the instance created from the data

Return type
BoundaryPair

Throws:
ValueError if data cannot be interpreted as a boundary pair

high: BCBase

Boundary condition at upper end
Type

BCBase

low: BCBase

Boundary condition at lower end
Type

BCBase

class BoundaryPeriodic(grid, axis, flip_sign=False)
Bases: BoundaryPair
represent a periodic axis

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• flip_sign (bool) – Impose different signs on the two sides of the boundary

check_value_rank(rank)
check whether the values at the boundaries have the correct rank

Parameters
rank (int) – The tensorial rank of the field for this boundary condition

Return type
None

copy()

return a copy of itself, but with a reference to the same grid

96 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

Return type
BoundaryPeriodic

property flip_sign

Whether different signs are imposed on the two sides of the boundary
Type

bool
high: BCBase

Boundary condition at upper end
Type

BCBase

low: BCBase

Boundary condition at lower end
Type

BCBase

get_boundary_axis(grid, axis, data, rank=0)
return object representing the boundary condition for a single axis

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• data (str or tuple or dict) – Data describing the boundary conditions for this axis
• rank (int) – The tensorial rank of the field for this boundary condition

Returns
Appropriate boundary condition for the axis

Return type
BoundaryAxisBase

pde.grids.boundaries.local module

This module contains classes for handling a single boundary of a non-periodic axis. Since an axis has two boundary, we
simply distinguish them by a boolean flag upper, which is True for the side of the axis with the larger coordinate.
The module currently supports the following standard boundary conditions:

• DirichletBC: Imposing the value of a field at the boundary
• NeumannBC: Imposing the derivative of a field in the outward normal direction at the boundary
• MixedBC: Imposing the derivative of a field in the outward normal direction proportional to its value at the bound-
ary

• CurvatureBC: Imposing the second derivative (curvature) of a field at the boundary
There are also variants of these boundary conditions that only affect the normal components of a vector or tensor field:
NormalDirichletBC, NormalNeumannBC, NormalMixedBC, and NormalCurvatureBC.
Finally, there are more specialized classes, which offer greater flexibility, but might also require a slightly deeper under-
standing for proper use:

• ExpressionValueBC: Imposing the value of a field at the boundary based on a mathematical expression

4.2. pde.grids package 97

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

• NeumannBC: Imposing the derivative of a field in the outward normal direction at the boundary based on a math-
ematical expression

• UserBC: Allows full control for setting virtual points, values, or derivatives. The boundary conditions are never
enforced automatically. It is thus the user’s responsibility to ensure virtual points are set correctly before operators
are applied. To set boundary conditions a dictionary {TARGET: value} must be supplied as argument args to
set_ghost_cells() or the numba equivalent. Here, TARGET determines how the value is interpreted and
what boundary condition is actually enforced: the value of the virtual points directly (virtual_point), the value of
the field at the boundary (value) or the outward derivative of the field at the boundary (derivative).

Note that derivatives are generally given in the direction of the outward normal vector, such that positive derivatives
correspond to a function that increases across the boundary.
class BCBase(grid, axis, upper, *, rank=0)

Bases: object
represents a single boundary in an BoundaryPair instance

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
property axis_coord: float

value of the coordinate that defines this boundary condition
Type

float
check_value_rank(rank)

check whether the values at the boundaries have the correct rank
Parameters

rank (int) – The tensorial rank of the field for this boundary condition
Return type

None

Throws:
RuntimeError: if the value does not have rank rank

copy(upper=None, rank=None)

Parameters
• self (TBC) –
• upper (Optional[bool]) –
• rank (Optional[int]) –

Return type
TBC

98 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

classmethod from_data(grid, axis, upper, data, *, rank=0)
create boundary from some data

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Indicates whether this boundary condition is associated with the upper or
lower side of the axis.

• data (str or dict) – Data that describes the boundary
• rank (int) – The tensorial rank of the field for this boundary condition

Returns
the instance created from the data

Return type
BCBase

Throws:
ValueError if data cannot be interpreted as a boundary condition

classmethod from_dict(grid, axis, upper, data, *, rank=0)
create boundary from data given in dictionary

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Indicates whether this boundary condition is associated with the upper or
lower side of the axis.

• data (dict) – The dictionary defining the boundary condition
• rank (int) – The tensorial rank of the field for this boundary condition

Return type
BCBase

classmethod from_str(grid, axis, upper, condition, *, rank=0, **kwargs)
creates boundary from a given string identifier

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Indicates whether this boundary condition is associated with the upper or
lower side of the axis.

• condition (str) – Identifies the boundary condition
• rank (int) – The tensorial rank of the field for this boundary condition
• **kwargs – Additional arguments passed to the constructor

Return type
BCBase

4.2. pde.grids package 99

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

get_data(idx)

Parameters
idx (Tuple[int, ...]) –

Return type
Tuple[float, Dict[int, float]]

classmethod get_help()

Return information on how boundary conditions can be set
Return type

str
get_mathematical_representation(field_name='C')

return mathematical representation of the boundary condition
Parameters

field_name (str) –
Return type

str
get_virtual_point(arr, idx=None)

Parameters
idx (Optional[Tuple[int, ...]]) –

Return type
float

homogeneous: bool

determines whether the boundary condition depends on space
Type

bool
make_adjacent_evaluator()

Return type
AdjacentEvaluator

make_ghost_cell_sender()

return function that might mpi_send data to set ghost cells for this boundary
Return type

GhostCellSetter
make_ghost_cell_setter()

return function that sets the ghost cells for this boundary
Return type

GhostCellSetter
abstract make_virtual_point_evaluator()

Return type
VirtualPointEvaluator

names: List[str]

identifiers used to specify the given boundary class

100 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

Type
list

normal: bool = False

determines whether the boundary condition only affects normal components.
If this flag is False, boundary conditions must specify values for all components of the field. If True, only the
normal components at the boundary are specified.

Type
bool

property periodic: bool

whether the boundary condition is periodic
Type

bool
abstract set_ghost_cells(data_full, *, args=None)

set the ghost cell values for this boundary
Parameters

data_full (ndarray) –
Return type

None
to_subgrid(subgrid)

converts this boundary condition to one valid for a given subgrid
Parameters

• subgrid (GridBase) – Grid of the new boundary conditions
• self (TBC) –

Returns
Boundary conditions valid on the subgrid

Return type
BCBase

exception BCDataError

Bases: ValueError
exception that signals that incompatible data was supplied for the BC

class ConstBC1stOrderBase(grid, axis, upper, *, rank=0, value=0)
Bases: ConstBCBase
represents a single boundary in an BoundaryPair instance

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur. However, the function is safe when value cannot be an arbitrary string.

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated

4.2. pde.grids package 101

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• normal (bool) – Flag indicating whether the condition is only applied in the normal direc-
tion.

• value (float or str or ndarray) – a value stored with the boundary condition. The inter-
pretation of this value depends on the type of boundary condition. If value is a single value
(or tensor in case of tensorial boundary conditions), the same value is applied to all points. In-
homogeneous boundary conditions are possible by supplying an expression as a string, which
then may depend on the axes names of the respective grid.

get_data(idx)

sets the elements of the sparse representation of this condition
Parameters

idx (tuple) – The index of the point that must lie on the boundary condition
Returns

A constant value and a dictionary with indices and factors that can be used to calculate this
virtual point

Return type
float, dict

get_virtual_point(arr, idx=None)
calculate the value of the virtual point outside the boundary

Parameters
• arr (array) – The data values associated with the grid
• idx (tuple) – The index of the point to evaluate. This is a tuple of length grid.num_axes
with the either -1 or dim as the entry for the axis associated with this boundary condition.
Here, dim is the dimension of the axis. The index is optional if dim == 1.

Returns
Value at the virtual support point

Return type
float

abstract get_virtual_point_data(compiled=False)

Parameters
compiled (bool) –

Return type
Tuple[Any, Any, int]

make_adjacent_evaluator()

returns a function evaluating the value adjacent to a given point
Returns

A function with signature (arr_1d, i_point, bc_idx), where arr_1d is the one-dimensional data
array (the data points along the axis perpendicular to the boundary), i_point is the index into
this array for the current point and bc_idx are the remaining indices of the current point, which
indicate the location on the boundary plane. The result of the function is the data value at

102 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

the adjacent point along the axis associated with this boundary condition in the upper (lower)
direction when upper is True (False).

Return type
function

make_virtual_point_evaluator()

returns a function evaluating the value at the virtual support point
Returns

A function that takes the data array and an index marking the current point, which is assumed
to be a virtual point. The result is the data value at this point, which is calculated using the
boundary condition.

Return type
function

set_ghost_cells(data_full, *, args=None)
set the ghost cell values for this boundary

Parameters
• data_full (ndarray) – The full field data including ghost points
• args – Additional arguments that might be supported by special boundary conditions.

Return type
None

value_is_linked: bool

flag that indicates whether the value associated with this boundary condition is linked to ndarraymanaged
by external code.

Type
bool

class ConstBC2ndOrderBase(grid, axis, upper, *, rank=0, value=0)
Bases: ConstBCBase
abstract base class for boundary conditions of 2nd order

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur. However, the function is safe when value cannot be an arbitrary string.

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• normal (bool) – Flag indicating whether the condition is only applied in the normal direc-
tion.

4.2. pde.grids package 103

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

• value (float or str or ndarray) – a value stored with the boundary condition. The inter-
pretation of this value depends on the type of boundary condition. If value is a single value
(or tensor in case of tensorial boundary conditions), the same value is applied to all points. In-
homogeneous boundary conditions are possible by supplying an expression as a string, which
then may depend on the axes names of the respective grid.

get_data(idx)

sets the elements of the sparse representation of this condition
Parameters

idx (tuple) – The index of the point that must lie on the boundary condition
Returns

A constant value and a dictionary with indices and factors that can be used to calculate this
virtual point

Return type
float, dict

get_virtual_point(arr, idx=None)
calculate the value of the virtual point outside the boundary

Parameters
• arr (array) – The data values associated with the grid
• idx (tuple) – The index of the point to evaluate. This is a tuple of length grid.num_axes
with the either -1 or dim as the entry for the axis associated with this boundary condition.
Here, dim is the dimension of the axis. The index is optional if dim == 1.

Returns
Value at the virtual support point

Return type
float

abstract get_virtual_point_data()

return data suitable for calculating virtual points
Returns

the data associated with this virtual point
Return type

tuple
make_adjacent_evaluator()

returns a function evaluating the value adjacent to a given point
Returns

A function with signature (arr_1d, i_point, bc_idx), where arr_1d is the one-dimensional data
array (the data points along the axis perpendicular to the boundary), i_point is the index into
this array for the current point and bc_idx are the remaining indices of the current point, which
indicate the location on the boundary plane. The result of the function is the data value at
the adjacent point along the axis associated with this boundary condition in the upper (lower)
direction when upper is True (False).

Return type
function

104 Chapter 4. Reference manual

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

py-pde Documentation, Release unknown

make_virtual_point_evaluator()

returns a function evaluating the value at the virtual support point
Returns

A function that takes the data array and an index marking the current point, which is assumed
to be a virtual point. The result is the data value at this point, which is calculated using the
boundary condition.

Return type
function

set_ghost_cells(data_full, *, args=None)
set the ghost cell values for this boundary

Parameters
• data_full (ndarray) – The full field data including ghost points
• args – Additional arguments that might be supported by special boundary conditions.

Return type
None

value_is_linked: bool

flag that indicates whether the value associated with this boundary condition is linked to ndarraymanaged
by external code.

Type
bool

class ConstBCBase(grid, axis, upper, *, rank=0, value=0)
Bases: BCBase
base class representing a boundary whose virtual point is set from constants

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur. However, the function is safe when value cannot be an arbitrary string.

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• normal (bool) – Flag indicating whether the condition is only applied in the normal direc-
tion.

• value (float or str or ndarray) – a value stored with the boundary condition. The inter-
pretation of this value depends on the type of boundary condition. If value is a single value
(or tensor in case of tensorial boundary conditions), the same value is applied to all points. In-
homogeneous boundary conditions are possible by supplying an expression as a string, which
then may depend on the axes names of the respective grid.

4.2. pde.grids package 105

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

copy(upper=None, rank=None, value=None)
return a copy of itself, but with a reference to the same grid

Parameters
• self (ConstBCBase) –
• upper (Optional[bool]) –
• rank (Optional[int]) –
• value (Optional[Union[float, ndarray, str]]) –

Return type
ConstBCBase

link_value(value)

link value of this boundary condition to external array
Parameters

value (ndarray) –
to_subgrid(subgrid)

converts this boundary condition to one valid for a given subgrid
Parameters

• subgrid (GridBase) – Grid of the new boundary conditions
• self (ConstBCBase) –

Returns
Boundary conditions valid on the subgrid

Return type
ConstBCBase

property value: ndarray

value_is_linked: bool

flag that indicates whether the value associated with this boundary condition is linked to ndarraymanaged
by external code.

Type
bool

class CurvatureBC(grid, axis, upper, *, rank=0, value=0)
Bases: ConstBC2ndOrderBase
represents a boundary condition imposing the 2nd normal derivative at the boundary

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur. However, the function is safe when value cannot be an arbitrary string.

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated

106 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• normal (bool) – Flag indicating whether the condition is only applied in the normal direc-
tion.

• value (float or str or ndarray) – a value stored with the boundary condition. The inter-
pretation of this value depends on the type of boundary condition. If value is a single value
(or tensor in case of tensorial boundary conditions), the same value is applied to all points. In-
homogeneous boundary conditions are possible by supplying an expression as a string, which
then may depend on the axes names of the respective grid.

get_mathematical_representation(field_name='C')

return mathematical representation of the boundary condition
Parameters

field_name (str) –
Return type

str
get_virtual_point_data()

return data suitable for calculating virtual points
Returns

the data structure associated with this virtual point
Return type

tuple
homogeneous: bool

determines whether the boundary condition depends on space
Type

bool
names: List[str] = ['curvature', 'second_derivative', 'extrapolate']

identifiers used to specify the given boundary class
Type

list
value_is_linked: bool

flag that indicates whether the value associated with this boundary condition is linked to ndarraymanaged
by external code.

Type
bool

class DirichletBC(grid, axis, upper, *, rank=0, value=0)
Bases: ConstBC1stOrderBase
represents a boundary condition imposing the value

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur. However, the function is safe when value cannot be an arbitrary string.

4.2. pde.grids package 107

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#exec

py-pde Documentation, Release unknown

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• normal (bool) – Flag indicating whether the condition is only applied in the normal direc-
tion.

• value (float or str or ndarray) – a value stored with the boundary condition. The inter-
pretation of this value depends on the type of boundary condition. If value is a single value
(or tensor in case of tensorial boundary conditions), the same value is applied to all points. In-
homogeneous boundary conditions are possible by supplying an expression as a string, which
then may depend on the axes names of the respective grid.

get_mathematical_representation(field_name='C')
return mathematical representation of the boundary condition

Parameters
field_name (str) –

Return type
str

get_virtual_point_data(compiled=False)
return data suitable for calculating virtual points

Parameters
compiled (bool) – Flag indicating whether a compiled version is required, which automat-
ically takes updated values into account when it is used in numba-compiled code.

Returns
the data structure associated with this virtual point

Return type
BC1stOrderData

homogeneous: bool

determines whether the boundary condition depends on space
Type

bool
names: List[str] = ['value', 'dirichlet']

identifiers used to specify the given boundary class
Type

list
value_is_linked: bool

flag that indicates whether the value associated with this boundary condition is linked to ndarraymanaged
by external code.

Type
bool

108 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

class ExpressionBC(grid, axis, upper, *, rank=0, value=0, target='virtual_point')
Bases: BCBase
represents a boundary whose virtual point is calculated from an expression
The expression is given as a string and will be parsed by sympy. The expression can contain typical mathematical
operators and may depend on the value at the last support point next to the boundary (value), spatial coordinates
defined by the grid marking the boundary point (e.g., x or r), and time t.

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur.

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• value (float or str) – An expression that determines the value of the boundary con-
dition.

• target (str) – Selects which value is actually set. Possible choices include value, derivative,
and virtual_point.

copy(upper=None, rank=None)
return a copy of itself, but with a reference to the same grid

Parameters
• self (ExpressionBC) –
• upper (Optional[bool]) –
• rank (Optional[int]) –

Return type
ExpressionBC

get_data(idx)

Parameters
idx (Tuple[int, ...]) –

Return type
Tuple[float, Dict[int, float]]

get_mathematical_representation(field_name='C')

return mathematical representation of the boundary condition
Parameters

field_name (str) –
Return type

str

4.2. pde.grids package 109

https://docs.sympy.org/latest/index.html#module-sympy
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

get_virtual_point(arr, idx=None)

Parameters
idx (Optional[Tuple[int, ...]]) –

Return type
float

homogeneous: bool

determines whether the boundary condition depends on space
Type

bool
make_adjacent_evaluator()

Return type
AdjacentEvaluator

make_virtual_point_evaluator()

returns a function evaluating the value at the virtual support point
Returns

A function that takes the data array and an index marking the current point, which is assumed
to be a virtual point. The result is the data value at this point, which is calculated using the
boundary condition.

Return type
function

names: List[str] = ['virtual_point']

identifiers used to specify the given boundary class
Type

list
set_ghost_cells(data_full, *, args=None)

set the ghost cell values for this boundary
Parameters

• data_full (ndarray) – The full field data including ghost points
• args – Additional arguments that might be supported by special boundary conditions.

Return type
None

to_subgrid(subgrid)
converts this boundary condition to one valid for a given subgrid

Parameters
• subgrid (GridBase) – Grid of the new boundary conditions
• self (ExpressionBC) –

Returns
Boundary conditions valid on the subgrid

Return type
BCBase

110 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

class ExpressionDerivativeBC(grid, axis, upper, *, rank=0, value=0, target='derivative')
Bases: ExpressionBC
represents a boundary whose outward derivative is calculated from an expression
The expression is given as a string and will be parsed by sympy. The expression can contain typical mathematical
operators and may depend on the value at the last support point next to the boundary (value), spatial coordinates
defined by the grid marking the boundary point (e.g., x or r), and time t.

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur.

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• value (float or str) – An expression that determines the value of the boundary con-
dition.

• target (str) – Selects which value is actually set. Possible choices include value, derivative,
and virtual_point.

homogeneous: bool

determines whether the boundary condition depends on space
Type

bool
names: List[str] = ['derivative_expression', 'derivative_expr']

identifiers used to specify the given boundary class
Type

list
class ExpressionValueBC(grid, axis, upper, *, rank=0, value=0, target='value')

Bases: ExpressionBC
represents a boundary whose value is calculated from an expression
The expression is given as a string and will be parsed by sympy. The expression can contain typical mathematical
operators and may depend on the value at the last support point next to the boundary (value), spatial coordinates
defined by the grid marking the boundary point (e.g., x or r), and time t.

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur.

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined

4.2. pde.grids package 111

https://docs.sympy.org/latest/index.html#module-sympy
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.sympy.org/latest/index.html#module-sympy
https://docs.python.org/3/library/functions.html#exec

py-pde Documentation, Release unknown

• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• value (float or str) – An expression that determines the value of the boundary con-
dition.

• target (str) – Selects which value is actually set. Possible choices include value, derivative,
and virtual_point.

homogeneous: bool

determines whether the boundary condition depends on space
Type

bool
names: List[str] = ['value_expression', 'value_expr']

identifiers used to specify the given boundary class
Type

list
class MixedBC(grid, axis, upper, *, rank=0, value=0, const=0)

Bases: ConstBC1stOrderBase
represents a mixed (or Robin) boundary condition imposing a derivative in the outward normal direction of the
boundary that is given by an affine function involving the actual value:

∂nc+ γc = β

Here, c is the field to which the condition is applied, γ quantifies the influence of the field and β is the constant
term. Note that γ = 0 corresponds to Dirichlet conditions imposing β as the derivative. Conversely, γ → ∞
corresponds to imposing a zero value on c.
This condition can be enforced by using one of the following variants

bc = {'mixed': VALUE}
bc = {'type': 'mixed', 'value': VALUE, 'const': CONST}

where VALUE corresponds to γ and CONST to β.
Parameters

• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• value (float or str or array) – The parameter γ quantifying the influence of the
field onto its normal derivative. If value is a single value (or tensor in case of tensorial boundary
conditions), the same value is applied to all points. Inhomogeneous boundary conditions are
possible by supplying an expression as a string, which then may depend on the axes names of
the respective grid.

112 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

• const (float or ndarray or str) – The parameter β determining the constant term for the
boundary condition. Supports the same input as value.

copy(upper=None, rank=None, value=None, const=None)
return a copy of itself, but with a reference to the same grid

Parameters
• self (MixedBC) –
• upper (Optional[bool]) –
• rank (Optional[int]) –
• value (Optional[Union[float, ndarray, str]]) –
• const (Optional[Union[float, ndarray, str]]) –

Return type
MixedBC

get_mathematical_representation(field_name='C')
return mathematical representation of the boundary condition

Parameters
field_name (str) –

Return type
str

get_virtual_point_data(compiled=False)
return data suitable for calculating virtual points

Parameters
compiled (bool) – Flag indicating whether a compiled version is required, which automat-
ically takes updated values into account when it is used in numba-compiled code.

Returns
the data structure associated with this virtual point

Return type
BC1stOrderData

homogeneous: bool

determines whether the boundary condition depends on space
Type

bool
names: List[str] = ['mixed', 'robin']

identifiers used to specify the given boundary class
Type

list
to_subgrid(subgrid)

converts this boundary condition to one valid for a given subgrid
Parameters

• subgrid (GridBase) – Grid of the new boundary conditions
• self (MixedBC) –

4.2. pde.grids package 113

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

py-pde Documentation, Release unknown

Returns
Boundary conditions valid on the subgrid

Return type
ConstBCBase

value_is_linked: bool

flag that indicates whether the value associated with this boundary condition is linked to ndarraymanaged
by external code.

Type
bool

class NeumannBC(grid, axis, upper, *, rank=0, value=0)
Bases: ConstBC1stOrderBase
represents a boundary condition imposing the derivative in the outward normal direction of the boundary

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur. However, the function is safe when value cannot be an arbitrary string.

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• normal (bool) – Flag indicating whether the condition is only applied in the normal direc-
tion.

• value (float or str or ndarray) – a value stored with the boundary condition. The inter-
pretation of this value depends on the type of boundary condition. If value is a single value
(or tensor in case of tensorial boundary conditions), the same value is applied to all points. In-
homogeneous boundary conditions are possible by supplying an expression as a string, which
then may depend on the axes names of the respective grid.

get_mathematical_representation(field_name='C')
return mathematical representation of the boundary condition

Parameters
field_name (str) –

Return type
str

get_virtual_point_data(compiled=False)
return data suitable for calculating virtual points

Parameters
compiled (bool) – Flag indicating whether a compiled version is required, which automat-
ically takes updated values into account when it is used in numba-compiled code.

Returns
the data structure associated with this virtual point

114 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

Return type
BC1stOrderData

homogeneous: bool

determines whether the boundary condition depends on space
Type

bool
names: List[str] = ['derivative', 'neumann']

identifiers used to specify the given boundary class
Type

list
value_is_linked: bool

flag that indicates whether the value associated with this boundary condition is linked to ndarraymanaged
by external code.

Type
bool

class NormalCurvatureBC(grid, axis, upper, *, rank=0, value=0)
Bases: CurvatureBC
represents a boundary condition imposing the 2nd normal derivative onto the normal components at the boundary

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur. However, the function is safe when value cannot be an arbitrary string.

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• normal (bool) – Flag indicating whether the condition is only applied in the normal direc-
tion.

• value (float or str or ndarray) – a value stored with the boundary condition. The inter-
pretation of this value depends on the type of boundary condition. If value is a single value
(or tensor in case of tensorial boundary conditions), the same value is applied to all points. In-
homogeneous boundary conditions are possible by supplying an expression as a string, which
then may depend on the axes names of the respective grid.

homogeneous: bool

determines whether the boundary condition depends on space
Type

bool

4.2. pde.grids package 115

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

names: List[str] = ['normal_curvature']

identifiers used to specify the given boundary class
Type

list
normal: bool = True

determines whether the boundary condition only affects normal components.
If this flag is False, boundary conditions must specify values for all components of the field. If True, only the
normal components at the boundary are specified.

Type
bool

value_is_linked: bool

flag that indicates whether the value associated with this boundary condition is linked to ndarraymanaged
by external code.

Type
bool

class NormalDirichletBC(grid, axis, upper, *, rank=0, value=0)
Bases: DirichletBC
represents a boundary condition imposing the value on normal components

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur. However, the function is safe when value cannot be an arbitrary string.

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• normal (bool) – Flag indicating whether the condition is only applied in the normal direc-
tion.

• value (float or str or ndarray) – a value stored with the boundary condition. The inter-
pretation of this value depends on the type of boundary condition. If value is a single value
(or tensor in case of tensorial boundary conditions), the same value is applied to all points. In-
homogeneous boundary conditions are possible by supplying an expression as a string, which
then may depend on the axes names of the respective grid.

homogeneous: bool

determines whether the boundary condition depends on space
Type

bool

116 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

names: List[str] = ['normal_value', 'normal_dirichlet',
'dirichlet_normal']

identifiers used to specify the given boundary class
Type

list
normal: bool = True

determines whether the boundary condition only affects normal components.
If this flag is False, boundary conditions must specify values for all components of the field. If True, only the
normal components at the boundary are specified.

Type
bool

value_is_linked: bool

flag that indicates whether the value associated with this boundary condition is linked to ndarraymanaged
by external code.

Type
bool

class NormalMixedBC(grid, axis, upper, *, rank=0, value=0, const=0)
Bases: MixedBC
represents a mixed (or Robin) boundary condition setting the derivative of the normal components in the outward
normal direction of the boundary using an affine function involving the actual value:

∂nc+ γc = β

Here, c is the field to which the condition is applied, γ quantifies the influence of the field and β is the constant
term. Note that γ = 0 corresponds to Dirichlet conditions imposing β as the derivative. Conversely, γ → ∞
corresponds to imposing a zero value on c.
This condition can be enforced by using one of the following variants

bc = {'mixed': VALUE}
bc = {'type': 'mixed', 'value': VALUE, 'const': CONST}

where VALUE corresponds to γ and CONST to β.
Parameters

• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• value (float or str or array) – The parameter γ quantifying the influence of the
field onto its normal derivative. If value is a single value (or tensor in case of tensorial boundary
conditions), the same value is applied to all points. Inhomogeneous boundary conditions are
possible by supplying an expression as a string, which then may depend on the axes names of
the respective grid.

• const (float or ndarray or str) – The parameter β determining the constant term for the
boundary condition. Supports the same input as value.

4.2. pde.grids package 117

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

homogeneous: bool

determines whether the boundary condition depends on space
Type

bool
names: List[str] = ['normal_mixed', 'normal_robin']

identifiers used to specify the given boundary class
Type

list
normal: bool = True

determines whether the boundary condition only affects normal components.
If this flag is False, boundary conditions must specify values for all components of the field. If True, only the
normal components at the boundary are specified.

Type
bool

value_is_linked: bool

flag that indicates whether the value associated with this boundary condition is linked to ndarraymanaged
by external code.

Type
bool

class NormalNeumannBC(grid, axis, upper, *, rank=0, value=0)
Bases: NeumannBC
represents a boundary condition imposing the derivative of normal components in the outward normal direction of
the boundary

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur. However, the function is safe when value cannot be an arbitrary string.

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition
• normal (bool) – Flag indicating whether the condition is only applied in the normal direc-
tion.

• value (float or str or ndarray) – a value stored with the boundary condition. The inter-
pretation of this value depends on the type of boundary condition. If value is a single value
(or tensor in case of tensorial boundary conditions), the same value is applied to all points. In-
homogeneous boundary conditions are possible by supplying an expression as a string, which
then may depend on the axes names of the respective grid.

118 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

homogeneous: bool

determines whether the boundary condition depends on space
Type

bool
names: List[str] = ['normal_derivative', 'normal_neumann',
'neumann_normal']

identifiers used to specify the given boundary class
Type

list
normal: bool = True

determines whether the boundary condition only affects normal components.
If this flag is False, boundary conditions must specify values for all components of the field. If True, only the
normal components at the boundary are specified.

Type
bool

value_is_linked: bool

flag that indicates whether the value associated with this boundary condition is linked to ndarraymanaged
by external code.

Type
bool

class UserBC(grid, axis, upper, *, rank=0)
Bases: BCBase
represents a boundary whose virtual point are set by the user.
Boundary conditions will only be set when a dictionary {TARGET: value} is supplied as argument args to
set_ghost_cells() or the numba equivalent. Here, TARGET determines how the value is interpreted and
what boundary condition is actually enforced: the value of the virtual points directly (virtual_point), the value of
the field at the boundary (value) or the outward derivative of the field at the boundary (derivative).

Warning: This implies that the boundary conditions are never enforced automatically, e.g., when evaluating
an operator. It is thus the user’s responsibility to ensure virtual points are set correctly before operators are
applied.

Parameters
• grid (GridBase) – The grid for which the boundary conditions are defined
• axis (int) – The axis to which this boundary condition is associated
• upper (bool) – Flag indicating whether this boundary condition is associated with the upper
side of an axis or not. In essence, this determines the direction of the local normal vector of
the boundary.

• rank (int) – The tensorial rank of the field for this boundary condition

copy(upper=None, rank=None)
return a copy of itself, but with a reference to the same grid

Parameters

4.2. pde.grids package 119

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

• self (TBC) –
• upper (Optional[bool]) –
• rank (Optional[int]) –

Return type
TBC

get_mathematical_representation(field_name='C')

return mathematical representation of the boundary condition
Parameters

field_name (str) –
Return type

str
homogeneous: bool

determines whether the boundary condition depends on space
Type

bool
make_ghost_cell_setter()

return function that sets the ghost cells for this boundary
Return type

GhostCellSetter
make_virtual_point_evaluator()

returns a function evaluating the value at the virtual support point
Returns

A function that takes the data array and an index marking the current point, which is assumed
to be a virtual point. The result is the data value at this point, which is calculated using the
boundary condition.

Return type
function

names: List[str] = ['user']

identifiers used to specify the given boundary class
Type

list
set_ghost_cells(data_full, *, args=None)

set the ghost cell values for this boundary
Parameters

• data_full (ndarray) – The full field data including ghost points
• args (ndarray) – Determines what boundary conditions are set. args should be set
to {TARGET: value}. Here, TARGET determines how the value is interpreted and
what boundary condition is actually enforced: the value of the virtual points directly (vir-
tual_point), the value of the field at the boundary (value) or the outward derivative of the
field at the boundary (derivative).

Return type
None

120 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

to_subgrid(subgrid)
converts this boundary condition to one valid for a given subgrid

Parameters
• subgrid (GridBase) – Grid of the new boundary conditions
• self (TBC) –

Returns
Boundary conditions valid on the subgrid

Return type
BCBase

registered_boundary_condition_classes()

returns all boundary condition classes that are currently defined
Returns

a dictionary with the names of the boundary condition classes
Return type

dict
registered_boundary_condition_names()

returns all named boundary conditions that are currently defined
Returns

a dictionary with the names of the boundary conditions that can be used
Return type

dict

4.2.2 pde.grids.operators package

Package collecting modules defining discretized operators for different grids.
These operators can either be used directly or they are imported by the respective methods defined on fields and grids.

cartesian This module implements differential operators on Carte-
sian grids

cylindrical_sym This module implements differential operators on cylin-
drical grids

polar_sym This module implements differential operators on polar
grids

spherical_sym This module implements differential operators on spher-
ical grids

4.2. pde.grids package 121

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

pde.grids.operators.cartesian module

This module implements differential operators on Cartesian grids

make_laplace make a laplace operator on a Cartesian grid
make_gradient make a gradient operator on a Cartesian grid
make_divergence make a divergence operator on a Cartesian grid
make_vector_gradient make a vector gradient operator on a Cartesian grid
make_vector_laplace make a vector Laplacian on a Cartesian grid
make_tensor_divergence make a tensor divergence operator on a Cartesian grid
make_poisson_solver make a operator that solves Poisson's equation

make_divergence(grid, backend='auto')
make a divergence operator on a Cartesian grid

Parameters
• grid (CartesianGrid) – The grid for which the operator is created
• backend (str) – Backend used for calculating the divergence operator. If backend=’auto’,
a suitable backend is chosen automatically.

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_gradient(grid, backend='auto')
make a gradient operator on a Cartesian grid

Parameters
• grid (CartesianGrid) – The grid for which the operator is created
• backend (str) – Backend used for calculating the gradient operator. If backend=’auto’, a
suitable backend is chosen automatically.

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_laplace(grid, backend='auto')
make a laplace operator on a Cartesian grid

Parameters
• grid (CartesianGrid) – The grid for which the operator is created
• backend (str) – Backend used for calculating the laplace operator. If backend=’auto’, a
suitable backend is chosen automatically.

Returns
A function that can be applied to an array of values

Return type
OperatorType

122 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

make_poisson_solver(bcs, method='auto')
make a operator that solves Poisson’s equation

Parameters
• bcs (Boundaries) – {ARG_BOUNDARIES_INSTANCE}
• method (str) – Method used for calculating the tensor divergence operator. If
method=’auto’, a suitable method is chosen automatically.

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_tensor_divergence(grid, backend='numba')
make a tensor divergence operator on a Cartesian grid

Parameters
• grid (CartesianGrid) – The grid for which the operator is created
• backend (str) – Backend used for calculating the tensor divergence operator.

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_vector_gradient(grid, backend='numba')
make a vector gradient operator on a Cartesian grid

Parameters
• grid (CartesianGrid) – The grid for which the operator is created
• backend (str) – Backend used for calculating the vector gradient operator.

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_vector_laplace(grid, backend='numba')
make a vector Laplacian on a Cartesian grid

Parameters
• grid (CartesianGrid) – The grid for which the operator is created
• backend (str) – Backend used for calculating the vector laplace operator.

Returns
A function that can be applied to an array of values

Return type
OperatorType

4.2. pde.grids package 123

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

pde.grids.operators.common module

Common functions that are used by many operators
make_general_poisson_solver(matrix, vector, method='auto')

make an operator that solves Poisson’s problem
Parameters

• matrix – The (sparse) matrix representing the laplace operator on the given grid.
• vector – The constant part representing the boundary conditions of the Laplace operator.
• method (str) – The chosen method for implementing the operator

Returns
A function that can be applied to an array of values to obtain the solution to Poisson’s equation
where the array is used as the right hand side

Return type
OperatorType

make_laplace_from_matrix(matrix, vector)
make a Laplace operator using matrix vector products

Parameters
• matrix – The (sparse) matrix representing the laplace operator on the given grid.
• vector – The constant part representing the boundary conditions of the Laplace operator.

Returns
A function that can be applied to an array of values to obtain the solution to Poisson’s equation
where the array is used as the right hand side

Return type
OperatorType

uniform_discretization(grid)
returns the uniform discretization or raises RuntimeError

Parameters
grid (GridBase) –

Return type
float

pde.grids.operators.cylindrical_sym module

This module implements differential operators on cylindrical grids

124 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

make_laplace make a discretized laplace operator for a cylindrical grid
make_gradient make a discretized gradient operator for a cylindrical grid
make_divergence make a discretized divergence operator for a cylindrical

grid
make_vector_gradient make a discretized vector gradient operator for a cylindri-

cal grid
make_vector_laplace make a discretized vector laplace operator for a cylindrical

grid
make_tensor_divergence make a discretized tensor divergence operator for a cylin-

drical grid

make_divergence(grid)
make a discretized divergence operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate r and the axial
coordinate z. Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The
radial discretization is defined as ri = (i+ 1

2)∆r for i = 0, . . . , Nr − 1.
Parameters

grid (CylindricalSymGrid) – The grid for which the operator is created
Returns

A function that can be applied to an array of values
Return type

OperatorType
make_gradient(grid)

make a discretized gradient operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate r and the axial
coordinate z. Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The
radial discretization is defined as ri = (i+ 1

2)∆r for i = 0, . . . , Nr − 1.
Parameters

grid (CylindricalSymGrid) – The grid for which the operator is created
Returns

A function that can be applied to an array of values
Return type

OperatorType
make_gradient_squared(grid, central=True)

make a discretized gradient squared operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate r and the axial
coordinate z. Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The
radial discretization is defined as ri = (i+ 1

2)∆r for i = 0, . . . , Nr − 1.
Parameters

• grid (CylindricalSymGrid) – The grid for which the operator is created
• central (bool) – Whether a central difference approximation is used for the gradient op-
erator. If this is False, the squared gradient is calculated as the mean of the squared values of
the forward and backward derivatives.

Returns
A function that can be applied to an array of values

4.2. pde.grids package 125

https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

Return type
OperatorType

make_laplace(grid)
make a discretized laplace operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate r and the axial
coordinate z. Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The
radial discretization is defined as ri = (i+ 1

2)∆r for i = 0, . . . , Nr − 1.
Parameters

grid (CylindricalSymGrid) – The grid for which the operator is created
Returns

A function that can be applied to an array of values
Return type

OperatorType
make_tensor_divergence(grid)

make a discretized tensor divergence operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate r and the axial
coordinate z. Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The
radial discretization is defined as ri = (i+ 1

2)∆r for i = 0, . . . , Nr − 1.
Parameters

grid (CylindricalSymGrid) – The grid for which the operator is created
Returns

A function that can be applied to an array of values
Return type

OperatorType
make_vector_gradient(grid)

make a discretized vector gradient operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate r and the axial
coordinate z. Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The
radial discretization is defined as ri = (i+ 1

2)∆r for i = 0, . . . , Nr − 1.
Parameters

grid (CylindricalSymGrid) – The grid for which the operator is created
Returns

A function that can be applied to an array of values
Return type

OperatorType
make_vector_laplace(grid)

make a discretized vector laplace operator for a cylindrical grid
The cylindrical grid assumes polar symmetry, so that fields only depend on the radial coordinate r and the axial
coordinate z. Here, the first axis is along the radius, while the second axis is along the axis of the cylinder. The
radial discretization is defined as ri = (i+ 1

2)∆r for i = 0, . . . , Nr − 1.
Parameters

grid (CylindricalSymGrid) – The grid for which the operator is created
Returns

A function that can be applied to an array of values

126 Chapter 4. Reference manual

py-pde Documentation, Release unknown

Return type
OperatorType

pde.grids.operators.polar_sym module

This module implements differential operators on polar grids

make_laplace make a discretized laplace operator for a polar grid
make_gradient make a discretized gradient operator for a polar grid
make_divergence make a discretized divergence operator for a polar grid
make_vector_gradient make a discretized vector gradient operator for a polar

grid
make_tensor_divergence make a discretized tensor divergence operator for a polar

grid

make_divergence(grid)

make a discretized divergence operator for a polar grid
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate r. The radial discretiza-
tion is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner boundary,
which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
grid (PolarSymGrid) – The polar grid for which this operator will be defined

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_gradient(grid)
make a discretized gradient operator for a polar grid
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate r. The radial discretiza-
tion is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner boundary,
which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
grid (PolarSymGrid) – The polar grid for which this operator will be defined

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_gradient_squared(grid, central=True)
make a discretized gradient squared operator for a polar grid
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate r. The radial discretiza-
tion is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner boundary,
which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
• grid (PolarSymGrid) – The polar grid for which this operator will be defined

4.2. pde.grids package 127

py-pde Documentation, Release unknown

• central (bool) – Whether a central difference approximation is used for the gradient op-
erator. If this is False, the squared gradient is calculated as the mean of the squared values of
the forward and backward derivatives.

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_laplace(grid)
make a discretized laplace operator for a polar grid
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate r. The radial discretiza-
tion is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner boundary,
which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
grid (PolarSymGrid) – The polar grid for which this operator will be defined

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_poisson_solver(bcs, method='auto')
make a operator that solves Poisson’s equation
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate r. The radial discretiza-
tion is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner boundary,
which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
• bcs (Boundaries) – Specifies the boundary conditions applied to the field. This must be
an instance of Boundaries, which can be created from various data formats using the class
method from_data().

• method (str) – The chosen method for implementing the operator
Returns

A function that can be applied to an array of values
Return type

OperatorType
make_tensor_divergence(grid)

make a discretized tensor divergence operator for a polar grid
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate r. The radial discretiza-
tion is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner boundary,
which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
grid (PolarSymGrid) – The polar grid for which this operator will be defined

Returns
A function that can be applied to an array of values

Return type
OperatorType

128 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

make_vector_gradient(grid)
make a discretized vector gradient operator for a polar grid
The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate r. The radial discretiza-
tion is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner boundary,
which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
grid (PolarSymGrid) – The polar grid for which this operator will be defined

Returns
A function that can be applied to an array of values

Return type
OperatorType

pde.grids.operators.spherical_sym module

This module implements differential operators on spherical grids

make_laplace make a discretized laplace operator for a spherical grid
make_gradient make a discretized gradient operator for a spherical grid
make_divergence make a discretized divergence operator for a spherical grid
make_vector_gradient make a discretized vector gradient operator for a spherical

grid
make_tensor_divergence make a discretized tensor divergence operator for a spher-

ical grid

make_divergence(grid, safe=True, conservative=True)
make a discretized divergence operator for a spherical grid
The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate r. The radial
discretization is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner
boundary, which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Warning: This operator ignores the θ-component of the field when calculating the divergence. This is because
the resulting scalar field could not be expressed on a SphericalSymGrid.

Parameters
• grid (SphericalSymGrid) – The polar grid for which this operator will be defined
• safe (bool) – Add extra checks for the validity of the input
• conservative (bool) – Flag indicating whether the operator should be conservative
(which results in slightly slower computations). Conservative operators ensure mass conserva-
tion.

Returns
A function that can be applied to an array of values

Return type
OperatorType

4.2. pde.grids package 129

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

make_gradient(grid)
make a discretized gradient operator for a spherical grid
The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate r. The radial
discretization is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner
boundary, which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
grid (SphericalSymGrid) – The polar grid for which this operator will be defined

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_gradient_squared(grid, central=True)
make a discretized gradient squared operator for a spherical grid
The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate r. The radial
discretization is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner
boundary, which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
• grid (SphericalSymGrid) – The polar grid for which this operator will be defined
• central (bool) – Whether a central difference approximation is used for the gradient op-
erator. If this is False, the squared gradient is calculated as the mean of the squared values of
the forward and backward derivatives.

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_laplace(grid, conservative=True)
make a discretized laplace operator for a spherical grid
The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate r. The radial
discretization is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner
boundary, which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
• grid (SphericalSymGrid) – The polar grid for which this operator will be defined
• conservative (bool) – Flag indicating whether the laplace operator should be conser-
vative (which results in slightly slower computations). Conservative operators ensure mass
conservation.

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_poisson_solver(bcs, method='auto')
make a operator that solves Poisson’s equation

130 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

The polar grid assumes polar symmetry, so that fields only depend on the radial coordinate r. The radial discretiza-
tion is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner boundary,
which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
• bcs (Boundaries) – Specifies the boundary conditions applied to the field. This must be
an instance of Boundaries, which can be created from various data formats using the class
method from_data().

• method (str) – The chosen method for implementing the operator
Returns

A function that can be applied to an array of values
Return type

OperatorType
make_tensor_divergence(grid, safe=True, conservative=False)

make a discretized tensor divergence operator for a spherical grid
The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate r. The radial
discretization is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner
boundary, which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
• grid (SphericalSymGrid) – The polar grid for which this operator will be defined
• safe (bool) – Add extra checks for the validity of the input
• conservative (bool) – Flag indicating whether the operator should be conservative
(which results in slightly slower computations). Conservative operators ensure mass conserva-
tion.

Returns
A function that can be applied to an array of values

Return type
OperatorType

make_tensor_double_divergence(grid, safe=True, conservative=True)
make a discretized tensor double divergence operator for a spherical grid
The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate r. The radial
discretization is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner
boundary, which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
• grid (SphericalSymGrid) – The polar grid for which this operator will be defined
• safe (bool) – Add extra checks for the validity of the input
• conservative (bool) – Flag indicating whether the operator should be conservative
(which results in slightly slower computations). Conservative operators ensure mass conserva-
tion.

Returns
A function that can be applied to an array of values

Return type
OperatorType

4.2. pde.grids package 131

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

make_vector_gradient(grid, safe=True)
make a discretized vector gradient operator for a spherical grid

Warning: This operator ignores the two angular components of the field when calculating the gradient. This
is because the resulting field could not be expressed on a SphericalSymGrid.

The spherical grid assumes spherical symmetry, so that fields only depend on the radial coordinate r. The radial
discretization is defined as ri = rmin + (i + 1

2)∆r for i = 0, . . . , Nr − 1, where rmin is the radius of the inner
boundary, which is zero by default. Note that the radius of the outer boundary is given by rmax = rmin +Nr∆r.

Parameters
• grid (SphericalSymGrid) – The polar grid for which this operator will be defined
• safe (bool) – Add extra checks for the validity of the input

Returns
A function that can be applied to an array of values

Return type
OperatorType

4.2.3 pde.grids.base module

Bases classes
exception DimensionError

Bases: ValueError
exception indicating that dimensions were inconsistent

exception DomainError

Bases: ValueError
exception indicating that point lies outside domain

class GridBase

Bases: object
Base class for all grids defining common methods and interfaces
initialize the grid

assert_grid_compatible(other)
checks whether other is compatible with the current grid

Parameters
other (GridBase) – The grid compared to this one

Raises
ValueError – if grids are not compatible

Return type
None

132 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError

py-pde Documentation, Release unknown

axes: List[str]

Names of all axes that are described by the grid
Type

list
property axes_bounds: Tuple[Tuple[float, float], ...]

lower and upper bounds of each axis
Type

tuple
property axes_coords: Tuple[ndarray, ...]

coordinates of the cells for each axis
Type

tuple
axes_symmetric: List[str] = []

The names of the additional axes that the fields do not depend on, e.g. along which they are constant.
Type

list
boundary_names: Dict[str, Tuple[int, bool]] = {}

Names of boundaries to select them conveniently
Type

dict
cell_coords

coordinate values for all axes of each cell
Type

ndarray

cell_volume_data: Sequence[FloatNumerical]

Information about the size of discretization cells
Type

list
cell_volumes

volume of each cell
Type

ndarray

compatible_with(other)
tests whether this grid is compatible with other grids.
Grids are compatible when they cover the same area with the same discretization. The difference to equality
is that compatible grids do not need to have the same periodicity in their boundaries.

Parameters
other (GridBase) – The other grid to test against

Returns
Whether the grid is compatible

Return type
bool

4.2. pde.grids package 133

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

contains_point(points, *, coords='cartesian', wrap=True)
check whether the point is contained in the grid

Parameters
• point (ndarray) – Coordinates of the point
• coords (str) – The coordinate system in which the points are given
• points (ndarray) –
• wrap (bool) –

Returns
A boolean array indicating which points lie within the grid

Return type
ndarray

coordinate_arrays

for each axes: coordinate values for all cells
Type

tuple
coordinate_constraints: List[int] = []

axes that not described explicitly
Type

list
copy()

return a copy of the grid
Return type

GridBase
difference_vector_real(p1, p2)

return the vector pointing from p1 to p2
In case of periodic boundary conditions, the shortest vector is returned.

Parameters
• p1 (ndarray) – First point(s)
• p2 (ndarray) – Second point(s)

Returns
The difference vectors between the points with periodic boundary conditions applied.

Return type
ndarray

dim: int

The spatial dimension in which the grid is embedded
Type

int
property discretization: ndarray

the linear size of a cell along each axis

134 Chapter 4. Reference manual

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

Type
numpy.array

distance_real(p1, p2)
Calculate the distance between two points given in real coordinates
This takes periodic boundary conditions into account if necessary.

Parameters
• p1 (ndarray) – First position
• p2 (ndarray) – Second position

Returns
Distance between the two positions

Return type
float

classmethod from_bounds(bounds, shape, periodic)

Parameters
• bounds (Sequence[Tuple[float, float]]) –
• shape (Sequence[int]) –
• periodic (Sequence[bool]) –

Return type
GridBase

classmethod from_state(state)
create a field from a stored state.

Parameters
state (str or dict) – The state from which the grid is reconstructed. If state is a string, it is
decoded as JSON, which should yield a dict.

Return type
GridBase

get_axis_index(key, allow_symmetric=True)
return the index belonging to an axis

Parameters
• key (int or str) – The index or name of an axis
• allow_symmetric (bool) – Whether axes with assumed symmetry are included

Returns
The index of the axis

Return type
int

get_boundary_conditions(bc='auto_periodic_neumann', rank=0)
constructs boundary conditions from a flexible data format

Parameters

4.2. pde.grids package 135

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

• bc (str or list or tuple or dict) – The boundary conditions applied to
the field. Boundary conditions are generally given as a list with one condition for each axis.
For periodic axis, only periodic boundary conditions are allowed (indicated by ‘periodic’ and
‘anti-periodic’). For non-periodic axes, different boundary conditions can be specified for
the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions
enforcing a value NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by {‘derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation.

• rank (int) – The tensorial rank of the value associated with the boundary conditions.
Returns

The boundary conditions for all axes.
Return type

Boundaries

Raises
• ValueError – If the data given in bc cannot be read
• PeriodicityError – If the boundaries are not compatible with the periodic axes of the
grid.

abstract get_image_data(data)

Parameters
data (ndarray) –

Return type
Dict[str, Any]

abstract get_line_data(data, extract='auto')

Parameters
• data (ndarray) –
• extract (str) –

Return type
Dict[str, Any]

abstract get_random_point(*, boundary_distance=0, coords='cartesian')

Parameters
• boundary_distance (float) –
• coords (str) –

Return type
ndarray

integrate(data, axes=None)
Integrates the discretized data over the grid

Parameters
• data (ndarray) – The values at the support points of the grid that need to be integrated.
• axes (list of int, optional) – The axes along which the integral is performed.
If omitted, all axes are integrated over.

136 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

Returns
The values integrated over the entire grid

Return type
ndarray

abstract iter_mirror_points(point, with_self=False, only_periodic=True)

Parameters
• point (ndarray) –
• with_self (bool) –
• only_periodic (bool) –

Return type
Generator

make_cell_volume_compiled(flat_index=False)

return a compiled function returning the volume of a grid cell
Parameters

flat_index (bool) – When True, cell_volumes are indexed by a single integer into the
flattened array.

Returns
returning the volume of the chosen cell

Return type
function

make_inserter_compiled(*, with_ghost_cells=False)
return a compiled function to insert values at interpolated positions

Parameters
with_ghost_cells (bool) – Flag indicating that the interpolator should work on the full
data array that includes values for the grid points. If this is the case, the boundaries are not
checked and the coordinates are used as is.

Returns
A function with signature (data, position, amount), where data is the numpy array containing
the field data, position is denotes the position in grid coordinates, and amount is the that is to
be added to the field.

Return type
Callable[[ndarray, ndarray, Union[int, float, complex, ndarray]], None]

make_integrator()

Return function that can be used to integrates discretized data over the grid
If this function is used in a multiprocessing run (using MPI), the integrals are performed on all subgrids and
then accumulated. Each process then receives the same value representing the global integral.

Returns
A function that takes a numpy array and returns the integral with the correct weights given by
the cell volumes.

Return type
callable

4.2. pde.grids package 137

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

make_normalize_point_compiled(reflect=True)
return a compiled function that normalizes a point
Here, the point is assumed to be specified by the physical values along the non-symmetric axes of the grid.
Normalizing points is useful to make sure they lie within the domain of the grid. This function respects
periodic boundary conditions and can also reflect points off the boundary.

Parameters
reflect (bool) – Flag determining whether coordinates along non-periodic axes are re-
flected to lie in the valid range. If False, such coordinates are left unchanged and only periodic
boundary conditions are enforced.

Returns
A function that takes a ndarray as an argument, which describes the coordinates of the points.
This array is modified in-place!

Return type
callable

make_operator(operator, bc, **kwargs)
return a compiled function applying an operator with boundary conditions
The returned function takes the discretized data on the grid as an input and returns the data to which the
operator operator has been applied. The function only takes the valid grid points and allocates memory for
the ghost points internally to apply the boundary conditions specified as bc. Note that the function supports
an optional argument out, which if given should provide space for the valid output array without the ghost
cells. The result of the operator is then written into this output array. The function also accepts an optional
parameter args, which is forwarded to set_ghost_cells.

Parameters
• operator (str) – Identifier for the operator. Some examples are ‘laplace’, ‘gradient’, or
‘divergence’. The registered operators for this grid can be obtained from the operators
attribute.

• bc (str or list or tuple or dict) – The boundary conditions applied to
the field. Boundary conditions are generally given as a list with one condition for each axis.
For periodic axis, only periodic boundary conditions are allowed (indicated by ‘periodic’ and
‘anti-periodic’). For non-periodic axes, different boundary conditions can be specified for
the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions
enforcing a value NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by {‘derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation.

• **kwargs – Specifies extra arguments influencing how the operator is created.
Returns

the function that applies the operator. This function has the signature (arr: np.ndarray, out:
np.ndarray = None, args=None).

Return type
callable

make_operator_no_bc(operator, **kwargs)
return a compiled function applying an operator without boundary conditions
A function that takes the discretized full data as an input and an array of valid data points to which the result
of applying the operator is written.

138 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

Note: The resulting function does not check whether the ghost cells of the input array have been supplied
with sensible values. It is the responsibility of the user to set the values of the ghost cells beforehand. Use this
function only if you absolutely know what you’re doing. In all other cases, make_operator() is probably
the better choice.

Parameters
• operator (str) – Identifier for the operator. Some examples are ‘laplace’, ‘gradient’, or
‘divergence’. The registered operators for this grid can be obtained from the operators
attribute.

• **kwargs – Specifies extra arguments influencing how the operator is created.
Returns

the function that applies the operator. This function has the signature (arr: np.ndarray, out:
np.ndarray), so they out array need to be supplied explicitly.

Return type
callable

normalize_point(point, *, reflect=False)
normalize grid coordinates by applying periodic boundary conditions
Here, the point is assumed to be specified by the physical values along the non-symmetric axes of the grid.
Normalizing points is useful to make sure they lie within the domain of the grid. This function respects
periodic boundary conditions and can also reflect points off the boundary.

Parameters
• point (ndarray) – Coordinates of a single point
• reflect (bool) – Flag determining whether coordinates along non-periodic axes are re-
flected to lie in the valid range. If False, such coordinates are left unchanged and only periodic
boundary conditions are enforced.

Returns
The respective coordinates with periodic boundary conditions applied.

Return type
ndarray

num_axes: int

Number of axes that are not assumed symmetrically
Type

int
property num_cells: int

the number of cells in this grid
Type

int
property numba_type: str

represents type of the grid data in numba signatures
Type

str

4.2. pde.grids package 139

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

operators: Set[str] = {}

names of all operators defined for this grid
Type

set
periodic: List[bool]

Flags that describe which axes are periodic
Type

list
plot()

visualize the grid
abstract point_from_cartesian(points)

Parameters
points (ndarray) –

Return type
ndarray

abstract point_to_cartesian(points, *, full=False)

Parameters
• points (ndarray) –
• full (bool) –

Return type
ndarray

abstract polar_coordinates_real(origin, *, ret_angle=False)

Parameters
• origin (ndarray) –
• ret_angle (bool) –

Return type
Union[ndarray, Tuple[ndarray, …]]

classmethod register_operator(name, factory_func=None, rank_in=0, rank_out=0)
register an operator for this grid

Example
The method can either be used directly:

GridClass.register_operator("operator", make_operator)

or as a decorator for the factory function:

@GridClass.register_operator("operator")
def make_operator(grid: GridBase):

...

Parameters

140 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

• name (str) – The name of the operator to register
• factory_func (callable) – A function with signature (grid: GridBase,
**kwargs), which takes a grid object and optional keyword arguments and returns an im-
plementation of the given operator. This implementation is a function that takes a ndarray
of discretized values as arguments and returns the resulting discretized data in a ndarray
after applying the operator.

• rank_in (int) – The rank of the input field for the operator
• rank_out (int) – The rank of the field that is returned by the operator

property shape: Tuple[int, ...]

the number of support points of each axis
Type

tuple of int
slice(indices)

return a subgrid of only the specified axes
Parameters

indices (Sequence[int]) –
Return type

GridBase
abstract property state: Dict[str, Any]

property state_serialized: str

JSON-serialized version of the state of this grid
Type

str
transform(coordinates, source, target)

converts coordinates from one coordinate system to another
Supported coordinate systems include
• cartesian: Cartesian coordinates where each point carries dim values
• cell: Grid coordinates based on indexing the discretization cells
• grid: Grid coordinates where each point carries num_axes values

Note: Some conversionmight involve projections if the coordinate system imposes symmetries. For instance,
converting 3d Cartesian coordinates to grid coordinates in a spherically symmetric grid will only return the
radius from the origin. Conversely, converting these grid coordinates back to 3d Cartesian coordinates will
only return coordinates along a particular ray originating at the origin.

Parameters
• coordinates (ndarray) – The coordinates to convert
• source (str) – The source coordinate system
• target (str) – The target coordinate system

Returns
The transformed coordinates

4.2. pde.grids package 141

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

Return type
ndarray

property typical_discretization: float

the average side length of the cells
Type

float
uniform_cell_volumes

returns True if all cell volumes are the same
Type

bool
abstract property volume: float

class OperatorInfo(factory, rank_in, rank_out, name='')
Bases: tuple
stores information about an operator
Create new instance of OperatorInfo(factory, rank_in, rank_out, name)

Parameters
• factory (OperatorFactory) –
• rank_in (int) –
• rank_out (int) –
• name (str) –

factory: OperatorFactory

Alias for field number 0
name: str

Alias for field number 3
rank_in: int

Alias for field number 1
rank_out: int

Alias for field number 2
exception PeriodicityError

Bases: RuntimeError
exception indicating that the grid periodicity is inconsistent

discretize_interval(x_min, x_max, num)
construct a list of equidistantly placed intervals
The discretization is defined as

xi = xmin +

(
i+

1

2

)
∆x for i = 0, . . . , N − 1

∆x =
xmax − xmin

N

where N is the number of intervals given by num.

142 Chapter 4. Reference manual

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError

py-pde Documentation, Release unknown

Parameters
• x_min (float) – Minimal value of the axis
• x_max (float) – Maximal value of the axis
• num (int) – Number of intervals

Returns
(midpoints, dx): the midpoints of the intervals and the used discretization dx.

Return type
tuple

registered_operators()

returns all operators that are currently defined
Returns

a dictionary with the names of the operators defined for each grid class
Return type

dict

4.2.4 pde.grids.cartesian module

Cartesian grids of arbitrary dimension.
class CartesianGrid(bounds, shape, periodic=False)

Bases: GridBase
d-dimensional Cartesian grid with uniform discretization for each axis
The grids can be thought of as a collection of n-dimensional boxes, called cells, of equal length in each dimension.
The bounds then defined the total volume covered by these cells, while the cell coordinates give the location of the
box centers. We index the boxes starting from 0 along each dimension. Consequently, the cell i − 1

2 corresponds
to the left edge of the covered interval and the index i + 1

2 corresponds to the right edge, when the dimension is
covered by d boxes.
In particular, the discretization along dimension k is defined as

x
(k)
i = x

(k)
min +

(
i+

1

2

)
∆x(k) for i = 0, . . . , N (k) − 1

∆x(k) =
x
(k)
max − x

(k)
min

N (k)

where N (k) is the number of cells along this dimension. Consequently, cells have dimension ∆x(k) and cover the
interval [x(k)min, x

(k)
max].

Parameters
• bounds (list of tuple) – Give the coordinate range for each axis. This should be
a tuple of two number (lower and upper bound) for each axis. The length of bounds thus
determines the grid dimension.

• shape (list) – The number of support points for each axis. The length of shape needs to
match the grid dimension.

• periodic (bool or list) – Specifies which axes possess periodic boundary conditions.
This is either a list of booleans defining periodicity for each individual axis or a single boolean
value specifying the same periodicity for all axes.

4.2. pde.grids package 143

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

py-pde Documentation, Release unknown

boundary_names: Dict[str, Tuple[int, bool]] = {'back': (2, False),
'bottom': (1, False), 'front': (2, True), 'left': (0, False), 'right':
(0, True), 'top': (1, True)}

Names of boundaries to select them conveniently
Type

dict
property cell_volume_data

size associated with each cell
cuboid: Cuboid

classmethod from_bounds(bounds, shape, periodic)

Parameters
• bounds (tuple) – Give the coordinate range for each axis. This should be a tuple of two
number (lower and upper bound) for each axis. The length of bounds thus determines the
grid dimension.

• shape (tuple) – The number of support points for each axis. The length of shape needs
to match the grid dimension.

• periodic (bool or list) – Specifies which axes possess periodic boundary condi-
tions. This is either a list of booleans defining periodicity for each individual axis or a single
boolean value specifying the same periodicity for all axes.

Returns
CartesianGrid representing the region chosen by bounds

Return type
CartesianGrid

from_polar_coordinates(distance, angle, origin=None)
convert polar coordinates to Cartesian coordinates
This function is currently only implemented for 1d and 2d systems.

Parameters
• distance (ndarray) – The radial distance
• angle (ndarray) – The angle with respect to the origin
• origin (ndarray, optional) – Sets the origin of the coordinate system. If omitted, the
zero point is assumed as the origin.

Returns
The Cartesian coordinates corresponding to the given polar coordinates.

Return type
ndarray

classmethod from_state(state)
create a field from a stored state.

Parameters
state (dict) – The state from which the grid is reconstructed.

Return type
CartesianGrid

144 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

get_image_data(data)
return a 2d-image of the data

Parameters
data (ndarray) – The values at the grid points

Returns
A dictionary with information about the image, which is convenient for plotting.

Return type
Dict[str, Any]

get_line_data(data, extract='auto')
return a line cut through the given data

Parameters
• data (ndarray) – The values at the grid points
• extract (str) – Determines which cut is done through the grid. Possible choices are
(default is cut_0):
– cut_#: return values along the axis specified by # and use the mid point along all other
axes.

– project_#: average values for all axes, except axis #.
Here, # can either be a zero-based index (from 0 to dim-1) or a letter denoting the axis.

Returns
A dictionary with information about the line cut, which is convenient for plotting.

Return type
Dict[str, Any]

get_random_point(*, boundary_distance=0, coords='cartesian', rng=None)
return a random point within the grid

Parameters
• boundary_distance (float) – The minimal distance this point needs to have from
all boundaries.

• coords (str) – Determines the coordinate system in which the point is specified. Valid
values are cartesian, cell, and grid; see transform().

• rng (Generator) – Random number generator (default: default_rng())
Returns

The coordinates of the point
Return type

ndarray

iter_mirror_points(point, with_self=False, only_periodic=True)
generates all mirror points corresponding to point

Parameters
• point (ndarray) – the point within the grid
• with_self (bool) – whether to include the point itself
• only_periodic (bool) – whether to only mirror along periodic axes

4.2. pde.grids package 145

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

Returns
A generator yielding the coordinates that correspond to mirrors

Return type
Generator

plot(*args, title=None, filename=None, action='auto', ax_style=None, fig_style=None, ax=None, **kwargs)
visualize the grid

Parameters
• title (str) – Title of the plot. If omitted, the title might be chosen automatically.
• filename (str, optional) – If given, the plot is written to the specified file.
• action (str) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() will be called to show the plot. If the value is none,
the figure will be created, but not necessarily shown. The value close closes the figure, after
saving it to a file when filename is given. The default value auto implies that the plot is shown
if it is not a nested plot call.

• ax_style (dict) – Dictionary with properties that will be changed on the axis after the
plot has been drawn by calling matplotlib.pyplot.setp(). A special item i this
dictionary is use_offset, which is flag that can be used to control whether offset are shown
along the axes of the plot.

• fig_style (dict) – Dictionary with properties that will be changed on the figure after
the plot has been drawn by calling matplotlib.pyplot.setp(). For instance, using
fig_style={‘dpi’: 200} increases the resolution of the figure.

• ax (matplotlib.axes.Axes) – Figure axes to be used for plotting. The special value
“create” creates a new figure, while “reuse” attempts to reuse an existing figure, which is the
default.

• **kwargs – Extra arguments are passed on the to the matplotlib plotting routines, e.g., to
set the color of the lines

point_from_cartesian(coords)
convert points given in Cartesian coordinates to this grid

Parameters
coords (ndarray) – Points in Cartesian coordinates.

Returns
Points given in the coordinates of the grid

Return type
ndarray

point_to_cartesian(points, *, full=False)
convert coordinates of a point to Cartesian coordinates

Parameters
• points (ndarray) – Points given in grid coordinates
• full (bool) – Compatibility option not used in this method

Returns
The Cartesian coordinates of the point

Return type
ndarray

146 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

polar_coordinates_real(origin, *, ret_angle=False)
return polar coordinates associated with the grid

Parameters
• origin (ndarray) – Coordinates of the origin at which the polar coordinate system is
anchored.

• ret_angle (bool) – Determines whether angles are returned alongside the distance. If
False only the distance to the origin is returned for each support point of the grid. If True,
the distance and angles are returned. For a 1d system system, the angle is defined as the sign
of the difference between the point and the origin, so that angles can either be 1 or -1. For 2d
systems and 3d systems, polar coordinates and spherical coordinates are used, respectively.

Return type
Union[ndarray, Tuple[ndarray, ndarray, ndarray]]

slice(indices)
return a subgrid of only the specified axes

Parameters
indices (list) – Indices indicating the axes that are retained in the subgrid

Returns
The subgrid

Return type
CartesianGrid

property state: Dict[str, Any]

the state of the grid
Type

dict
property volume: float

total volume of the grid
Type

float
class UnitGrid(shape, periodic=False)

Bases: CartesianGrid
d-dimensional Cartesian grid with unit discretization in all directions
The grids can be thought of as a collection of d-dimensional cells of unit length. The shape parameter determines
how many boxes there are in each direction. The cells are enumerated starting with 0, so the last cell has index
n− 1 if there are n cells along a dimension. A given cell i extends from coordinates i to i+ 1, so the midpoint is
at i+ 1

2 , which is the cell coordinate. Taken together, the cells covers the interval [0, n] along this dimension.
Parameters

• shape (list) – The number of support points for each axis. The dimension of the grid is
given by len(shape).

• periodic (bool or list) – Specifies which axes possess periodic boundary conditions.
This is either a list of booleans defining periodicity for each individual axis or a single boolean
value specifying the same periodicity for all axes.

4.2. pde.grids package 147

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

py-pde Documentation, Release unknown

axes: List[str]

Names of all axes that are described by the grid
Type

list
cuboid: Cuboid

dim: int

The spatial dimension in which the grid is embedded
Type

int
classmethod from_state(state)

create a field from a stored state.
Parameters

state (dict) – The state from which the grid is reconstructed.
Return type

UnitGrid
num_axes: int

Number of axes that are not assumed symmetrically
Type

int
periodic: List[bool]

Flags that describe which axes are periodic
Type

list
slice(indices)

return a subgrid of only the specified axes
Parameters

indices (list) – Indices indicating the axes that are retained in the subgrid
Returns

The subgrid
Return type

UnitGrid

property state: Dict[str, Any]

the state of the grid
Type

dict
to_cartesian()

convert unit grid to CartesianGrid
Return type

CartesianGrid

148 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

4.2.5 pde.grids.cylindrical module

Cylindrical grids with azimuthal symmetry
class CylindricalSymGrid(radius, bounds_z, shape, periodic_z=False)

Bases: GridBase
3-dimensional cylindrical grid assuming polar symmetry
The polar symmetry implies that states only depend on the radial and axial coordinates r and z, respectively. These
are discretized uniformly as

ri =

(
i+

1

2

)
∆r for i = 0, . . . , Nr − 1 with ∆r =

R

Nr

zj = zmin +

(
j +

1

2

)
∆z for j = 0, . . . , Nz − 1 with ∆z =

zmax − zmin
Nz

where R is the radius of the cylindrical grid, zmin and zmax denote the respective lower and upper bounds of the
axial direction, so that zmax − zmin is the total height. The two axes are discretized by Nr and Nz support points,
respectively.

Warning: The order of components in the vector and tensor fields defined on this grid is different than in
ordinary math. While it is common to use (r, ϕ, z), we here use the order (r, z, ϕ). It might thus be best to
access components by name instead of index, e.g., use field['z'] instead of field[1].

Parameters
• radius (float) – The radius of the cylinder
• bounds_z (tuple) – The lower and upper bound of the z-axis
• shape (tuple) – The number of support points in r and z direction, respectively. The same
number is used for both if a single value is given.

• periodic_z (bool) – Determines whether the z-axis has periodic boundary conditions.

axes: List[str] = ['r', 'z']

Names of all axes that are described by the grid
Type

list
axes_symmetric: List[str] = ['phi']

The names of the additional axes that the fields do not depend on, e.g. along which they are constant.
Type

list
boundary_names: Dict[str, Tuple[int, bool]] = {'bottom': (1, False),
'inner': (0, False), 'outer': (0, True), 'top': (1, True)}

Names of boundaries to select them conveniently
Type

dict
cell_volume_data: Sequence[FloatNumerical]

Information about the size of discretization cells

4.2. pde.grids package 149

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

Type
list

coordinate_constraints: List[int] = [0, 1]

axes that not described explicitly
Type

list
dim: int = 3

The spatial dimension in which the grid is embedded
Type

int
classmethod from_bounds(bounds, shape, periodic)

Parameters
• bounds (tuple) – Give the coordinate range for each axis. This should be a tuple of two
number (lower and upper bound) for each axis. The length of bounds must be 2.

• shape (tuple) – The number of support points for each axis. The length of shape needs
to be 2.

• periodic (bool or list) – Specifies which axes possess periodic boundary condi-
tions. The first entry is ignored.

Returns
CylindricalGrid representing the region chosen by bounds

Return type
CylindricalSymGrid

classmethod from_state(state)
create a field from a stored state.

Parameters
state (dict) – The state from which the grid is reconstructed.

Return type
CylindricalSymGrid

get_cartesian_grid(mode='valid')

return a Cartesian grid for this Cylindrical one
Parameters

mode (str) – Determines how the grid is determined. Setting it to ‘valid’ only returns points
that are fully resolved in the cylindrical grid, e.g., the cylinder is circumscribed. Conversely,
‘full’ returns all data, so the cylinder is inscribed.

Returns
The requested grid

Return type
pde.grids.cartesian.CartesianGrid

get_image_data(data)

return a 2d-image of the data
Parameters

data (ndarray) – The values at the grid points

150 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

Returns
A dictionary with information about the image, which is convenient for plotting.

Return type
Dict[str, Any]

get_line_data(data, extract='auto')
return a line cut for the cylindrical grid

Parameters
• data (ndarray) – The values at the grid points
• extract (str) – Determines which cut is done through the grid. Possible choices are
(default is cut_axial):
– cut_z or cut_axial: values along the axial coordinate for r = 0.
– project_z or project_axial: average values for each axial position (radial average).
– project_r or project_radial: average values for each radial position (axial average)

Returns
A dictionary with information about the line cut, which is convenient for plotting.

Return type
Dict[str, Any]

get_random_point(*, boundary_distance=0, avoid_center=False, coords='cartesian', rng=None)
return a random point within the grid
Note that these points will be uniformly distributed on the radial axis, which implies that they are not uniformly
distributed in the volume.

Parameters
• boundary_distance (float) – The minimal distance this point needs to have from
all boundaries.

• avoid_center (bool) – Determines whether the boundary distance should also be kept
from the center, i.e., whether points close to the center are returned.

• coords (str) – Determines the coordinate system in which the point is specified. Valid
values are cartesian, cell, and grid; see transform().

• rng (Generator) – Random number generator (default: default_rng())
Returns

The coordinates of the point
Return type

ndarray

iter_mirror_points(point, with_self=False, only_periodic=True)
generates all mirror points corresponding to point

Parameters
• point (ndarray) – the point within the grid
• with_self (bool) – whether to include the point itself
• only_periodic (bool) – whether to only mirror along periodic axes

Returns
A generator yielding the coordinates that correspond to mirrors

4.2. pde.grids package 151

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

Return type
Generator

property length: float

length of the cylinder
Type

float
num_axes: int = 2

Number of axes that are not assumed symmetrically
Type

int
periodic: List[bool]

Flags that describe which axes are periodic
Type

list
point_from_cartesian(points)

convert points given in Cartesian coordinates to this grid
This function returns points restricted to the x-z plane, i.e., the y-coordinate will be zero.

Parameters
points (ndarray) – Points given in Cartesian coordinates.

Returns
Points given in the coordinates of the grid

Return type
ndarray

point_to_cartesian(points, *, full=False)
convert coordinates of a point to Cartesian coordinates

Parameters
• points (ndarray) – The grid coordinates of the points
• full (bool) – Flag indicating whether angular coordinates are specified

Returns
The Cartesian coordinates of the point

Return type
ndarray

polar_coordinates_real(origin, *, ret_angle=False)
return spherical coordinates associated with the grid

Parameters
• origin (ndarray) – Coordinates of the origin at which the polar coordinate system is
anchored. Note that this must be of the form [0, 0, z_val], where only z_val can be chosen
freely.

• ret_angle (bool) – Determines whether the azimuthal angle is returned alongside the
distance. If False only the distance to the origin is returned for each support point of the grid.
If True, the distance and angles are returned.

152 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

Return type
Union[ndarray, Tuple[ndarray, ndarray]]

property radius: float

radius of the cylinder
Type

float
slice(indices)

return a subgrid of only the specified axes
Parameters

indices (list) – Indices indicating the axes that are retained in the subgrid
Returns

CartesianGrid or PolarSymGrid: The subgrid
Return type

Union[CartesianGrid, PolarSymGrid]
property state: Dict[str, Any]

the state of the grid
Type

state
property volume: float

total volume of the grid
Type

float

4.2.6 pde.grids.spherical module

Spherically-symmetric grids in 2 and 3 dimensions. These are grids that only discretize the radial direction, assuming
symmetry with respect to all angles. This choice implies that differential operators might not be applicable to all fields.
For instance, the divergence of a vector field on a spherical grid can only be represented as a scalar field on the same grid
if the θ-component of the vector field vanishes.
class PolarSymGrid(radius, shape)

Bases: SphericalSymGridBase
2-dimensional polar grid assuming angular symmetry
The angular symmetry implies that states only depend on the radial coordinate r, which is discretized uniformly as

ri = Rinner +

(
i+

1

2

)
∆r for i = 0, . . . , N − 1 with ∆r =

Router −Rinner
N

whereRouter is the outer radius of the grid andRinner corresponds to a possible inner radius, which is zero by default.
The radial direction is discretized by N support points.

Parameters
• radius (float or tuple of floats) – radius Router in case a simple float is given.
If a tuple is supplied it is interpreted as the inner and outer radius, (Rinner, Router).

• shape (tuple or int) – A single number setting the number N of support points along
the radial coordinate

4.2. pde.grids package 153

https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

axes: List[str] = ['r']

Names of all axes that are described by the grid
Type

list
axes_symmetric: List[str] = ['phi']

The names of the additional axes that the fields do not depend on, e.g. along which they are constant.
Type

list
cell_volume_data: Sequence[FloatNumerical]

Information about the size of discretization cells
Type

list
coordinate_constraints: List[int] = [0, 1]

axes that not described explicitly
Type

list
dim: int = 2

The spatial dimension in which the grid is embedded
Type

int
point_to_cartesian(points, *, full=False)

convert coordinates of a point to Cartesian coordinates
This function returns points along the y-coordinate, i.e, the x coordinates will be zero.

Parameters
• points (ndarray) – The grid coordinates of the points
• full (bool) – Flag indicating whether angular coordinates are specified

Returns
The Cartesian coordinates of the point

Return type
ndarray

class SphericalSymGrid(radius, shape)
Bases: SphericalSymGridBase
3-dimensional spherical grid assuming spherical symmetry
The symmetry implies that states only depend on the radial coordinate r, which is discretized as follows:

ri = Rinner +

(
i+

1

2

)
∆r for i = 0, . . . , N − 1 with ∆r =

Router −Rinner
N

whereRouter is the outer radius of the grid andRinner corresponds to a possible inner radius, which is zero by default.
The radial direction is discretized by N support points.

154 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

Warning: Not all results of differential operators on vectorial and tensorial fields can be expressed in terms
of fields that only depend on the radial coordinate r. In particular, the gradient of a vector field can only be
calculated if the azimuthal component of the vector field vanishes. Similarly, the divergence of a tensor field
can only be taken in special situations.

Parameters
• radius (float or tuple of floats) – radius Router in case a simple float is given.
If a tuple is supplied it is interpreted as the inner and outer radius, (Rinner, Router).

• shape (tuple or int) – A single number setting the number N of support points along
the radial coordinate

axes: List[str] = ['r']

Names of all axes that are described by the grid
Type

list
axes_symmetric: List[str] = ['theta', 'phi']

The names of the additional axes that the fields do not depend on, e.g. along which they are constant.
Type

list
cell_volume_data: Sequence[FloatNumerical]

Information about the size of discretization cells
Type

list
coordinate_constraints: List[int] = [0, 1, 2]

axes that not described explicitly
Type

list
dim: int = 3

The spatial dimension in which the grid is embedded
Type

int
point_to_cartesian(points, *, full=False)

convert coordinates of a point to Cartesian coordinates
This function returns points along the z-coordinate, i.e, the x and y coordinates will be zero.

Parameters
• points (ndarray) – The grid coordinates of the points
• full (bool) – Flag indicating whether angular coordinates are specified

Returns
The Cartesian coordinates of the point

Return type
ndarray

4.2. pde.grids package 155

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

class SphericalSymGridBase(radius, shape)
Bases: GridBase
Base class for d-dimensional spherical grids with angular symmetry
The angular symmetry implies that states only depend on the radial coordinate r, which is discretized uniformly as

ri = Rinner +

(
i+

1

2

)
∆r for i = 0, . . . , N − 1 with ∆r =

Router −Rinner
N

whereRouter is the outer radius of the grid andRinner corresponds to a possible inner radius, which is zero by default.
The radial direction is discretized by N support points.

Parameters
• radius (float or tuple of floats) – radius Router in case a simple float is given.
If a tuple is supplied it is interpreted as the inner and outer radius, (Rinner, Router).

• shape (tuple or int) – A single number setting the number N of support points along
the radial coordinate

axes: List[str]

Names of all axes that are described by the grid
Type

list
boundary_names: Dict[str, Tuple[int, bool]] = {'inner': (0, False),
'outer': (0, True)}

Names of boundaries to select them conveniently
Type

dict
cell_volume_data: Sequence[FloatNumerical]

Information about the size of discretization cells
Type

list
dim: int

The spatial dimension in which the grid is embedded
Type

int
classmethod from_bounds(bounds, shape, periodic)

Parameters
• bounds (tuple) – Give the coordinate range for the radial axis.
• shape (tuple) – The number of support points for the radial axis
• periodic (bool or list) – Not used

Returns
SphericalGridBase representing the region chosen by bounds

Return type
SphericalSymGridBase

156 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

py-pde Documentation, Release unknown

classmethod from_state(state)
create a field from a stored state.

Parameters
state (dict) – The state from which the grid is reconstructed.

Return type
SphericalSymGridBase

get_cartesian_grid(mode='valid', num=None)
return a Cartesian grid for this spherical one

Parameters
• mode (str) – Determines how the grid is determined. Setting it to ‘valid’ (or ‘inscribed’)
only returns points that are fully resolved in the spherical grid, e.g., the Cartesian grid is
inscribed in the sphere. Conversely, ‘full’ (or ‘circumscribed’) returns all data, so the Cartesian
grid is circumscribed.

• num (int) – Number of support points along each axis of the returned grid.
Returns

The requested grid
Return type

pde.grids.cartesian.CartesianGrid

get_image_data(data, performance_goal='speed', fill_value=0, masked=True)
return a 2d-image of the data

Parameters
• data (ndarray) – The values at the grid points
• performance_goal (str) – Determines the method chosen for interpolation. Possible
options are speed and quality.

• fill_value (float) – The value assigned to invalid positions (those inside the hole or
outside the region).

• masked (bool) –Whether a numpy.ma.MaskedArray is returned for the data instead
of the normal ndarray.

Returns
A dictionary with information about the image, which is convenient for plotting.

Return type
Dict[str, Any]

get_line_data(data, extract='auto')
return a line cut along the radial axis

Parameters
• data (ndarray) – The values at the grid points
• extract (str) – Determines which cut is done through the grid. This parameter is mainly
supplied for a consistent interface and has no effect for polar grids.

Returns
A dictionary with information about the line cut, which is convenient for plotting.

Return type
Dict[str, Any]

4.2. pde.grids package 157

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

py-pde Documentation, Release unknown

get_random_point(*, boundary_distance=0, avoid_center=False, coords='cartesian', rng=None)
return a random point within the grid
Note that these points will be uniformly distributed in the volume, implying they are not uniformly distributed
on the radial axis.

Parameters
• boundary_distance (float) – The minimal distance this point needs to have from
all boundaries.

• avoid_center (bool) – Determines whether the boundary distance should also be kept
from the center, i.e., whether points close to the center are returned.

• coords (str) – Determines the coordinate system in which the point is specified. Valid
values are cartesian, cell, and grid; see transform().

• rng (Generator) – Random number generator (default: default_rng())
Returns

The coordinates of the point
Return type

ndarray

property has_hole: bool

returns whether the inner radius is larger than zero
iter_mirror_points(point, with_self=False, only_periodic=True)

generates all mirror points corresponding to point
Parameters

• point (ndarray) – the point within the grid
• with_self (bool) – whether to include the point itself
• only_periodic (bool) – whether to only mirror along periodic axes

Returns
A generator yielding the coordinates that correspond to mirrors

Return type
Generator

num_axes: int = 1

Number of axes that are not assumed symmetrically
Type

int
periodic: List[bool] = [False]

Flags that describe which axes are periodic
Type

list
plot(*args, title=None, filename=None, action='auto', ax_style=None, fig_style=None, ax=None, **kwargs)

visualize the spherically symmetric grid in two dimensions
Parameters

• title (str) – Title of the plot. If omitted, the title might be chosen automatically.
• filename (str, optional) – If given, the plot is written to the specified file.

158 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

• action (str) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() will be called to show the plot. If the value is none,
the figure will be created, but not necessarily shown. The value close closes the figure, after
saving it to a file when filename is given. The default value auto implies that the plot is shown
if it is not a nested plot call.

• ax_style (dict) – Dictionary with properties that will be changed on the axis after the
plot has been drawn by calling matplotlib.pyplot.setp(). A special item i this
dictionary is use_offset, which is flag that can be used to control whether offset are shown
along the axes of the plot.

• fig_style (dict) – Dictionary with properties that will be changed on the figure after
the plot has been drawn by calling matplotlib.pyplot.setp(). For instance, using
fig_style={‘dpi’: 200} increases the resolution of the figure.

• ax (matplotlib.axes.Axes) – Figure axes to be used for plotting. The special value
“create” creates a new figure, while “reuse” attempts to reuse an existing figure, which is the
default.

• **kwargs – Extra arguments are passed on the to the matplotlib plotting routines, e.g., to
set the color of the lines

point_from_cartesian(points)
convert points given in Cartesian coordinates to this grid

Parameters
points (ndarray) – Points given in Cartesian coordinates.

Returns
Points given in the coordinates of the grid

Return type
ndarray

polar_coordinates_real(origin=None, *, ret_angle=False, **kwargs)
return spherical coordinates associated with the grid

Parameters
• origin – Place holder variable to comply with the interface
• ret_angle (bool) – Determines whether angles are returned alongside the distance. If
False only the distance to the origin is returned for each support point of the grid. If True,
the distance and angles are returned. Note that in the case of spherical grids, this angle is
zero by convention.

Return type
Union[ndarray, Tuple[ndarray, …]]

property radius: Union[float, Tuple[float, float]]

radius of the sphere
Type

float
property state: Dict[str, Any]

the state of the grid
Type

state

4.2. pde.grids package 159

https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

py-pde Documentation, Release unknown

property volume: float

total volume of the grid
Type

float
volume_from_radius(radius, dim)

Return the volume of a sphere with a given radius
Parameters

• radius (float or ndarray) – Radius of the sphere
• dim (int) – Dimension of the space

Returns
Volume of the sphere

Return type
float or ndarray

4.3 pde.pdes package

Package that defines PDEs describing physical systems.
The examples in this package are often simple version of classical PDEs to demonstrate various aspects of the py-pde
package. Clearly, not all extensions to these PDEs can be covered here, but this should serve as a starting point for custom
investigations.
Publicly available methods should take fields with grid information and also only return such methods. There might be
corresponding private methods that deal with raw data for faster simulations.

PDE PDE defined by mathematical expressions
AllenCahnPDE A simple Allen-Cahn equation
CahnHilliardPDE A simple Cahn-Hilliard equation
DiffusionPDE A simple diffusion equation
KPZInterfacePDE The Kardar–Parisi–Zhang (KPZ) equation
KuramotoSivashinskyPDE The Kuramoto-Sivashinsky equation
SwiftHohenbergPDE The Swift-Hohenberg equation
WavePDE A simple wave equation

Additionally, we offer two solvers for typical elliptical PDEs:

solve_laplace_equation Solve Laplace's equation on a given grid.
solve_poisson_equation Solve Laplace's equation on a given grid

160 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

4.3.1 pde.pdes.allen_cahn module

A Allen-Cahn equation
class AllenCahnPDE(interface_width=1, bc='auto_periodic_neumann')

Bases: PDEBase
A simple Allen-Cahn equation
The mathematical definition is

∂tc = γ∇2c− c3 + c

where c is a scalar field and γ sets the (squared) interfacial width.
Parameters

• interface_width (float) – The diffusivity of the described species
• bc (Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]) – The boundary conditions applied to the field. Boundary
conditions are generally given as a list with one condition for each axis. For periodic axis,
only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’).
For non-periodic axes, different boundary conditions can be specified for the lower and upper
end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value
NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the value DERIV
for the derivative in the normal direction (specified by {‘derivative’: DERIV}) are supported.
Note that the special value ‘natural’ imposes periodic boundary conditions for periodic axis
and a vanishing derivative otherwise. More information can be found in the boundaries
documentation.

evolution_rate(state, t=0)
evaluate the right hand side of the PDE

Parameters
• state (ScalarField) – The scalar field describing the concentration distribution
• t (float) – The current time point

Returns
Scalar field describing the evolution rate of the PDE

Return type
ScalarField

explicit_time_dependence: Optional[bool] = False

Flag indicating whether the right hand side of the PDE has an explicit time dependence.
Type

bool
property expression: str

the expression of the right hand side of this PDE
Type

str

4.3. pde.pdes package 161

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

interface_width: float

4.3.2 pde.pdes.base module

Base class for defining partial differential equations
class PDEBase(*, noise=0, rng=None)

Bases: object
base class for defining partial differential equations (PDEs)
Custom PDEs can be implemented by specifying their evolution rate. In the simple case of deterministic PDEs, the
methods PDEBase.evolution_rate() and PDEBase._make_pde_rhs_numba() need to be over-
written for the numpy and numba backend, respectively.

Parameters
• noise (float orndarray) –Magnitude of the additive Gaussian white noise that is supported
for all PDEs by default. If set to zero, a deterministic partial differential equation will be solved.
Different noise magnitudes can be supplied for each field in coupled PDEs.

• rng (Generator) – Random number generator (default: default_rng()). Note that
this random number generator is only used for numpy function, while compiled numba code is
unaffected. Moreover, in simulations using multiprocessing, setting the same generator in all
processes might yield unintended correlations in the simulation results.

Note: If more complicated noise structures are required, the methods PDEBase.noise_realization()
and PDEBase._make_noise_realization_numba() need to be overwritten for the numpy and numba
backend, respectively.

cache_rhs: bool = False

Flag indicatingwhether the right hand side of the equation should be cached. If True, the same implementation
is used in subsequent calls to solve. Note that this might lead to wrong results if the parameters of the PDE
are changed after the first call. This option is thus disabled by default and should be used with care.

Type
bool

check_implementation: bool = True

Flag determining whether numba-compiled functions should be checked against their numpy counter-parts.
This can help with implementing a correct compiled version for a PDE class.

Type
bool

check_rhs_consistency(state, t=0, *, tol=1e-07, rhs_numba=None, **kwargs)
check the numba compiled right hand side versus the numpy variant

Parameters
• state (FieldBase) – The state for which the evolution rates should be compared
• t (float) – The associated time point
• tol (float) – Acceptance tolerance. The check passes if the evolution rates differ by less
then this value

162 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

• rhs_numba (callable) – The implementation of the numba variant that is to
be checked. If omitted, an implementation is obtained by calling PDEBase.
_make_pde_rhs_numba_cached().

complex_valued: bool = False

Flag indicating whether the right hand side is a complex-valued PDE, which requires all involved variables to
have complex data type.

Type
bool

diagnostics: Dict[str, Any]

Diagnostic information (available after the PDE has been solved)
Type

dict
abstract evolution_rate(state, t=0)

Parameters
• state (FieldBase) –
• t (float) –

Return type
FieldBase

explicit_time_dependence: Optional[bool] = None

Flag indicating whether the right hand side of the PDE has an explicit time dependence.
Type

bool
property is_sde: bool

flag indicating whether this is a stochastic differential equation
The BasePDF class supports additive Gaussian white noise, whose magnitude is controlled by the noise
property. In this case, is_sde is True if self.noise != 0.

make_modify_after_step(state)
returns a function that can be called to modify a state
This function is applied to the state after each integration step when an explicit stepper is used. The default
behavior is to not change the state.

Parameters
state (FieldBase) – An example for the state from which the grid and other information
can be extracted

Returns
Function that can be applied to a state to modify it and which returns a measure for the correc-
tions applied to the state

Return type
Callable[[ndarray], float]

make_pde_rhs(state, backend='auto', **kwargs)
return a function for evaluating the right hand side of the PDE

Parameters

4.3. pde.pdes package 163

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

• state (FieldBase) – An example for the state fromwhich the grid and other information
can be extracted.

• backend (str) – Determines how the function is created. Accepted values are ‘numpy`
and ‘numba’. Alternatively, ‘auto’ lets the code decide for the most optimal backend.

Returns
Function determining the right hand side of the PDE

Return type
callable

make_sde_rhs(state, backend='auto', **kwargs)
return a function for evaluating the right hand side of the SDE

Parameters
• state (FieldBase) – An example for the state fromwhich the grid and other information
can be extracted

• backend (str) – Determines how the function is created. Accepted values are ‘python`
and ‘numba’. Alternatively, ‘auto’ lets the code decide for the most optimal backend.

Returns
Function determining the deterministic part of the right hand side of the PDE together with a
noise realization.

Return type
Callable[[ndarray, float], Tuple[ndarray, ndarray]]

noise_realization(state, t=0, *, label='Noise realization')
returns a realization for the noise

Parameters
• state (ScalarField) – The scalar field describing the concentration distribution
• t (float) – The current time point
• label (str) – The label for the returned field

Returns
Scalar field describing the evolution rate of the PDE

Return type
ScalarField

solve(state, t_range, dt=None, tracker='auto', *, method='auto', ret_info=False, **kwargs)
solves the partial differential equation
The method constructs a suitable solver (SolverBase) and controller (Controller) to advance the
state over the temporal range specified by t_range. This method only exposes the most common functions, so
explicit construction of these classes might offer more flexibility.

Parameters
• state (FieldBase) – The initial state (which also defines the spatial grid).
• t_range (float or tuple) – Sets the time range for which the PDE is solved. This
should typically be a tuple of two numbers, (t_start, t_end), specifying the initial and final
time of the simulation. If only a single value is given, it is interpreted as t_end and the time
range is assumed to be (0, t_end).

164 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

py-pde Documentation, Release unknown

• dt (float) – Time step of the chosen stepping scheme. If None, a default value based
on the stepper will be chosen. In particular, if method == ‘auto’, ScipySolver with
an automatic, adaptive time step provided by scipy is used. This is a flexible choice, but
can also result in unstable or slow simulations. If an adaptive stepper is used (supported by
ScipySolver and ExplicitSolver), the value given here sets the initial time step.

• tracker (Optional[Union[Sequence[Union[TrackerBase, str]],
TrackerBase, str]]) – Defines a tracker that process the state of the simu-
lation at specified times. A tracker is either an instance of TrackerBase or a
string, which identifies a tracker. All possible identifiers can be obtained by calling
get_named_trackers(). Multiple trackers can be specified as a list. The default
value auto checks the state for consistency (tracker ‘consistency’) and displays a progress
bar (tracker ‘progress’). More general trackers are defined in trackers, where all options
are explained in detail. In particular, the interval at which the tracker is evaluated can be
chosen when creating a tracker object explicitly.

• method (SolverBase or str) – Specifies the method for solving the differential equation.
This can either be an instance of SolverBase or a descriptive name like ‘explicit’ or ‘scipy’.
The valid names are given by pde.solvers.registered_solvers(). The default
value ‘auto’ selectsScipySolver if dt is not specified andExplicitSolver otherwise.
Details of the solvers and additional features (like adaptive time steps) are explained in their
documentation.

• ret_info (bool) – Flag determining whether diagnostic information about the solver
process should be returned. Note that the same information is also available as the diag-
nostics attribute.

• **kwargs – Additional keyword arguments are forwarded to the solver class chosen with
the method argument. In particular, ExplicitSolver supports several schemes and an
adaptive stepper can be enabled using adaptive=True. Conversely, ScipySolver
accepts the additional arguments of scipy.integrate.solve_ivp().

Returns
The state at the final time point. If ret_info == True, a tuple with the final state and a dictio-
nary with additional information is returned. Note that None instead of a field is returned in
multiprocessing simulations if the current node is not the main MPI node.

Return type
FieldBase

expr_prod(factor, expression)
helper function for building an expression with an (optional) pre-factor

Parameters
• factor (float) – The value of the prefactor
• expression (str) – The remaining expression

Returns
The expression with the factor appended if necessary

Return type
str

4.3. pde.pdes package 165

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

4.3.3 pde.pdes.cahn_hilliard module

A Cahn-Hilliard equation
class CahnHilliardPDE(interface_width=1, bc_c='auto_periodic_neumann',

bc_mu='auto_periodic_neumann')

Bases: PDEBase
A simple Cahn-Hilliard equation
The mathematical definition is

∂tc = ∇2
(
c3 − c− γ∇2c

)
where c is a scalar field taking values on the interval [−1, 1] and γ sets the (squared) interfacial width.

Parameters
• interface_width (float) – The width of the interface between the separated phases.
This defines a characteristic length in the simulation. The grid needs to resolve this length of
a stable simulation.

• bc_c (Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]) – The boundary conditions applied to the field. Boundary con-
ditions are generally given as a list with one condition for each axis. For periodic axis, only
periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’). For
non-periodic axes, different boundary conditions can be specified for the lower and upper end
(using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value NUM
(specified by {‘value’: NUM}) and Neumann conditions enforcing the value DERIV for the
derivative in the normal direction (specified by {‘derivative’: DERIV}) are supported. Note
that the special value ‘natural’ imposes periodic boundary conditions for periodic axis and a
vanishing derivative otherwise. More information can be found in the boundaries documenta-
tion.

• bc_mu (Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]) – The boundary conditions applied to the chemical potential
associated with the scalar field c. Supports the same options as bc_c.

diagnostics: Dict[str, Any]

Diagnostic information (available after the PDE has been solved)
Type

dict
evolution_rate(state, t=0)

evaluate the right hand side of the PDE
Parameters

• state (ScalarField) – The scalar field describing the concentration distribution
• t (float) – The current time point

166 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

Returns
Scalar field describing the evolution rate of the PDE

Return type
ScalarField

explicit_time_dependence: Optional[bool] = False

Flag indicating whether the right hand side of the PDE has an explicit time dependence.
Type

bool
property expression: str

the expression of the right hand side of this PDE
Type

str

4.3.4 pde.pdes.diffusion module

A simple diffusion equation
class DiffusionPDE(diffusivity=1, noise=0, bc='auto_periodic_neumann')

Bases: PDEBase
A simple diffusion equation
The mathematical definition is

∂tc = D∇2c

where c is a scalar field and D denotes the diffusivity.
Parameters

• diffusivity (float) – The diffusivity of the described species
• noise (float) – Strength of the (additive) noise term
• bc (Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]) – The boundary conditions applied to the field. Boundary
conditions are generally given as a list with one condition for each axis. For periodic axis,
only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’).
For non-periodic axes, different boundary conditions can be specified for the lower and upper
end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value
NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the value DERIV
for the derivative in the normal direction (specified by {‘derivative’: DERIV}) are supported.
Note that the special value ‘natural’ imposes periodic boundary conditions for periodic axis
and a vanishing derivative otherwise. More information can be found in the boundaries
documentation.

diagnostics: Dict[str, Any]

Diagnostic information (available after the PDE has been solved)
Type

dict

4.3. pde.pdes package 167

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

evolution_rate(state, t=0)
evaluate the right hand side of the PDE

Parameters
• state (ScalarField) – The scalar field describing the concentration distribution
• t (float) – The current time point

Returns
Scalar field describing the evolution rate of the PDE

Return type
ScalarField

explicit_time_dependence: Optional[bool] = False

Flag indicating whether the right hand side of the PDE has an explicit time dependence.
Type

bool
property expression: str

the expression of the right hand side of this PDE
Type

str

4.3.5 pde.pdes.kpz_interface module

The Kardar–Parisi–Zhang (KPZ) equation describing the evolution of an interface
class KPZInterfacePDE(nu=0.5, lmbda=1, *, noise=0, bc='auto_periodic_neumann')

Bases: PDEBase
The Kardar–Parisi–Zhang (KPZ) equation
The mathematical definition is

∂th = ν∇2h+
λ

2
(∇h)2 + η(r, t)

where h is the height of the interface inMonge parameterization. The dynamics are governed by the two parameters
ν and λ, while η is Gaussian white noise, whose strength is controlled by the noise argument.

Parameters
• nu (float) – Parameter ν for the strength of the diffusive term
• lmbda (float) – Parameter λ for the strenth of the gradient term
• noise (float) – Strength of the (additive) noise term
• bc (Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]) – The boundary conditions applied to the field. Boundary
conditions are generally given as a list with one condition for each axis. For periodic axis,
only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’).
For non-periodic axes, different boundary conditions can be specified for the lower and upper
end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value

168 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the value DERIV
for the derivative in the normal direction (specified by {‘derivative’: DERIV}) are supported.
Note that the special value ‘natural’ imposes periodic boundary conditions for periodic axis
and a vanishing derivative otherwise. More information can be found in the boundaries
documentation.

diagnostics: Dict[str, Any]

Diagnostic information (available after the PDE has been solved)
Type

dict
evolution_rate(state, t=0)

evaluate the right hand side of the PDE
Parameters

• state (ScalarField) – The scalar field describing the concentration distribution
• t (float) – The current time point

Returns
Scalar field describing the evolution rate of the PDE

Return type
ScalarField

explicit_time_dependence: Optional[bool] = False

Flag indicating whether the right hand side of the PDE has an explicit time dependence.
Type

bool
property expression: str

the expression of the right hand side of this PDE
Type

str

4.3.6 pde.pdes.kuramoto_sivashinsky module

The Kardar–Parisi–Zhang (KPZ) equation describing the evolution of an interface
class KuramotoSivashinskyPDE(nu=1, *, noise=0, bc='auto_periodic_neumann', bc_lap=None)

Bases: PDEBase
The Kuramoto-Sivashinsky equation
The mathematical definition is

∂tu = −ν∇4u−∇2u− 1

2
(∇h)2 + η(r, t)

where u is the height of the interface in Monge parameterization. The dynamics are governed by the parameters ν
, while η is Gaussian white noise, whose strength is controlled by the noise argument.

Parameters
• nu (float) – Parameter ν for the strength of the fourth-order term
• noise (float) – Strength of the (additive) noise term

4.3. pde.pdes package 169

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

• bc (Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]) – The boundary conditions applied to the field. Boundary
conditions are generally given as a list with one condition for each axis. For periodic axis,
only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’).
For non-periodic axes, different boundary conditions can be specified for the lower and upper
end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value
NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the value DERIV
for the derivative in the normal direction (specified by {‘derivative’: DERIV}) are supported.
Note that the special value ‘natural’ imposes periodic boundary conditions for periodic axis
and a vanishing derivative otherwise. More information can be found in the boundaries
documentation.

• bc_lap (Optional[Union[Dict[str, Union[Dict, str, BCBase]],
Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]]) – The boundary conditions applied to the second derivative
of the scalar field c. If None, the same boundary condition as bc is chosen. Otherwise, this
supports the same options as bc.

diagnostics: Dict[str, Any]

Diagnostic information (available after the PDE has been solved)
Type

dict
evolution_rate(state, t=0)

evaluate the right hand side of the PDE
Parameters

• state (ScalarField) – The scalar field describing the concentration distribution
• t (float) – The current time point

Returns
Scalar field describing the evolution rate of the PDE

Return type
ScalarField

explicit_time_dependence: Optional[bool] = False

Flag indicating whether the right hand side of the PDE has an explicit time dependence.
Type

bool
property expression: str

the expression of the right hand side of this PDE
Type

str

170 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

4.3.7 pde.pdes.laplace module

Solvers for Poisson’s and Laplace’s equation
solve_laplace_equation(grid, bc, label="Solution to Laplace's equation")

Solve Laplace’s equation on a given grid.
This is implemented by calling solve_poisson_equation() with a vanishing right hand side.

Parameters
• grid (GridBase) – The grid on which the equation is solved
• bc (Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]) – The boundary conditions applied to the field. Boundary
conditions are generally given as a list with one condition for each axis. For periodic axis,
only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’).
For non- periodic axes, different boundary conditions can be specified for the lower and upper
end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value
NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the value DERIV
for the derivative in the normal direction (specified by {‘derivative’: DERIV}) are supported.
Note that the special value ‘natural’ imposes periodic boundary conditions for periodic axis
and a vanishing derivative otherwise. More information can be found in the boundaries
documentation.

• label (str) – The label of the returned field.
Returns

The field that solves the equation. This field will be defined on the given grid.
Return type

ScalarField

solve_poisson_equation(rhs, bc, label="Solution to Poisson's equation", **kwargs)
Solve Laplace’s equation on a given grid
Denoting the current field by u, we thus solve for f , defined by the equation

∇2u(r) = −f(r)

with boundary conditions specified by bc.

Note: In case of periodic or Neumann boundary conditions, the right hand side f(r) needs to satisfy the following
condition ∫

f dV =

∮
g dS ,

where g denotes the function specifying the outwards derivative for Neumann conditions. Note that for periodic
boundaries g vanishes, so that this condition implies that the integral over f must vanish for neutral Neumann or
periodic conditions.

Parameters
• rhs (ScalarField) – The scalar field f describing the right hand side

4.3. pde.pdes package 171

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

• bc (Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]) – The boundary conditions applied to the field. Boundary
conditions are generally given as a list with one condition for each axis. For periodic axis,
only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’).
For non- periodic axes, different boundary conditions can be specified for the lower and upper
end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value
NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the value DERIV
for the derivative in the normal direction (specified by {‘derivative’: DERIV}) are supported.
Note that the special value ‘natural’ imposes periodic boundary conditions for periodic axis
and a vanishing derivative otherwise. More information can be found in the boundaries
documentation.

• label (str) – The label of the returned field.
Returns

The field u that solves the equation. This field will be defined on the same grid as rhs.
Return type

ScalarField

4.3.8 pde.pdes.pde module

Defines a PDE class whose right hand side is given as a string
class PDE(rhs, *, noise=0, bc='auto_periodic_neumann', bc_ops=None, user_funcs=None, consts=None)

Bases: PDEBase
PDE defined by mathematical expressions
variables

The name of the variables (i.e., fields) in the order they are expected to appear in the state.
Type

tuple

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur.

Parameters
• rhs (dict) – The expressions defining the evolution rate. The dictionary keys define the name
of the fields whose evolution is considered, while the values specify their evolution rate as a
string that can be parsed by sympy. These expression may contain variables (i.e., the fields
themselves, spatial coordinates of the grid, and t for the time), standard local mathematical
operators defined by sympy, and the operators defined in the pde package. Note that operators
need to be specified with their full name, i.e., laplace for a scalar Laplacian and vector_laplace
for a Laplacian operating on a vector field. Moreover, the dot product between two vector fields
can be denoted by using dot(field1, field2) in the expression, an outer product is calculated using
outer(field1, field2), and integral(field) denotes an integral over a field. More information can
be found in the expression documentation.

172 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.sympy.org/latest/index.html#module-sympy

py-pde Documentation, Release unknown

• noise (float or ndarray) – Magnitude of additive Gaussian white noise. The default value
of zero implies deterministic partial differential equations will be solved. Different noise mag-
nitudes can be supplied for each field in coupled PDEs by either specifying a sequence of
numbers or a dictionary with values for each field.

• bc (BoundariesData) – Boundary conditions for the operators used in the expression.
The conditions here are applied to all operators that do not have a specialized condition given
in bc_ops. Boundary conditions are generally given as a list with one condition for each axis.
For periodic axis, only periodic boundary conditions are allowed (indicated by ‘periodic’ and
‘anti-periodic’). For non-periodic axes, different boundary conditions can be specified for the
lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions en-
forcing a value NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by {‘derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation.

• bc_ops (dict) – Special boundary conditions for some operators. The keys in this dictio-
nary specify where the boundary condition will be applied. The keys follow the format “VARI-
ABLE:OPERATOR”, where VARIABLE specifies the expression in rhs where the boundary
condition is applied to the operator specified by OPERATOR. For both identifiers, the wild-
card symbol “*” denotes that all fields and operators are affected, respectively. For instance,
the identifier “c:*” allows specifying a condition for all operators of the field named c.

• user_funcs (dict, optional) – A dictionary with user defined functions that can be
used in the expressions in rhs.

• consts (dict, optional) – A dictionary with user defined constants that can be used
in the expression. These can be either scalar numbers or fields defined on the same grid as the
actual simulation.

Note: The order in which the fields are given in rhs defines the order in which they need to appear in the state
variable when the evolution rate is calculated. Note that dict keep the insertion order since Python version 3.7, so
a normal dictionary can be used to define the equations.

diagnostics: Dict[str, Any]

Diagnostic information (available after the PDE has been solved)
Type

dict
evolution_rate(state, t=0.0)

evaluate the right hand side of the PDE
Parameters

• state (FieldBase) – The field describing the state of the PDE
• t (float) – The current time point

Returns
Field describing the evolution rate of the PDE

Return type
FieldBase

property expressions: Dict[str, str]

show the expressions of the PDE

4.3. pde.pdes package 173

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

4.3.9 pde.pdes.swift_hohenberg module

The Swift-Hohenberg equation
class SwiftHohenbergPDE(rate=0.1, kc2=1.0, delta=1.0, *, bc='auto_periodic_neumann', bc_lap=None)

Bases: PDEBase
The Swift-Hohenberg equation
The mathematical definition is

∂tc =
[
ϵ−

(
k2c +∇2

)2]
c+ δ c2 − c3

where c is a scalar field and ϵ, k2c , and δ are parameters of the equation.
Parameters

• rate (float) – The bifurcation parameter ϵ
• kc2 (float) – Squared wave vector k2c of the linear instability
• delta (float) – Parameter δ of the non-linearity
• bc (Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]) – The boundary conditions applied to the field. Boundary
conditions are generally given as a list with one condition for each axis. For periodic axis,
only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’).
For non-periodic axes, different boundary conditions can be specified for the lower and upper
end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value
NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the value DERIV
for the derivative in the normal direction (specified by {‘derivative’: DERIV}) are supported.
Note that the special value ‘natural’ imposes periodic boundary conditions for periodic axis
and a vanishing derivative otherwise. More information can be found in the boundaries
documentation.

• bc_lap (Optional[Union[Dict[str, Union[Dict, str, BCBase]],
Dict, str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]]) – The boundary conditions applied to the second derivative
of the scalar field c. If None, the same boundary condition as bc is chosen. Otherwise, this
supports the same options as bc.

diagnostics: Dict[str, Any]

Diagnostic information (available after the PDE has been solved)
Type

dict
evolution_rate(state, t=0)

evaluate the right hand side of the PDE
Parameters

• state (ScalarField) – The scalar field describing the concentration distribution

174 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

• t (float) – The current time point
Returns

Scalar field describing the evolution rate of the PDE
Return type

ScalarField

explicit_time_dependence: Optional[bool] = False

Flag indicating whether the right hand side of the PDE has an explicit time dependence.
Type

bool
property expression: str

the expression of the right hand side of this PDE
Type

str

4.3.10 pde.pdes.wave module

A simple diffusion equation
class WavePDE(speed=1, bc='auto_periodic_neumann')

Bases: PDEBase
A simple wave equation
The mathematical definition,

∂2t u = c2∇2u

is implemented as two first-order equations:

∂tu = v

∂tv = c2∇2u

where u is the density field that and c sets the wave speed.
Parameters

• speed (float) – The speed c of the wave
• bc (Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]) – The boundary conditions applied to the field. Boundary
conditions are generally given as a list with one condition for each axis. For periodic axis,
only periodic boundary conditions are allowed (indicated by ‘periodic’ and ‘anti-periodic’).
For non-periodic axes, different boundary conditions can be specified for the lower and upper
end (using a tuple of two conditions). For instance, Dirichlet conditions enforcing a value
NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the value DERIV
for the derivative in the normal direction (specified by {‘derivative’: DERIV}) are supported.
Note that the special value ‘natural’ imposes periodic boundary conditions for periodic axis
and a vanishing derivative otherwise. More information can be found in the boundaries
documentation.

4.3. pde.pdes package 175

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

diagnostics: Dict[str, Any]

Diagnostic information (available after the PDE has been solved)
Type

dict
evolution_rate(state, t=0)

evaluate the right hand side of the PDE
Parameters

• state (FieldCollection) – The fields u and v distribution
• t (float) – The current time point

Returns
Scalar field describing the evolution rate of the PDE

Return type
FieldCollection

explicit_time_dependence: Optional[bool] = False

Flag indicating whether the right hand side of the PDE has an explicit time dependence.
Type

bool
property expressions: Dict[str, str]

the expressions of the right hand side of this PDE
Type

dict
get_initial_condition(u, v=None)

create a suitable initial condition
Parameters

• u (ScalarField) – The initial density on the grid
• v (ScalarField, optional) – The initial rate of change. This is assumed to be zero if the
value is omitted.

Returns
The combined fields u and v, suitable for the simulation

Return type
FieldCollection

4.4 pde.solvers package

Solvers define how a PDE is solved, i.e., how the initial state is advanced in time.

Controller class controlling a simulation
ExplicitSolver class for solving partial differential equations explicitly
ExplicitMPISolver class for solving partial differential equations explicitly

using MPI
ImplicitSolver class for solving partial differential equations implicitly
ScipySolver class for solving partial differential equations using scipy
registered_solvers returns all solvers that are currently registered

176 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

class Controller(solver, t_range, tracker='auto')
Bases: object
class controlling a simulation
The controller calls a solver to advance the simulation into the future and it takes care of trackers that analyze and
modify the state periodically.

Parameters
• solver (SolverBase) – Solver instance that is used to advance the simulation in time
• t_range (float or tuple) – Sets the time range for which the simulation is run. If
only a single value t_end is given, the time range is assumed to be [0, t_end].

• tracker (Optional[Union[Sequence[Union[TrackerBase, str]],
TrackerBase, str]]) – Defines a tracker that process the state of the simulation at
specified times. A tracker is either an instance of TrackerBase or a string, which identifies
a tracker. All possible identifiers can be obtained by calling get_named_trackers().
Multiple trackers can be specified as a list. The default value auto checks the state for
consistency (tracker ‘consistency’) and displays a progress bar (tracker ‘progress’) when tqdm
is installed. More general trackers are defined in trackers, where all options are explained
in detail. In particular, the interval at which the tracker is evaluated can be chosen when
creating a tracker object explicitly.

get_current_time()

process_time() -> float
Process time for profiling: sum of the kernel and user-space CPU time.

run(initial_state, dt=None)
run the simulation
Diagnostic information about the solver procedure are available in the diagnostics property of the instance
after this function has been called.

Parameters
• state – The initial state of the simulation. This state will be copied and thus not modified
by the simulation. Instead, the final state will be returned and trackers can be used to record
intermediate states.

• dt (float) – Time step of the chosen stepping scheme. If None, a default value based on
the stepper will be chosen.

• initial_state (TState) –
Returns

The state at the final time point. If multiprocessing is used, only the main node will return the
state. All other nodes return None.

Return type
Optional[TState]

property t_range: Tuple[float, float]

start and end time of the simulation
Type

tuple

4.4. pde.solvers package 177

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

py-pde Documentation, Release unknown

class ExplicitSolver(pde, scheme='euler', *, backend='auto', adaptive=False, tolerance=0.0001)
Bases: SolverBase
class for solving partial differential equations explicitly

Parameters
• pde (PDEBase) – The instance describing the pde that needs to be solved
• scheme (str) – Defines the explicit scheme to use. Supported values are ‘euler’ and ‘runge-
kutta’ (or ‘rk’ for short).

• backend (str) – Determines how the function is created. Accepted values are ‘numpy` and
‘numba’. Alternatively, ‘auto’ lets the code decide for the most optimal backend.

• adaptive (bool) – When enabled, the time step is adjusted during the simulation using the
error tolerance set with tolerance.

• tolerance (float) – The error tolerance used in adaptive time stepping. This is used in
adaptive time stepping to choose a time step which is small enough so the truncation error of
a single step is below tolerance.

dt_max: float = 10000000000.0

maximal time step that the adaptive solver will use
Type

float
dt_min: float = 1e-10

minimal time step that the adaptive solver will use
Type

float
make_stepper(state, dt=None)

return a stepper function using an explicit scheme
Parameters

• state (FieldBase) – An example for the state fromwhich the grid and other information
can be extracted

• dt (float) – Time step of the explicit stepping. If None, this solver specifies 1e-3 as a
default value.

Returns
Function that can be called to advance the state from time t_start to time t_end. The function
call signature is (state: numpy.ndarray, t_start: float, t_end: float)

Return type
Callable[[FieldBase, float, float], float]

name = 'explicit'

class ImplicitSolver(pde, maxiter=100, maxerror=0.0001, backend='auto')
Bases: SolverBase
class for solving partial differential equations implicitly

Parameters
• pde (PDEBase) – The instance describing the pde that needs to be solved
• maxiter (int) – The maximal number of iterations per step

178 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

• maxerror (float) – The maximal error that is permitted in each step
• backend (str) – Determines how the function is created. Accepted values are ‘numpy` and
‘numba’. Alternatively, ‘auto’ lets the code decide for the most optimal backend.

make_stepper(state, dt=None)
return a stepper function using an implicit scheme

Parameters
• state (FieldBase) – An example for the state fromwhich the grid and other information
can be extracted

• dt (float) – Time step of the explicit stepping. If None, this solver specifies 1e-3 as a
default value.

Returns
Function that can be called to advance the state from time t_start to time t_end. The function
call signature is (state: numpy.ndarray, t_start: float, t_end: float)

Return type
Callable[[FieldBase, float, float], float]

name = 'implicit'

class ScipySolver(pde, backend='auto', **kwargs)
Bases: SolverBase
class for solving partial differential equations using scipy
This class is a thin wrapper around scipy.integrate.solve_ivp(). In particular, it supports all the
methods implemented by this function.

Parameters
• pde (PDEBase) – The instance describing the pde that needs to be solved
• backend (str) – Determines how the function is created. Accepted values are ‘numpy` and
‘numba’. Alternatively, ‘auto’ lets the code decide for the most optimal backend.

• **kwargs – All extra arguments are forwarded to scipy.integrate.solve_ivp().
make_stepper(state, dt=None)

return a stepper function
Parameters

• state (FieldBase) – An example for the state fromwhich the grid and other information
can be extracted.

• dt (float) – Initial time step for the simulation. If None, the solver will choose a suitable
initial value.

Returns
Function that can be called to advance the state from time t_start to time t_end.

Return type
Callable[[FieldBase, float, float], float]

name = 'scipy'

4.4. pde.solvers package 179

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

registered_solvers()

returns all solvers that are currently registered
Returns

List with the names of the solvers
Return type

list of str

4.4.1 pde.solvers.base module

Package that contains base classes for solvers
class SolverBase(pde)

Bases: object
base class for solvers

Parameters
pde (PDEBase) – The partial differential equation that should be solved

classmethod from_name(name, pde, **kwargs)
create solver class based on its name
Solver classes are automatically registered when they inherit from SolverBase. Note that this also requires
that the respective python module containing the solver has been loaded before it is attempted to be used.

Parameters
• name (str) – The name of the solver to construct
• pde (PDEBase) – The partial differential equation that should be solved
• **kwargs – Additional arguments for the constructor of the solver

Returns
An instance of a subclass of SolverBase

Return type
SolverBase

abstract make_stepper(state, dt=None)

Parameters
dt (Optional[float]) –

Return type
Callable[[FieldBase, float, float], float]

registered_solvers = ['ExplicitMPISolver', 'ExplicitSolver',
'ImplicitSolver', 'ScipySolver', 'explicit', 'explicit_mpi', 'implicit',
'scipy']

180 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

4.4.2 pde.solvers.controller module

Defines a class controlling the simulations of PDEs.
class Controller(solver, t_range, tracker='auto')

Bases: object
class controlling a simulation
The controller calls a solver to advance the simulation into the future and it takes care of trackers that analyze and
modify the state periodically.

Parameters
• solver (SolverBase) – Solver instance that is used to advance the simulation in time
• t_range (float or tuple) – Sets the time range for which the simulation is run. If
only a single value t_end is given, the time range is assumed to be [0, t_end].

• tracker (Optional[Union[Sequence[Union[TrackerBase, str]],
TrackerBase, str]]) – Defines a tracker that process the state of the simulation at
specified times. A tracker is either an instance of TrackerBase or a string, which identifies
a tracker. All possible identifiers can be obtained by calling get_named_trackers().
Multiple trackers can be specified as a list. The default value auto checks the state for
consistency (tracker ‘consistency’) and displays a progress bar (tracker ‘progress’) when tqdm
is installed. More general trackers are defined in trackers, where all options are explained
in detail. In particular, the interval at which the tracker is evaluated can be chosen when
creating a tracker object explicitly.

get_current_time()

process_time() -> float
Process time for profiling: sum of the kernel and user-space CPU time.

run(initial_state, dt=None)
run the simulation
Diagnostic information about the solver procedure are available in the diagnostics property of the instance
after this function has been called.

Parameters
• state – The initial state of the simulation. This state will be copied and thus not modified
by the simulation. Instead, the final state will be returned and trackers can be used to record
intermediate states.

• dt (float) – Time step of the chosen stepping scheme. If None, a default value based on
the stepper will be chosen.

• initial_state (TState) –
Returns

The state at the final time point. If multiprocessing is used, only the main node will return the
state. All other nodes return None.

Return type
Optional[TState]

property t_range: Tuple[float, float]

start and end time of the simulation
Type

tuple

4.4. pde.solvers package 181

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

py-pde Documentation, Release unknown

4.4.3 pde.solvers.explicit module

Defines an explicit solver supporting various methods
class ExplicitSolver(pde, scheme='euler', *, backend='auto', adaptive=False, tolerance=0.0001)

Bases: SolverBase
class for solving partial differential equations explicitly

Parameters
• pde (PDEBase) – The instance describing the pde that needs to be solved
• scheme (str) – Defines the explicit scheme to use. Supported values are ‘euler’ and ‘runge-
kutta’ (or ‘rk’ for short).

• backend (str) – Determines how the function is created. Accepted values are ‘numpy` and
‘numba’. Alternatively, ‘auto’ lets the code decide for the most optimal backend.

• adaptive (bool) – When enabled, the time step is adjusted during the simulation using the
error tolerance set with tolerance.

• tolerance (float) – The error tolerance used in adaptive time stepping. This is used in
adaptive time stepping to choose a time step which is small enough so the truncation error of
a single step is below tolerance.

dt_max: float = 10000000000.0

maximal time step that the adaptive solver will use
Type

float
dt_min: float = 1e-10

minimal time step that the adaptive solver will use
Type

float
info: Dict[str, Any]

make_stepper(state, dt=None)
return a stepper function using an explicit scheme

Parameters
• state (FieldBase) – An example for the state fromwhich the grid and other information
can be extracted

• dt (float) – Time step of the explicit stepping. If None, this solver specifies 1e-3 as a
default value.

Returns
Function that can be called to advance the state from time t_start to time t_end. The function
call signature is (state: numpy.ndarray, t_start: float, t_end: float)

Return type
Callable[[FieldBase, float, float], float]

name = 'explicit'

182 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

4.4.4 pde.solvers.explicit_mpi module

Defines an explicit solver using multiprocessing via MPI
class ExplicitMPISolver(pde, scheme='euler', decomposition=-1, *, backend='auto', adaptive=False,

tolerance=0.0001)

Bases: ExplicitSolver
class for solving partial differential equations explicitly using MPI
This solver can only be used if MPI is properly installed.
The main idea of the solver is to take the full initial state in the main node (ID 0) and split the grid into roughly
equal subgrids. The main node then distributes these subfields to all other nodes and each node creates the right
hand side of the PDE for itself (and independently). Each node then advances the PDE independently, ensuring
proper coupling to neighboring nodes via special boundary conditions, which exchange field values between sub
grids. This is implemented by the get_boundary_conditions() method of the sub grids, which takes the
boundary conditions for the full grid and creates conditions suitable for the specific sub grid on the given node. The
trackers (and thus all input and output) are only handled on the main node.

Warning: modify_after_step can only be used to do local modifications since the field data supplied to the
function is local to each MPI node.

Parameters
• pde (PDEBase) – The instance describing the pde that needs to be solved
• scheme (str) – Defines the explicit scheme to use. Supported values are ‘euler’ and ‘runge-
kutta’ (or ‘rk’ for short).

• decomposition (list of ints) – Number of subdivision in each direction. Should
be a list of length grid.num_axes specifying the number of nodes along this axis. If one value
is -1, its value will be determined from the number of available nodes. The default value
decomposed the first axis using all available nodes.

• backend (str) – Determines how the function is created. Accepted values are ‘numpy` and
‘numba’. Alternatively, ‘auto’ lets the code decide for the most optimal backend.

• adaptive (bool) – When enabled, the time step is adjusted during the simulation using the
error tolerance set with tolerance.

• tolerance (float) – The error tolerance used in adaptive time stepping. This is used in
adaptive time stepping to choose a time step which is small enough so the truncation error of
a single step is below tolerance.

info: Dict[str, Any]

make_stepper(state, dt=None)
return a stepper function using an explicit scheme

Parameters
• state (FieldBase) – An example for the state fromwhich the grid and other information
can be extracted

• dt (float) – Time step of the explicit stepping. If None, this solver specifies 1e-3 as a
default value.

4.4. pde.solvers package 183

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

Returns
Function that can be called to advance the state from time t_start to time t_end. The function
call signature is (state: numpy.ndarray, t_start: float, t_end: float)

Return type
Callable[[FieldBase, float, float], float]

name = 'explicit_mpi'

4.4.5 pde.solvers.implicit module

Defines an implicit solver
exception ConvergenceError

Bases: RuntimeError
class ImplicitSolver(pde, maxiter=100, maxerror=0.0001, backend='auto')

Bases: SolverBase
class for solving partial differential equations implicitly

Parameters
• pde (PDEBase) – The instance describing the pde that needs to be solved
• maxiter (int) – The maximal number of iterations per step
• maxerror (float) – The maximal error that is permitted in each step
• backend (str) – Determines how the function is created. Accepted values are ‘numpy` and
‘numba’. Alternatively, ‘auto’ lets the code decide for the most optimal backend.

info: Dict[str, Any]

make_stepper(state, dt=None)
return a stepper function using an implicit scheme

Parameters
• state (FieldBase) – An example for the state fromwhich the grid and other information
can be extracted

• dt (float) – Time step of the explicit stepping. If None, this solver specifies 1e-3 as a
default value.

Returns
Function that can be called to advance the state from time t_start to time t_end. The function
call signature is (state: numpy.ndarray, t_start: float, t_end: float)

Return type
Callable[[FieldBase, float, float], float]

name = 'implicit'

184 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

4.4.6 pde.solvers.scipy module

Defines a solver using scipy.integrate
class ScipySolver(pde, backend='auto', **kwargs)

Bases: SolverBase
class for solving partial differential equations using scipy
This class is a thin wrapper around scipy.integrate.solve_ivp(). In particular, it supports all the
methods implemented by this function.

Parameters
• pde (PDEBase) – The instance describing the pde that needs to be solved
• backend (str) – Determines how the function is created. Accepted values are ‘numpy` and
‘numba’. Alternatively, ‘auto’ lets the code decide for the most optimal backend.

• **kwargs – All extra arguments are forwarded to scipy.integrate.solve_ivp().
info: Dict[str, Any]

make_stepper(state, dt=None)
return a stepper function

Parameters
• state (FieldBase) – An example for the state fromwhich the grid and other information
can be extracted.

• dt (float) – Initial time step for the simulation. If None, the solver will choose a suitable
initial value.

Returns
Function that can be called to advance the state from time t_start to time t_end.

Return type
Callable[[FieldBase, float, float], float]

name = 'scipy'

4.5 pde.storage package

Module defining classes for storing simulation data.

get_memory_storage a context manager that can be used to create a MemoryS-
torage

MemoryStorage store discretized fields in memory
FileStorage store discretized fields in a hdf5 file

4.5. pde.storage package 185

https://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

4.5.1 pde.storage.base module

Base classes for storing data
class StorageBase(info=None, write_mode='truncate_once')

Bases: object
base class for storing time series of discretized fields
These classes store time series of FieldBase, i.e., they store the values of the fields at particular time points.
Iterating of the storage will return the fields in order and individual time points can also be accessed.

Parameters
• info (dict) – Supplies extra information that is stored in the storage
• write_mode (str) – Determines how new data is added to already existing one. Possible
values are: ‘append’ (data is always appended), ‘truncate’ (data is cleared every time this storage
is used for writing), or ‘truncate_once’ (data is cleared for the first writing, but subsequent data
using the same instances are appended). Alternatively, specifying ‘readonly’ will disable writing
completely.

append(field, time=None)
add field to the storage

Parameters
• field (FieldBase) – The field that is added to the storage
• time (float, optional) – The time point

Return type
None

apply(func, out=None, *, progress=False)
applies function to each field in a storage

Parameters
• func (callable) – The function to apply to each stored field. The function must either
take as a single argument the field or as two arguments the field and the associated time point.
In both cases, it should return a field.

• out (StorageBase) – Storage to which the output is written. If omitted, a new Memo-
ryStorage is used and returned

• progress (bool) – Flag indicating whether the progress is shown during the calculation
Returns

The new storage that contains the data after the function func has been applied
Return type

StorageBase

clear(clear_data_shape=False)
truncate the storage by removing all stored data.

Parameters
clear_data_shape (bool) – Flag determining whether the data shape is also deleted.

Return type
None

186 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

copy(out=None, *, progress=False)
copies all fields in a storage to a new one

Parameters
• out (StorageBase) – Storage to which the output is written. If omitted, a new Memo-
ryStorage is used and returned

• progress (bool) – Flag indicating whether the progress is shown during the calculation
Returns

The new storage that contains the copied data
Return type

StorageBase

data: Any

property data_shape: Tuple[int, ...]

the current data shape.
Raises

RuntimeError – if data_shape was not set
property dtype: Union[dtype[Any], None, Type[Any],
_SupportsDType[dtype[Any]], str, Tuple[Any, int], Tuple[Any,
Union[SupportsIndex, Sequence[SupportsIndex]]], List[Any], _DTypeDict,
Tuple[Any, Any]]

the current data type.
Raises

RuntimeError – if data_type was not set
end_writing()

finalize the storage after writing
Return type

None
extract_field(field_id, label=None)

extract the time course of a single field from a collection

Note: This might return a view into the original data, so modifying the returned data can also change the
underlying original data.

Parameters
• field_id (int or str) – The index into the field collection. This determines which
field of the collection is returned. Instead of a numerical index, the field label can also be
supplied. If there are multiple fields with the same label, only the first field is returned.

• label (str) – The label of the returned field. If omitted, the stored label is used.
Returns

a storage instance that contains the data for the single field
Return type

MemoryStorage

4.5. pde.storage package 187

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.SupportsIndex
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.SupportsIndex
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

extract_time_range(t_range=None)
extract a particular time interval

Note: This might return a view into the original data, so modifying the returned data can also change the
underlying original data.

Parameters
t_range (float or tuple) – Determines the range of time points included in the result.
If only a single number is given, all data up to this time point are included.

Returns
a storage instance that contains the extracted data.

Return type
MemoryStorage

property grid: Optional[GridBase]

the grid associated with this storage
This returns None if grid was not stored in self.info.

Type
GridBase

property has_collection: bool

whether the storage is storing a collection
Type

bool
items()

iterate over all times and stored fields, returning pairs
Return type

Iterator[Tuple[float, FieldBase]]
property shape: Optional[Tuple[int, ...]]

the shape of the stored data
start_writing(field, info=None)

initialize the storage for writing data
Parameters

• field (FieldBase) – An example of the data that will be written to extract the grid and
the data_shape

• info (dict) – Supplies extra information that is stored in the storage
Return type

None
times: Sequence[float]

tracker(interval=1)
create object that can be used as a tracker to fill this storage

188 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

Parameters
interval (Union[int, float, InterruptsBase]) – Determines how often the
tracker interrupts the simulation. Simple numbers are interpreted as durations measured in the
simulation time variable. Alternatively, a string using the format ‘hh:mm:ss’ can be used to give
durations in real time. Finally, instances of the classes defined in interrupts can be given
for more control.

Returns
The tracker that fills the current storage

Return type
StorageTracker

write_mode: str

class StorageTracker(storage, interval=1)
Bases: TrackerBase
Tracker that stores data in special storage classes
storage

The underlying storage class through which the data can be accessed
Type

StorageBase

Parameters
• storage (StorageBase) – Storage instance to which the data is written
• interval (IntervalData) – Determines how often the tracker interrupts the simula-
tion. Simple numbers are interpreted as durations measured in the simulation time variable.
Alternatively, a string using the format ‘hh:mm:ss’ can be used to give durations in real time.
Finally, instances of the classes defined in interrupts can be given for more control.

finalize(info=None)
finalize the tracker, supplying additional information

Parameters
info (dict) – Extra information from the simulation

Return type
None

handle(field, t)
handle data supplied to this tracker

Parameters
• field (FieldBase) – The current state of the simulation
• t (float) – The associated time

Return type
None

initialize(field, info=None)

Parameters
• field (FieldBase) – An example of the data that will be analyzed by the tracker
• info (dict) – Extra information from the simulation

4.5. pde.storage package 189

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

Returns
The first time the tracker needs to handle data

Return type
float

4.5.2 pde.storage.file module

Defines a class storing data on the file system using the hierarchical data format (hdf)
class FileStorage(filename, info=None, *, write_mode='truncate_once', max_length=None, compression=True,

keep_opened=True, check_mpi=True)
Bases: StorageBase
store discretized fields in a hdf5 file

Parameters
• filename (str) – The path to the hdf5-file where the data is stored
• info (dict) – Supplies extra information that is stored in the storage
• write_mode (str) – Determines how new data is added to already existing data. Possible
values are: ‘append’ (data is always appended), ‘truncate’ (data is cleared every time this stor-
age is used for writing), or ‘truncate_once’ (data is cleared for the first writing, but appended
subsequently). Alternatively, specifying ‘readonly’ will disable writing completely.

• max_length (int, optional) – Maximal number of entries that will be stored in the
file. This can be used to preallocate data, which can lead to smaller files, but is also less flexible.
Giving max_length = None, allows for arbitrarily large data, which might lead to larger files.

• compression (bool) – Whether to store the data in compressed form. Automatically
enabled chunked storage.

• keep_opened (bool) – Flag indicating whether the file should be kept opened after each
writing. If False, the file will be closed after writing a dataset. This keeps the file in a consistent
state, but also requires more work before data can be written.

• check_mpi (bool) – If True, files will only be opened in the main node for an parallel
simulation using MPI. This flag has no effect in serial code.

clear(clear_data_shape=False)

truncate the storage by removing all stored data.
Parameters

clear_data_shape (bool) – Flag determining whether the data shape is also deleted.
close()

close the currently opened file
Return type

None
property data

The actual data for all time
Type

ndarray

190 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

end_writing()

finalize the storage after writing.
This makes sure the data is actually written to a file when self.keep_opened == False

Return type
None

start_writing(field, info=None)
initialize the storage for writing data

Parameters
• field (FieldBase) – An example of the data that will be written to extract the grid and
the data_shape

• info (dict) – Supplies extra information that is stored in the storage
Return type

None
property times

The times at which data is available
Type

ndarray

write_mode: str

4.5.3 pde.storage.memory module

Defines a class storing data in memory.
class MemoryStorage(times=None, data=None, field_obj=None, info=None, write_mode='truncate_once')

Bases: StorageBase
store discretized fields in memory

Parameters
• times (ndarray) – Sequence of times for which data is known
• data (list of ndarray) – The field data at the given times
• field_obj (FieldBase) – An instance of the field class store data for a single time point.
• info (dict) – Supplies extra information that is stored in the storage
• write_mode (str) – Determines how new data is added to already existing data. Possible
values are: ‘append’ (data is always appended), ‘truncate’ (data is cleared every time this stor-
age is used for writing), or ‘truncate_once’ (data is cleared for the first writing, but appended
subsequently). Alternatively, specifying ‘readonly’ will disable writing completely.

clear(clear_data_shape=False)
truncate the storage by removing all stored data.

Parameters
clear_data_shape (bool) – Flag determining whether the data shape is also deleted.

Return type
None

4.5. pde.storage package 191

https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

data: Any

classmethod from_collection(storages, label=None, *, rtol=1e-05, atol=1e-08)
combine multiple memory storages into one
This method can be used to combine multiple time series of different fields into a single representation. This
requires that all time series contain data at the same time points.

Parameters
• storages (list) – A collection of instances of StorageBase whose data will be con-
catenated into a single MemoryStorage

• label (str, optional) – The label of the instances of FieldCollection that
represent the concatenated data

• rtol (float) – Relative tolerance used when checking times for merging
• atol (float) – Absolute tolerance used when checking times for merging

Returns
Storage containing all the data.

Return type
MemoryStorage

classmethod from_fields(times=None, fields=None, info=None, write_mode='truncate_once')
create MemoryStorage from a list of fields

Parameters
• times (ndarray) – Sequence of times for which data is known
• fields (list of FieldBase) – The fields at all given time points
• info (dict) – Supplies extra information that is stored in the storage
• write_mode (str) – Determines how new data is added to already existing data. Possible
values are: ‘append’ (data is always appended), ‘truncate’ (data is cleared every time this stor-
age is used for writing), or ‘truncate_once’ (data is cleared for the first writing, but appended
subsequently). Alternatively, specifying ‘readonly’ will disable writing completely.

Return type
MemoryStorage

start_writing(field, info=None)
initialize the storage for writing data

Parameters
• field (FieldBase) – An instance of the field class store data for a single time point.
• info (dict) – Supplies extra information that is stored in the storage

Return type
None

times: Sequence[float]

write_mode: str

192 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

get_memory_storage(field, info=None)
a context manager that can be used to create a MemoryStorage

Example
This can be used to quickly store data:

with get_memory_storage(field_class) as storage:
storage.append(numpy_array0, 0)
storage.append(numpy_array1, 1)

use storage thereafter

Parameters
• field (FieldBase) – An instance of the field class store data for a single time point.
• info (dict) – Supplies extra information that is stored in the storage

Yields
MemoryStorage

4.6 pde.tools package

Package containing several tools required in py-pde

cache Functions, classes, and decorators for managing caches
config Handles configuration variables of the package
cuboid An n-dimensional, axes-aligned cuboid
docstrings Methods for automatic transformation of docstrings
expressions Handling mathematical expressions with sympy
math Auxiliary mathematical functions
misc Miscellaneous python functions
mpi Auxillary functions and variables for dealing with MPI

multiprocessing
numba Helper functions for just-in-time compilation with numba
output Python functions for handling output
parameters Infrastructure for managing classes with parameters
parse_duration Parsing time durations from strings
plotting Tools for plotting and controlling plot output using context

managers
spectral Functions making use of spectral decompositions
typing Provides support for mypy type checking of the package

4.6. pde.tools package 193

https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

4.6.1 pde.tools.cache module

Functions, classes, and decorators for managing caches

cached_property Decorator to use a method as a cached property
cached_method Decorator to enable caching of a method
hash_mutable return hash also for (nested) mutable objects.
hash_readable return human readable hash also for (nested) mutable ob-

jects.
make_serializer returns a function that serialize data with the given

method.
make_unserializer returns a function that unserialize data with the given

method
DictFiniteCapacity cache with a limited number of items
SerializedDict a key value database which is stored on the disk This class

provides hooks for converting arbitrary keys and values to
strings, which are then stored in the database.

class DictFiniteCapacity(*args, **kwargs)
Bases: OrderedDict
cache with a limited number of items
check_length()

ensures that the dictionary does not grow beyond its capacity
default_capacity: int = 100

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

class SerializedDict(key_serialization='pickle', value_serialization='pickle', storage_dict=None)
Bases: MutableMapping
a key value database which is stored on the disk This class provides hooks for converting arbitrary keys and values
to strings, which are then stored in the database.
provides a dictionary whose keys and values are serialized

Parameters
• key_serialization (str) – Determines the serialization method for keys
• value_serialization (str) – Determines the serialization method for values
• storage_dict (dict) – Can be used to chose a different dictionary for the underlying
storage mechanism, e.g., storage_dict = PersistentDict()

class cached_method(factory=None, extra_args=None, ignore_args=None, hash_function='hash_mutable',
doc=None, name=None)

Bases: _class_cache
Decorator to enable caching of a method
The function is only called the first time and each successive call returns the cached result of the first call.

Example

194 Chapter 4. Reference manual

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

The decorator can be used like so:

class Foo:

@cached_method
def bar(self):

return "Cached"

foo = Foo()
result = foo.bar()

The data is stored in a dictionary named _cache_methods attached to the instance of each object. The cache
can thus be cleared by setting self._cache_methods = {}. The cache of specific property can be cleared using
self._cache_methods[property_name] = {}, where property_name is the name of the property
decorator that caches calls in a dictionary attached to the instances. This can be used with most classes

Example
An example for using the class is:

class Foo():

@cached_property()
def property(self):

return "Cached property"

@cached_method()
def method(self):

return "Cached method"

foo = Foo()
foo.property
foo.method()

The cache can be cleared by setting foo._cache_methods = {} if the cache factory is a simple dict, i.e, if factory
== None. Alternatively, each cached method has a clear_cache_of_obj()method, which clears the cache
of this particular method. In the example above we could thus call foo.bar.clear_cache_of_obj(foo) to clear the
cache. Note that the object instance has to be passed as a parameter, since the method bar() is defined on the
class, not the instance, i.e., we could also call Foo.bar.clear_cache_of_obj(foo). To clear the cache from within
a method, one can thus call self.method_name.clear_cache_of_obj(self), where method_name is the name of the
method whose cache is cleared

Example
An advanced example is:

class Foo():

def get_cache(self, name):
`name` is the name of the method to cache
return DictFiniteCapacity()

(continues on next page)

4.6. pde.tools package 195

py-pde Documentation, Release unknown

(continued from previous page)
@cached_method(factory='get_cache')
def foo(self):

return "Cached"

Parameters
• factory (callable) – Function/class creating an empty cache. dict by default. This can
be used with user-supplied storage backends by. The cache factory should return a dict-like
object that handles the cache for the given method.

• extra_args (list) – List of attributes of the class that are included in the cache key.
They are then treated as if they are supplied as arguments to the method. This is important
to include when the result of a method depends not only on method arguments but also on
instance attributes.

• ignore_args (list) – List of keyword arguments that are not included in the cache key.
These should be arguments that do not influence the result of a method, e.g., because they only
affect how intermediate results are displayed.

• hash_function (str) – An identifier determining what hash function is used on the ar-
gument list.

• doc (str) – Optional string giving the docstring of the decorated method
• name (str) – Optional string giving the name of the decorated method

class cached_property(factory=None, extra_args=None, ignore_args=None, hash_function='hash_mutable',
doc=None, name=None)

Bases: _class_cache
Decorator to use a method as a cached property
The function is only called the first time and each successive call returns the cached result of the first call.

Example
Here is an example for how to use the decorator:

class Foo():

@cached_property
def bar(self):

return "Cached"

foo = Foo()
result = foo.bar

The data is stored in a dictionary named _cache_methods attached to the instance of each object. The cache
can thus be cleared by setting self._cache_methods = {}. The cache of specific property can be cleared using
self._cache_methods[property_name] = {}, where property_name is the name of the property
Adapted from <https://wiki.python.org/moin/PythonDecoratorLibrary>.
decorator that caches calls in a dictionary attached to the instances. This can be used with most classes

196 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://wiki.python.org/moin/PythonDecoratorLibrary

py-pde Documentation, Release unknown

Example
An example for using the class is:

class Foo():

@cached_property()
def property(self):

return "Cached property"

@cached_method()
def method(self):

return "Cached method"

foo = Foo()
foo.property
foo.method()

The cache can be cleared by setting foo._cache_methods = {} if the cache factory is a simple dict, i.e, if factory
== None. Alternatively, each cached method has a clear_cache_of_obj()method, which clears the cache
of this particular method. In the example above we could thus call foo.bar.clear_cache_of_obj(foo) to clear the
cache. Note that the object instance has to be passed as a parameter, since the method bar() is defined on the
class, not the instance, i.e., we could also call Foo.bar.clear_cache_of_obj(foo). To clear the cache from within
a method, one can thus call self.method_name.clear_cache_of_obj(self), where method_name is the name of the
method whose cache is cleared

Example
An advanced example is:

class Foo():

def get_cache(self, name):
`name` is the name of the method to cache
return DictFiniteCapacity()

@cached_method(factory='get_cache')
def foo(self):

return "Cached"

Parameters
• factory (callable) – Function/class creating an empty cache. dict by default. This can
be used with user-supplied storage backends by. The cache factory should return a dict-like
object that handles the cache for the given method.

• extra_args (list) – List of attributes of the class that are included in the cache key.
They are then treated as if they are supplied as arguments to the method. This is important
to include when the result of a method depends not only on method arguments but also on
instance attributes.

• ignore_args (list) – List of keyword arguments that are not included in the cache key.
These should be arguments that do not influence the result of a method, e.g., because they only
affect how intermediate results are displayed.

4.6. pde.tools package 197

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

py-pde Documentation, Release unknown

• hash_function (str) – An identifier determining what hash function is used on the ar-
gument list.

• doc (str) – Optional string giving the docstring of the decorated method
• name (str) – Optional string giving the name of the decorated method

hash_mutable(obj)

return hash also for (nested) mutable objects.

Notes
This function might be a bit slow, since it iterates over all containers and hashes objects recursively. Moreover, the
returned value might change with each run of the python interpreter, since the hash values of some basic objects,
like None, change with each instance of the interpreter.

Parameters
obj – A general python object

Returns
A hash value associated with the data of obj

Return type
int

hash_readable(obj)
return human readable hash also for (nested) mutable objects.
This function returns a JSON-like representation of the object. The function might be a bit slow, since it iterates
over all containers and hashes objects recursively. Note that this hash function tries to return the same value for
equivalent objects, but it does not ensure that the objects can be reconstructed from this data.

Parameters
obj – A general python object

Returns
A hash value associated with the data of obj

Return type
str

make_serializer(method)
returns a function that serialize data with the given method. Note that some of the methods destroy information
and cannot be reverted.

Parameters
method (str) – An identifier determining the serializer that will be returned

Returns
A function that serializes objects

Return type
callable

make_unserializer(method)
returns a function that unserialize data with the given method
This is the inverse function of make_serializer().

198 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

Parameters
method (str) – An identifier determining the unserializer that will be returned

Returns
A function that serializes objects

Return type
callable

objects_equal(a, b)
compares two objects to see whether they are equal
In particular, this uses numpy.array_equal() to check for numpy arrays

Parameters
• a – The first object
• b – The second object

Returns
Whether the two objects are considered equal

Return type
bool

4.6.2 pde.tools.config module

Handles configuration variables of the package

Config class handling the package configuration
get_package_versions tries to load certain python packages and returns their ver-

sion
parse_version_str helper function converting a version string into a list of

integers
check_package_version checks whether a package has a sufficient version
packages_from_requirements read package names from a requirements file
environment obtain information about the compute environment

class Config(items=None, mode='update')
Bases: UserDict
class handling the package configuration

Parameters
• items (dict, optional) – Configuration values that should be added or overwritten to
initialize the configuration.

• mode (str) – Defines the mode in which the configuration is used. Possible values are
– insert: any new configuration key can be inserted
– update: only the values of pre-existing items can be updated
– locked: no values can be changed
Note that the items specified by items will always be inserted, independent of the mode.

4.6. pde.tools package 199

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html#numpy.array_equal
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.html#collections.UserDict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

to_dict()

convert the configuration to a simple dictionary
Returns

A representation of the configuration in a normal dict.
Return type

dict
check_package_version(package_name, min_version)

checks whether a package has a sufficient version
Parameters

• package_name (str) –
• min_version (str) –

environment()

obtain information about the compute environment
Returns

information about the python installation and packages
Return type

dict
get_package_versions(packages, *, na_str='not available')

tries to load certain python packages and returns their version
Parameters

• packages (list) – The names of all packages
• na_str (str) – Text to return if package is not available

Returns
Dictionary with version for each package name

Return type
dict

packages_from_requirements(requirements_file)
read package names from a requirements file

Parameters
requirements_file (str or Path) – The file from which everything is read

Returns
list of package names

Return type
List[str]

parse_version_str(ver_str)
helper function converting a version string into a list of integers

Parameters
ver_str (str) –

Return type
List[int]

200 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

4.6.3 pde.tools.cuboid module

An n-dimensional, axes-aligned cuboid
This module defines the Cuboid class, which represents an n-dimensional cuboid that is aligned with the axes of a
Cartesian coordinate system.
class Cuboid(pos, size, mutable=True)

Bases: object
class that represents a cuboid in n dimensions
defines a cuboid from a position and a size vector

Parameters
• pos (list) – The position of the lower left corner. The length of this list determines the
dimensionality of space

• size (list) – The size of the cuboid along each dimension.
• mutable (bool) – Flag determining whether the cuboid parameters can be changed

property bounds: Tuple[Tuple[float, float], ...]

buffer(amount=0, inplace=False)
dilate the cuboid by a certain amount in all directions

Parameters
amount (Union[float, ndarray]) –

Return type
Cuboid

property centroid

contains_point(points)
returns a True when points are within the Cuboid

Parameters
points (ndarray) – List of point coordinates

Returns
list of booleans indicating which points are inside

Return type
ndarray

copy()

Return type
Cuboid

property corners: Tuple[ndarray, ndarray]

return coordinates of two extreme corners defining the cuboid
property diagonal: float

returns the length of the diagonal
property dim: int

4.6. pde.tools package 201

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

classmethod from_bounds(bounds, **kwargs)
create cuboid from bounds

Parameters
bounds (list) – Two dimensional array of axes bounds

Returns
cuboid with positive size

Return type
Cuboid

classmethod from_centerpoint(centerpoint, size, **kwargs)
create cuboid from two points

Parameters
• centerpoint (list) – Coordinates of the center
• size (list) – Size of the cuboid

Returns
cuboid with positive size

Return type
Cuboid

classmethod from_points(p1, p2, **kwargs)
create cuboid from two points

Parameters
• p1 (list) – Coordinates of first corner point
• p2 (list) – Coordinates of second corner point

Returns
cuboid with positive size

Return type
Cuboid

property mutable: bool

property size: ndarray

property surface_area: float

surface area of a cuboid in n dimensions.
The surface area is the volume of the (n− 1)-dimensional hypercubes that bound the current cuboid:
• n = 1: the number of end points (2)
• n = 2: the perimeter of the rectangle
• n = 3: the surface area of the cuboid

property vertices: List[List[float]]

return the coordinates of all the corners
property volume: float

202 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

asanyarray_flags(data, dtype=None, writeable=True)
turns data into an array and sets the respective flags.
A copy is only made if necessary

Parameters
• data (ndarray) – numpy array that whose flags are adjusted
• dtype – the resulant dtype
• writeable (bool) – Flag determining whether the results is writable

Returns
array with same data as data but with flags adjusted.

Return type
ndarray

4.6.4 pde.tools.docstrings module

Methods for automatic transformation of docstrings

get_text_block return a single text block
replace_in_docstring replace a text in a docstring using the correct indentation
fill_in_docstring decorator that replaces text in the docstring of a function

fill_in_docstring(f)
decorator that replaces text in the docstring of a function

Parameters
f (TFunc) –

Return type
TFunc

get_text_block(identifier)
return a single text block

Parameters
identifier (str) – The name of the text block

Returns
the text block as one long line.

Return type
str

replace_in_docstring(f, token, value, docstring=None)
replace a text in a docstring using the correct indentation

Parameters
• f (callable) – The function with the docstring to handle
• token (str) – The token to search for
• value (str) – The replacement string
• docstring (str) – A docstring that should be used instead of f.__doc__

4.6. pde.tools package 203

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

Returns
The function with the modified docstring

Return type
callable

4.6.5 pde.tools.expressions module

Handling mathematical expressions with sympy
This module provides classes representing expressions that can be provided as human-readable strings and are converted
to numpy and numba representations using sympy.

parse_number return a number compiled from an expression
ScalarExpression describes a mathematical expression of a scalar quantity
TensorExpression describes a mathematical expression of a tensorial quan-

tity
evaluate evaluate an expression involving fields

class ExpressionBase(expression, signature=None, *, user_funcs=None, consts=None)
Bases: object
abstract base class for handling expressions

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur.

Parameters
• expression (sympy.core.basic.Basic) – A sympy expression or array. This could
for instance be an instance of Expr or NDimArray.

• signature (list of str, optional) – The signature defines which variables are
expected in the expression. This is typically a list of strings identifying the variable names.
Individual names can be specified as list, in which case any of these names can be used. The
first item in such a list is the definite name and if another name of the list is used, the associated
variable is renamed to the definite name. If signature is None, all variables in expressions are
allowed.

• user_funcs (dict, optional) – A dictionary with user defined functions that can be
used in the expression.

• consts (dict, optional) – A dictionary with user defined constants that can be used
in the expression. The values of these constants should either be numbers or ndarray.

property complex: bool

whether the expression contains the imaginary unit I
Type

bool
property constant: bool

whether the expression is a constant

204 Chapter 4. Reference manual

https://numpy.org/doc/stable/reference/index.html#module-numpy
https://docs.sympy.org/latest/index.html#module-sympy
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#exec
https://docs.sympy.org/latest/modules/core.html#sympy.core.basic.Basic
https://docs.sympy.org/latest/modules/core.html#sympy.core.expr.Expr
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

Type
bool

depends_on(variable)
determine whether the expression depends on variable

Parameters
variable (str) – the name of the variable to check for

Returns
whether the variable appears in the expression

Return type
bool

property expression: str

the expression in string form
Type

str
get_compiled(single_arg=False)

return numba function evaluating expression
Parameters

single_arg (bool) – Determines whether the returned function accepts all variables in a
single argument as an array or whether all variables need to be supplied separately

Returns
the compiled function

Return type
function

property rank: int

the rank of the expression
Type

int
abstract property shape: Tuple[int, ...]

class ScalarExpression(expression=0, signature=None, *, user_funcs=None, consts=None,
explicit_symbols=None, allow_indexed=False)

Bases: ExpressionBase
describes a mathematical expression of a scalar quantity

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur.

Parameters
• expression (str or float) – The expression, which is either a number or a string that
sympy can parse

• signature (list of str) – The signature defines which variables are expected in the
expression. This is typically a list of strings identifying the variable names. Individual names
can be specified as lists, in which case any of these names can be used. The first item in such

4.6. pde.tools package 205

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

a list is the definite name and if another name of the list is used, the associated variable is
renamed to the definite name. If signature is None, all variables in expressions are allowed.

• user_funcs (dict, optional) – A dictionary with user defined functions that can be
used in the expression

• consts (dict, optional) – A dictionary with user defined constants that can be used
in the expression. The values of these constants should either be numbers or ndarray.

• explicit_symbols (list of str) – List of symbols that need to be interpreted as
general sympy symbols

• allow_indexed (bool) – Whether to allow indexing of variables. If enabled, array vari-
ables are allowed to be indexed using square bracket notation.

copy()

return a copy of the current expression
Return type

ScalarExpression
derivatives

differentiate the expression with respect to all variables
differentiate(var)

return the expression differentiated with respect to var
Parameters

var (str) –
Return type

ScalarExpression
property is_zero: bool

returns whether the expression is zero
Type

bool
shape: Tuple[int, ...] = ()

property value: Union[int, float, complex]

the value for a constant expression
Type

float
class TensorExpression(expression, signature=None, *, user_funcs=None, consts=None,

explicit_symbols=None)

Bases: ExpressionBase
describes a mathematical expression of a tensorial quantity

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur.

Parameters

206 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#exec

py-pde Documentation, Release unknown

• expression (str or float) – The expression, which is either a number or a string that
sympy can parse

• signature (list of str) – The signature defines which variables are expected in the
expression. This is typically a list of strings identifying the variable names. Individual names
can be specified as list, in which case any of these names can be used. The first item in such
a list is the definite name and if another name of the list is used, the associated variable is
renamed to the definite name. If signature is None, all variables in expressions are allowed.

• user_funcs (dict, optional) – A dictionary with user defined functions that can be
used in the expression.

• consts (dict, optional) – A dictionary with user defined constants that can be used
in the expression. The values of these constants should either be numbers or ndarray.

• explicit_symbols (list of str) – List of symbols that need to be interpreted as
general sympy symbols

derivatives

differentiate the expression with respect to all variables
differentiate(var)

return the expression differentiated with respect to var
Parameters

var (str) –
Return type

TensorExpression
get_compiled_array(single_arg=True)

compile the tensor expression such that a numpy array is returned
Parameters

single_arg (bool) –Whether the compiled function expects all arguments as a single array
or whether they are supplied individually.

Return type
Callable[[ndarray, Optional[ndarray]], ndarray]

property shape: Tuple[int, ...]

the shape of the tensor
Type

tuple
property value

the value for a constant expression
evaluate(expression, fields, *, bc='auto_periodic_neumann', bc_ops=None, user_funcs=None, consts=None,

label=None)

evaluate an expression involving fields

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur.

Parameters

4.6. pde.tools package 207

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Optional
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#exec

py-pde Documentation, Release unknown

• expression (str) – The expression, which is parsed by sympy. The expression may
contain variables (i.e., fields and spatial coordinates of the grid), standard local mathematical
operators defined by sympy, and the operators defined in the pde package. Note that operators
need to be specified with their full name, i.e., laplace for a scalar Laplacian and vector_laplace
for a Laplacian operating on a vector field. Moreover, the dot product between two vector
fields can be denoted by using dot(field1, field2) in the expression, and outer(field1, field2)
calculates an outer product. More information can be found in the expression documentation.

• fields (dict) – Dictionary of the fields involved in the expression.
• bc (Union[Dict[str, Union[Dict, str, BCBase]], Dict,
str, BCBase, Tuple[Union[Dict, str, BCBase], Union[Dict,
str, BCBase]], BoundaryAxisBase, Sequence[Union[Dict[str,
Union[Dict, str, BCBase]], Dict, str, BCBase, Tu-
ple[Union[Dict, str, BCBase], Union[Dict, str, BCBase]],
BoundaryAxisBase]]]) – Boundary conditions for the operators used in the expression.
The conditions here are applied to all operators that do not have a specialized condition given
in bc_ops. Boundary conditions are generally given as a list with one condition for each axis.
For periodic axis, only periodic boundary conditions are allowed (indicated by ‘periodic’ and
‘anti-periodic’). For non- periodic axes, different boundary conditions can be specified for
the lower and upper end (using a tuple of two conditions). For instance, Dirichlet conditions
enforcing a value NUM (specified by {‘value’: NUM}) and Neumann conditions enforcing the
value DERIV for the derivative in the normal direction (specified by {‘derivative’: DERIV})
are supported. Note that the special value ‘natural’ imposes periodic boundary conditions for
periodic axis and a vanishing derivative otherwise. More information can be found in the
boundaries documentation.

• bc_ops (dict) – Special boundary conditions for some operators. The keys in this dictio-
nary specify the operator to which the boundary condition will be applied.

• user_funcs (dict, optional) – A dictionary with user defined functions that can be
used in the expressions in rhs.

• consts (dict, optional) – A dictionary with user defined constants that can be used
in the expression. These can be either scalar numbers or fields defined on the same grid as the
actual simulation.

• label (str) – Name of the field that is returned.
Returns

The resulting field. The rank of the returned field (and thus the precise class) is determined auto-
matically.

Return type
pde.fields.base.DataFieldBase

parse_number(expression, variables=None)
return a number compiled from an expression

Warning: This implementation uses exec() and should therefore not be used in a context where malicious
input could occur.

Parameters
• expression (str or Number) – An expression that can be interpreted as a number
• variables (dict) – A dictionary of values that replace variables in the expression

208 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.sympy.org/latest/index.html#module-sympy
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

Returns
the calculated value

Return type
Number

4.6.6 pde.tools.math module

Auxiliary mathematical functions
class SmoothData1D(x, y, sigma=None)

Bases: object
allows smoothing data in 1d using a Gaussian kernel of defined width
The data is given a pairs of x and y, the assumption being that there is an underlying relation y = f(x).
initialize with data

Parameters
• x – List of x values
• y – List of y values
• sigma (float) – The size of the smoothing window in units of x. If omitted, the average
distance of x values multiplied by sigma_auto_scale is used.

property bounds: Tuple[float, float]

return minimal and maximal x values
derivative(xs)

return the derivative of the smoothed values for the positions xs
Note that this value

Parameters
xs (list of ndarray) – the x-values

Returns
The associated values of the derivative

Return type
ndarray

sigma_auto_scale: float = 10

scale for setting automatic values for sigma
Type

float

4.6. pde.tools package 209

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

4.6.7 pde.tools.misc module

Miscellaneous python functions

module_available check whether a python module is available
ensure_directory_exists creates a folder if it not already exists
preserve_scalars decorator that makes vectorized methods work with

scalars
decorator_arguments make a decorator usable with and without arguments:
skipUnlessModule decorator that skips a test when a module is not available
import_class import a class or module given an identifier
classproperty decorator that can be used to define read-only properties

for classes.
hybridmethod descriptor that can be used as a decorator to allow calling

a method both as a classmethod and an instance method
estimate_computation_speed estimates the computation speed of a function
hdf_write_attributes write (JSON-serialized) attributes to a hdf file
number convert a value into a float or complex number
get_common_dtype returns a dtype in which all arguments can be represented
number_array convert an array with arbitrary dtype either to np.double

or np.cdouble

class classproperty(fget=None, doc=None)
Bases: property
decorator that can be used to define read-only properties for classes.
This is inspired by the implementation of astropy, see astropy.org.

Example
The decorator can be used much like the property decorator:

class Test():

item: str = 'World'

@classproperty
def message(cls):

return 'Hello ' + cls.item

print(Test.message)

deleter(fdel)

Descriptor to change the deleter on a property.
getter(fget)

Descriptor to change the getter on a property.
setter(fset)

Descriptor to change the setter on a property.
decorator_arguments(decorator)

make a decorator usable with and without arguments:

210 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#property
http://astropy.org/

py-pde Documentation, Release unknown

The resulting decorator can be used like @decorator or @decorator(*args, **kwargs)
Inspired by https://stackoverflow.com/a/14412901/932593

Parameters
decorator (Callable) – the decorator that needs to be modified

Returns
the decorated function

Return type
Callable

ensure_directory_exists(folder)

creates a folder if it not already exists
Parameters

folder (str) – path of the new folder
estimate_computation_speed(func, *args, **kwargs)

estimates the computation speed of a function
Parameters

func (callable) – The function to call
Returns

the number of times the function can be calculated in one second. The inverse is thus the runtime
in seconds per function call

Return type
float

get_common_dtype(*args)
returns a dtype in which all arguments can be represented

Parameters
*args – All items (arrays, scalars, etc) to be checked

Returns: numpy.cdouble if any entry is complex, otherwise np.double
hdf_write_attributes(hdf_path, attributes=None, raise_serialization_error=False)

write (JSON-serialized) attributes to a hdf file
Parameters

• hdf_path – Path to a group or dataset in an open HDF file
• attributes (dict) – Dictionary with values written as attributes
• raise_serialization_error (bool) – Flag indicating whether serialization errors
are raised or silently ignored

Return type
None

class hybridmethod(fclass, finstance=None, doc=None)
Bases: object
descriptor that can be used as a decorator to allow calling a method both as a classmethod and an instance method
Adapted from https://stackoverflow.com/a/28238047
classmethod(fclass)

4.6. pde.tools package 211

https://stackoverflow.com/a/14412901/932593
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://stackoverflow.com/a/28238047

py-pde Documentation, Release unknown

instancemethod(finstance)

import_class(identifier)
import a class or module given an identifier

Parameters
identifier (str) – The identifier can be a module or a class. For instance, calling the function
with the string identifier == ‘numpy.linalg.norm’ is roughly equivalent to running from numpy.linalg
import norm and would return a reference to norm.

module_available(module_name)
check whether a python module is available

Parameters
module_name (str) – The name of the module

Returns
True if the module can be imported and False otherwise

Return type
bool

number(value)
convert a value into a float or complex number

Parameters
value (Number or str) – The value which needs to be converted

Return type
Union[int, float, complex]

Result:
Number: A complex number or a float if the imaginary part vanishes

number_array(data, dtype=None, copy=True)
convert an array with arbitrary dtype either to np.double or np.cdouble

Parameters
• data (ndarray) – The data that needs to be converted to a float array. This can also be any
iterable of numbers.

• dtype (numpy dtype) – The data type of the field. All the numpy dtypes are supported.
If omitted, it will be determined from data automatically.

• copy (bool) – Whether the data must be copied (in which case the original array is left
untouched). Note that data will always be copied when changing the dtype.

Returns
An array with the correct dtype

Return type
ndarray

preserve_scalars(method)
decorator that makes vectorized methods work with scalars
This decorator allows to call functions that are written to work on numpy arrays to also accept python scalars, like
int and float. Essentially, this wrapper turns them into an array and unboxes the result.

Parameters
method (TFunc) – The method being decorated

212 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

Returns
The decorated method

Return type
TFunc

skipUnlessModule(module_names)

decorator that skips a test when a module is not available
Parameters

module_names (str) – The name of the required module(s)
Returns

A function, so this can be used as a decorator
Return type

Callable[[TFunc], TFunc]

4.6.8 pde.tools.mpi module

Auxillary functions and variables for dealing with MPI multiprocessing

mpi_send send data to another MPI node
mpi_recv receive data from another MPI node
mpi_allreduce combines data from all MPI nodes

initialized: bool = False

Flag determining whether mpi was initialized (and is available)
Type

bool
is_main: bool = True

Flag indicating whether the current process is the main process (with ID 0)
Type

bool
mpi_allreduce(data, operator=None)

combines data from all MPI nodes
Note that complex datatypes and user-defined functions are not properly supported.

Parameters
• data – Data being send from this node to all others
• operator (Optional[Union[int, Operator]]) – The operator used to combine
all data. Possible options are summarized in the IntEnum numba_mpi.Operator.

Returns
The accumulated data

mpi_recv(data, source, tag)
receive data from another MPI node

Parameters
• data – A buffer into which the received data is written

4.6. pde.tools package 213

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int

py-pde Documentation, Release unknown

• dest (int) – The ID of the sending node
• tag (int) – A numeric tag identifying the message

Return type
None

mpi_send(data, dest, tag)
send data to another MPI node

Parameters
• data – The data being send
• dest (int) – The ID of the receiving node
• tag (int) – A numeric tag identifying the message

Return type
None

ol_mpi_allreduce(data, operator=None)
overload the mpi_allreduce function

Parameters
operator (Optional[Union[int, Operator]]) –

parallel_run: bool = False

Flag indicating whether the current run is using multiprocessing
Type

bool
rank: int = 0

ID of the current process
Type

int
size: int = 1

Total process count
Type

int

4.6.9 pde.tools.numba module

Helper functions for just-in-time compilation with numba
class Counter(value=0)

Bases: object
helper class for implementing JIT_COUNT
We cannot use a simple integer for this, since integers are immutable, so if one imports JIT_COUNT from this
module it would always stay at the fixed value it had when it was first imported. The workaround would be to
import the symbol every time the counter is read, but this is error-prone. Instead, we implement a thin wrapper
class around an int, which only supports reading and incrementing the value. Since this object is now mutable it
can be used easily. A disadvantage is that the object needs to be converted to int before it can be used in most
expressions.

214 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

py-pde Documentation, Release unknown

Parameters
value (int) –

increment()

flat_idx(arr, i)
helper function allowing indexing of scalars as if they arrays

Parameters
• arr (ndarray) –
• i (int) –

Return type
Union[int, float, complex]

get_common_numba_dtype(*args)
returns a numba numerical type in which all arrays can be represented

Parameters
*args – All items to be tested

Returns: numba.complex128 if any entry is complex, otherwise numba.double
jit(function, signature=None, parallel=False, **kwargs)

apply nb.jit with predefined arguments
Parameters

• function (TFunc) – The function which is jitted
• signature – Signature of the function to compile
• parallel (bool) – Allow parallel compilation of the function
• **kwargs – Additional arguments to nb.jit

Returns
Function that will be compiled using numba

Return type
TFunc

make_array_constructor(arr)
returns an array within a jitted function using basic information

Parameters
arr (ndarray) – The array that should be accessible within jit

Return type
Callable[[], ndarray]

Warning: A reference to the array needs to be retained outside the numba code to prevent garbage collection
from removing the array

numba_dict(data=None)
converts a python dictionary to a numba typed dictionary

Parameters
data (Optional[Dict[str, Any]]) –

4.6. pde.tools package 215

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Callable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

py-pde Documentation, Release unknown

Return type
Optional[Dict]

numba_environment()

return information about the numba setup used
Returns

(dict) information about the numba setup
Return type

Dict[str, Any]
ol_flat_idx(arr, i)

helper function allowing indexing of scalars as if they arrays

4.6.10 pde.tools.output module

Python functions for handling output

get_progress_bar_class returns a class that behaves as progress bar.
display_progress displays a progress bar when iterating
in_jupyter_notebook checks whether we are in a jupyter notebook
BasicOutput class that writes text line to stdout
JupyterOutput class that writes text lines as html in a jupyter cell

class BasicOutput(stream=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)
Bases: OutputBase
class that writes text line to stdout

Parameters
stream – The stream where the lines are written

show()

shows the actual text
class JupyterOutput(header='', footer='')

Bases: OutputBase
class that writes text lines as html in a jupyter cell

Parameters
• header (str) – The html code written before all lines
• footer (str) – The html code written after all lines

show()

shows the actual html in a jupyter cell
class OutputBase

Bases: object
base class for output management
abstract show()

216 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

py-pde Documentation, Release unknown

display_progress(iterator, total=None, enabled=True, **kwargs)
displays a progress bar when iterating

Parameters
• iterator (iter) – The iterator
• total (int) – Total number of steps
• enabled (bool) – Flag determining whether the progress is display
• **kwargs – All extra arguments are forwarded to the progress bar class

Returns
A class that behaves as the original iterator, but shows the progress alongside iteration.

get_progress_bar_class()

returns a class that behaves as progress bar.
This either uses classes from the optional tqdm package or a simple version that writes dots to stderr, if the class it
not available.

in_jupyter_notebook()

checks whether we are in a jupyter notebook
Return type

bool

4.6.11 pde.tools.parameters module

Infrastructure for managing classes with parameters
One aim is to allow easy management of inheritance of parameters.

Parameter class representing a single parameter
DeprecatedParameter a parameter that can still be used normally but is depre-

cated
HideParameter a helper class that allows hiding parameters of the parent

classes
Parameterized a mixin that manages the parameters of a class
get_all_parameters get a dictionary with all parameters of all registered

classes

class DeprecatedParameter(name, default_value=None, cls=<class 'object'>, description='', hidden=False,
extra=None)

Bases: Parameter
a parameter that can still be used normally but is deprecated
initialize a parameter

Parameters
• name (str) – The name of the parameter
• default_value – The default value
• cls – The type of the parameter, which is used for conversion

4.6. pde.tools package 217

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

• description (str) – A string describing the impact of this parameter. This description
appears in the parameter help

• hidden (bool) – Whether the parameter is hidden in the description summary
• extra (dict) – Extra arguments that are stored with the parameter

class HideParameter(name)

Bases: object
a helper class that allows hiding parameters of the parent classes

Parameters
name (str) – The name of the parameter

class Parameter(name, default_value=None, cls=<class 'object'>, description='', hidden=False, extra=None)
Bases: object
class representing a single parameter
initialize a parameter

Parameters
• name (str) – The name of the parameter
• default_value – The default value
• cls – The type of the parameter, which is used for conversion
• description (str) – A string describing the impact of this parameter. This description
appears in the parameter help

• hidden (bool) – Whether the parameter is hidden in the description summary
• extra (dict) – Extra arguments that are stored with the parameter

convert(value=None)
converts a value into the correct type for this parameter. If value is not given, the default value is converted.
Note that this does not make a copy of the values, which could lead to unexpected effects where the default
value is changed by an instance.

Parameters
value – The value to convert

Returns
The converted value, which is of type self.cls

class Parameterized(parameters=None)
Bases: object
a mixin that manages the parameters of a class
initialize the parameters of the object

Parameters
parameters (dict) – A dictionary of parameters to change the defaults. The al-
lowed parameters can be obtained from get_parameters() or displayed by calling
show_parameters().

get_parameter_default(name)
return the default value for the parameter with name

218 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

Parameters
name (str) – The parameter name

classmethod get_parameters(include_hidden=False, include_deprecated=False, sort=True)
return a dictionary of parameters that the class supports

Parameters
• include_hidden (bool) – Include hidden parameters
• include_deprecated (bool) – Include deprecated parameters
• sort (bool) – Return ordered dictionary with sorted keys

Returns
a dictionary of instance of Parameter with their names as keys.

Return type
dict

parameters_default: Sequence[Union[Parameter, HideParameter]] = []

show_parameters(description=None, sort=False, show_hidden=False, show_deprecated=False)
show all parameters in human readable format

Parameters
• description (bool) – Flag determining whether the parameter description is shown.
The default is to show the description only when we are in a jupyter notebook environment.

• sort (bool) – Flag determining whether the parameters are sorted
• show_hidden (bool) – Flag determining whether hidden parameters are shown
• show_deprecated (bool) – Flag determining whether deprecated parameters are
shown

• default_value (bool) – Flag determining whether the default values or the current
values are shown

All flags default to False.
get_all_parameters(data='name')

get a dictionary with all parameters of all registered classes
Parameters

data (str) – Determines what data is returned. Possible values are ‘name’, ‘value’, or ‘descrip-
tion’, to return the respective information about the parameters.

Return type
Dict[str, Any]

sphinx_display_parameters(app, what, name, obj, options, lines)
helper function to display parameters in sphinx documentation

Example
This function should be connected to the ‘autodoc-process-docstring’ event like so:

app.connect(‘autodoc-process-docstring’, sphinx_display_parameters)

4.6. pde.tools package 219

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

py-pde Documentation, Release unknown

4.6.12 pde.tools.parse_duration module

Parsing time durations from strings
This module provides a function that parses time durations from strings. It has been copied from the django software,
which comes with the following notes:
Copyright (c) Django Software Foundation and individual contributors. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of Django nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY,ORCONSEQUENTIALDAMAGES (INCLUDING, BUTNOTLIMITEDTO,
PROCUREMENTOF SUBSTITUTEGOODSORSERVICES; LOSSOFUSE, DATA, ORPROFITS; ORBUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
parse_duration(value)

Parse a duration string and return a datetime.timedelta.
Parameters

value (str) – A time duration given as text. The preferred format for durations is ‘%d
%H:%M:%S.%f’. This function also supports ISO 8601 representation and PostgreSQL’s day-
time interval format.

Returns
An instance representing the duration.

Return type
datetime.timedelta

4.6.13 pde.tools.plotting module

Tools for plotting and controlling plot output using context managers

220 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta

py-pde Documentation, Release unknown

add_scaled_colorbar add a vertical color bar to an image plot
disable_interactive context manager disabling the interactive mode of mat-

plotlib
plot_on_axes decorator for a plot method or function that uses a single

axes
plot_on_figure decorator for a plot method or function that fills an entire

figure
PlotReference contains all information to update a plot element
BasicPlottingContext basic plotting using just matplotlib
JupyterPlottingContext plotting in a jupyter widget using the inline backend
get_plotting_context returns a suitable plotting context
napari_add_layers adds layers to a napari viewer

class BasicPlottingContext(fig_or_ax=None, title=None, show=True)
Bases: PlottingContextBase
basic plotting using just matplotlib

Parameters
• fig_or_ax – If axes are given, they are used. If a figure is given, it is set as active.
• title (str) – The shown in the plot
• show (bool) – Flag determining whether plots are actually shown

class JupyterPlottingContext(title=None, show=True)
Bases: PlottingContextBase
plotting in a jupyter widget using the inline backend

Parameters
• title (str) – The shown in the plot
• show (bool) – Flag determining whether plots are actually shown

close()

close the plot
supports_update: bool = False

flag indicating whether the context supports that plots can be updated with out redrawing the entire plot. The
jupyter backend (inline) requires replotting of the entire figure, so an update is not supported.

class PlotReference(ax, element, parameters=None)
Bases: object
contains all information to update a plot element

Parameters
• ax (matplotlib.axes.Axes) – The axes of the element
• element (matplotlib.artist.Artist) – The actual element
• parameters (dict) – Parameters to recreate the plot element

ax

element

4.6. pde.tools package 221

http://napari.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/artist_api.html#matplotlib.artist.Artist
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

parameters

class PlottingContextBase(title=None, show=True)
Bases: object
base class of the plotting contexts

Example
The context wraps calls to the matplotlib.pyplot interface:

context = PlottingContext()
with context:

plt.plot(...)
plt.xlabel(...)

Parameters
• title (str) – The shown in the plot
• show (bool) – Flag determining whether plots are actually shown

close()

close the plot
supports_update: bool = True

flag indicating whether the context supports that plots can be updated with out redrawing the entire plot
add_scaled_colorbar(axes_image, ax=None, aspect=20, pad_fraction=0.5, label='', **kwargs)

add a vertical color bar to an image plot
The height of the colorbar is now adjusted to the plot, so that the width determined by aspect is now given relative
to the height. Moreover, the gap between the colorbar and the plot is now given in units of the fraction of the width
by pad_fraction.
Inspired by https://stackoverflow.com/a/33505522/932593

Parameters
• axes_image (matplotlib.cm.ScalarMappable) –Mappable object, e.g., returned
from matplotlib.pyplot.imshow()

• ax (matplotlib.axes.Axes) – The current figure axes from which space is taken for
the colorbar. If omitted, the axes in which the axes_image is shown is taken.

• aspect (float) – The target aspect ratio of the colorbar
• pad_fraction (float) – Width of the gap between colorbar and image
• label (str) – Set a label for the colorbar
• **kwargs – Additional parameters are passed to colorbar call

Returns
The resulting Colorbar object

Return type
Colorbar

222 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#object
https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://stackoverflow.com/a/33505522/932593
https://matplotlib.org/stable/api/cm_api.html#matplotlib.cm.ScalarMappable
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/colorbar_api.html#matplotlib.colorbar.Colorbar

py-pde Documentation, Release unknown

disable_interactive()

context manager disabling the interactive mode of matplotlib
This context manager restores the previous state after it is done. Details of the interactive mode are described in
matplotlib.interactive().

get_plotting_context(context=None, title=None, show=True)
returns a suitable plotting context

Parameters
• context – An instance of PlottingContextBase or an instance of matplotlib.
axes.Axes or matplotlib.figure.Figure to determine where the plotting will
happen. If omitted, the context is determined automatically.

• title (str) – The title shown in the plot
• show (bool) – Determines whether the plot is shown while the simulation is running. If
False, the files are created in the background.

Returns
The plotting context

Return type
PlottingContextBase

in_ipython()

try to detect whether we are in an ipython shell, e.g., a jupyter notebook
Return type

bool
napari_add_layers(viewer, layers_data)

adds layers to a napari viewer
Parameters

• viewer (napar i.viewer.Viewer) – The napari application
• layers_data (dict) – Data for all layers that will be added.

napari_viewer(grid, run=None, close=False, **kwargs)
creates an napari viewer for interactive plotting

Parameters
• grid (pde.grids.base.GridBase) – The grid defining the space
• run (bool) – Whether to run the event loop of napari.
• close (bool) – Whether to close the viewer immediately (e.g. for testing)
• **kwargs – Extra arguments are passed to napari.Viewer

Return type
Generator[napari.viewer.Viewer, None, None]

class nested_plotting_check

Bases: object
context manager that checks whether it is the root plotting call

Example

4.6. pde.tools package 223

https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.interactive
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
http://napari.org/
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://napari.org/api/napari.Viewer.html#napari.Viewer
https://napari.org/api/napari.view_layers.Viewer.html#napari.view_layers.Viewer
https://docs.python.org/3/library/functions.html#object

py-pde Documentation, Release unknown

The context manager can be used in plotting calls to check for nested plotting calls:

with nested_plotting_check() as is_outermost_plot_call:
make_plot(...) # could potentially call other plotting methods
if is_outermost_plot_call:

plt.show()

plot_on_axes(wrapped=None, update_method=None)
decorator for a plot method or function that uses a single axes
This decorator adds typical options for creating plots that fill a single axes. These options are available via keyword
arguments. To avoid redundancy in describing these options in the docstring, the placeholder {PLOT_ARGS} can
be added to the docstring of the wrapped function or method and will be replaced by the appropriate text. Note
that the decorator can be used on both functions and methods.

Example
The following example illustrates how this decorator can be used to implement plotting for a given class. In par-
ticular, supplying the update_method will allow efficient dynamical plotting:

class State:
def __init__(self) -> None:

self.data = np.arange(8)

def _update_plot(self, reference):
reference.element.set_ydata(self.data)

@plot_on_axes(update_method='_update_plot')
def plot(self, ax):

line, = ax.plot(np.arange(8), self.data)
return PlotReference(ax, line)

@plot_on_axes
def make_plot(ax):

ax.plot(...)

When update_method is absent, the method can still be used for plotting, but dynamic updating, e.g., by pde.
trackers.PlotTracker, is not possible.

Parameters
• wrapped (callable) – Function to be wrapped
• update_method (callable or str) –Method to call to update the plot. The argument
of the new method will be the result of the initial call of the wrapped method.

plot_on_figure(wrapped=None, update_method=None)
decorator for a plot method or function that fills an entire figure
This decorator adds typical options for creating plots that fill an entire figure. This decorator adds typical options
for creating plots that fill a single axes. These options are available via keyword arguments. To avoid redundancy
in describing these options in the docstring, the placeholder {PLOT_ARGS} can be added to the docstring of the

224 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

wrapped function or method and will be replaced by the appropriate text. Note that the decorator can be used on
both functions and methods.

Example
The following example illustrates how this decorator can be used to implement plotting for a given class. In par-
ticular, supplying the update_method will allow efficient dynamical plotting:

class State:
def __init__(self) -> None:

self.data = np.random.random((2, 8))

def _update_plot(self, reference):
ref1, ref2 = reference
ref1.element.set_ydata(self.data[0])
ref2.element.set_ydata(self.data[1])

@plot_on_figure(update_method='_update_plot')
def plot(self, fig):

ax1, ax2 = fig.subplots(1, 2)
l1, = ax1.plot(np.arange(8), self.data[0])
l2, = ax2.plot(np.arange(8), self.data[1])
return [PlotReference(ax1, l1), PlotReference(ax2, l2)]

@plot_on_figure
def make_plot(fig):

...

When update_method is not supplied, the method can still be used for plotting, but dynamic updating, e.g., by
pde.trackers.PlotTracker, is not possible.

Parameters
• wrapped (callable) – Function to be wrapped
• update_method (callable or str) –Method to call to update the plot. The argument
of the new method will be the result of the initial call of the wrapped method.

4.6.14 pde.tools.spectral module

Functions making use of spectral decompositions

make_colored_noise Return a function creating an array of random values that
obey

make_colored_noise(shape, dx=1.0, exponent=0, scale=1, rng=None)
Return a function creating an array of random values that obey

⟨c(k)c(k’)⟩ = Γ2|k|νδ(k − k’)

in spectral space on a Cartesian grid. The special case ν = 0 corresponds to white noise.
Parameters

4.6. pde.tools package 225

https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

• shape (tuple of ints) – Number of supports points in each spatial dimension. The
number of the list defines the spatial dimension.

• dx (float or list of floats) – Discretization along each dimension. A uniform
discretization in each direction can be indicated by a single number.

• exponent (float) – Exponent ν of the power spectrum
• scale (float) – Scaling factor Γ determining noise strength
• rng (Generator) – Random number generator (default: default_rng())

Returns
a function returning a random realization

Return type
callable

4.6.15 pde.tools.typing module

Provides support for mypy type checking of the package
class AdjacentEvaluator(*args, **kwargs)

Bases: Protocol
class CellVolume(*args, **kwargs)

Bases: Protocol
class GhostCellSetter(*args, **kwargs)

Bases: Protocol
class OperatorFactory(*args, **kwargs)

Bases: Protocol
a factory function that creates an operator for a particular grid

class OperatorType(*args, **kwargs)
Bases: Protocol
an operator that acts on an array

class VirtualPointEvaluator(*args, **kwargs)
Bases: Protocol

4.7 pde.trackers package

Classes for tracking simulation results in controlled interrupts
Trackers are classes that periodically receive the state of the simulation to analyze, store, or output it. The trackers defined
in this module are:

226 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Protocol

py-pde Documentation, Release unknown

CallbackTracker Tracker calling a function periodically
ProgressTracker Tracker showing the progress of the simulation
PrintTracker Tracker printing data to a stream (default: stdout)
PlotTracker Tracker plotting data on screen, to files, or writes a movie
LivePlotTracker PlotTracker with defaults for live plotting
DataTracker Tracker storing custom data obtained by calling a function
SteadyStateTracker Tracker aborting the simulation once steady state is

reached
RuntimeTracker Tracker interrupting the simulation once a duration has

passed
ConsistencyTracker Tracker interrupting the simulation when the state is not

finite
InteractivePlotTracker Tracker showing the state interactively in napari

Some trackers can also be referenced by name for convenience when using them in simulations. The lit of supported
names is returned by get_named_trackers().
Multiple trackers can be collected in a TrackerCollection, which provides methods for handling them efficiently.
Moreover, custom trackers can be implemented by deriving from TrackerBase. Note that trackers generally receive
a view into the current state, implying that they can adjust the state by modifying it in-place. Moreover, trackers can
interrupt the simulation by raising the special exception StopIteration.
For each tracker, the time intervals at which it is called can be decided using one of the following classes, which determine
when the simulation will be interrupted:

FixedInterrupts class representing a list of interrupt times
ConstantInterrupts class representing equidistantly spaced time interrupts
LogarithmicInterrupts class representing logarithmically spaced time interrupts
RealtimeInterrupts class representing time interrupts spaced equidistantly in

real time

In particular, interrupts can be specified conveniently using interval_to_interrupts().

4.7.1 pde.trackers.base module

Base classes for trackers
exception FinishedSimulation

Bases: StopIteration
exception for signaling that simulation finished successfully

class TrackerBase(interval=1)
Bases: object
base class for implementing trackers

Parameters
interval (IntervalData) – Determines how often the tracker interrupts the simulation.
Simple numbers are interpreted as durations measured in the simulation time variable. Alterna-
tively, a string using the format ‘hh:mm:ss’ can be used to give durations in real time. Finally,
instances of the classes defined in interrupts can be given for more control.

4.7. pde.trackers package 227

https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/functions.html#object

py-pde Documentation, Release unknown

finalize(info=None)
finalize the tracker, supplying additional information

Parameters
info (dict) – Extra information from the simulation

Return type
None

classmethod from_data(data, **kwargs)
create tracker class from given data

Parameters
data (str or TrackerBase) – Data describing the tracker

Returns
An instance representing the tracker

Return type
TrackerBase

abstract handle(field, t)
handle data supplied to this tracker

Parameters
• field (FieldBase) – The current state of the simulation
• t (float) – The associated time

Return type
None

initialize(field, info=None)
initialize the tracker with information about the simulation

Parameters
• field (FieldBase) – An example of the data that will be analyzed by the tracker
• info (dict) – Extra information from the simulation

Returns
The first time the tracker needs to handle data

Return type
float

class TrackerCollection(trackers=None)

Bases: object
List of trackers providing methods to handle them efficiently
trackers

List of the trackers in the collection
Type

list

Parameters
trackers (Optional[List[TrackerBase]]) – List of trackers that are to be handled.

228 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list

py-pde Documentation, Release unknown

finalize(info=None)
finalize the tracker, supplying additional information

Parameters
info (dict) – Extra information from the simulation

Return type
None

classmethod from_data(data, **kwargs)
create tracker collection from given data

Parameters
data (Optional[Union[Sequence[Union[TrackerBase, str]],
TrackerBase, str]]) – Data describing the tracker collection

Returns
An instance representing the tracker collection

Return type
TrackerCollection

handle(state, t, atol=1e-08)
handle all trackers

Parameters
• state (FieldBase) – The current state of the simulation
• t (float) – The associated time
• atol (float) – An absolute tolerance that is used to determine whether a tracker should be
called now or whether the simulation should be carried on more timesteps. This is basically
used to predict the next time to decided which one is closer.

Returns
The next time the simulation needs to be interrupted to handle a tracker.

Return type
float

initialize(field, info=None)
initialize the tracker with information about the simulation

Parameters
• field (FieldBase) – An example of the data that will be analyzed by the tracker
• info (dict) – Extra information from the simulation

Returns
The first time the tracker needs to handle data

Return type
float

time_next_action: float

The time of the next interrupt of the simulation
Type

float

4.7. pde.trackers package 229

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

tracker_action_times: List[float]

Times at which the trackers need to be handled next
Type

list
get_named_trackers()

returns all named trackers
Returns

a mapping of names to the actual tracker classes.
Return type

dict

4.7.2 pde.trackers.interactive module

Special module for defining an interactive tracker that uses napari to display fields
class InteractivePlotTracker(interval='0:01', close=True, show_time=False)

Bases: TrackerBase
Tracker showing the state interactively in napari

Note: The interactive tracker uses the python multiprocessingmodule to run napari externally. The multi-
processing module has limitations on some platforms, which requires some care when writing your own programs.
In particular, the main method needs to be safe-guarded so that the main module can be imported again after
spawning a new process. An established pattern that works is to introduce a function main in your code, which you
call using the following pattern

def main():
here goes your main code

if __name__ == "__main__":
main()

The last two lines ensure that the main function is only called when the module is run initially and not again when
it is re-imported.

Parameters
• interval (Union[InterruptsBase, float, str, Sequence[float],
ndarray]) – Determines how often the tracker interrupts the simulation. Simple numbers
are interpreted as durations measured in the simulation time variable. Alternatively, a string
using the format ‘hh:mm:ss’ can be used to give durations in real time. Finally, instances of
the classes defined in interrupts can be given for more control.

• close (bool) – Flag indicating whether the napari window is closed automatically at the
end of the simulation. If False, the tracker blocks when finalize is called until the user closes
napari manually.

• show_time (bool) – Whether to indicate the time

finalize(info=None)

finalize the tracker, supplying additional information

230 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
http://napari.org/
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

Parameters
info (dict) – Extra information from the simulation

Return type
None

handle(state, t)
handle data supplied to this tracker

Parameters
• state (FieldBase) – The current state of the simulation
• t (float) – The associated time

Return type
None

initialize(state, info=None)
initialize the tracker with information about the simulation

Parameters
• state (FieldBase) – An example of the data that will be analyzed by the tracker
• info (dict) – Extra information from the simulation

Returns
The first time the tracker needs to handle data

Return type
float

name = 'interactive'

class NapariViewer(state, t_initial=None)
Bases: object
allows viewing and updating data in a separate napari process

Parameters
• state (pde.fields.base.FieldBase) – The initial state to be shown
• t_initial (float) – The initial time. If None, no time will be shown.

close(force=True)
closes the napari process

Parameters
force (bool) – Whether to force closing of the napari program. If this is False, this method
blocks until the user closes napari manually.

update(state, t)
update the state in the napari viewer

Parameters
• state (pde.fields.base.FieldBase) – The new state
• t (float) – Current time

4.7. pde.trackers package 231

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

napari_process(data_channel, initial_data, t_initial=None, viewer_args=None)
multiprocessing.Process running napari

Parameters
• data_channel (multiprocessing.Queue) – queue instance to receive data to view
• initial_data (dict) – Initial data to be shown by napari. The layers are named accord-
ing to the keys in the dictionary. The associated value needs to be a tuple, where the first item
is a string indicating the type of the layer and the second carries the associated data

• t_initial (float) – Initial time
• viewer_args (dict) – Additional arguments passed to the napari viewer

4.7.3 pde.trackers.interrupts module

Module defining classes for time interrupts for trackers
The provided interrupt classes are:

FixedInterrupts class representing a list of interrupt times
ConstantInterrupts class representing equidistantly spaced time interrupts
LogarithmicInterrupts class representing logarithmically spaced time interrupts
RealtimeInterrupts class representing time interrupts spaced equidistantly in

real time

class ConstantInterrupts(dt=1, t_start=None)
Bases: InterruptsBase
class representing equidistantly spaced time interrupts

Parameters
• dt (float) – The duration between subsequent interrupts. This is measured in simulation
time units.

• t_start (float, optional) – The time after which the tracker becomes active. If
omitted, the tracker starts recording right away. This argument can be used for an initial
equilibration period during which no data is recorded.

copy()

return a copy of this instance
dt: float

current time difference between interrupts
Type

float
initialize(t)

initialize the interrupt class
Parameters

t (float) – The starting time of the simulation
Returns

The first time the simulation needs to be interrupted

232 Chapter 4. Reference manual

https://napari.org
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

Return type
float

next(t)
computes the next time point

Parameters
t (float) – The current time point of the simulation. The returned next time point lies later
than this time, so interrupts might be skipped.

Return type
float

class FixedInterrupts(interrupts)
Bases: InterruptsBase
class representing a list of interrupt times

Parameters
interrupts (Union[ndarray, Sequence[float]]) –

copy()

return a copy of this instance
dt: float

current time difference between interrupts
Type

float
initialize(t)

initialize the interrupt class
Parameters

t (float) – The starting time of the simulation
Returns

The first time the simulation needs to be interrupted
Return type

float
next(t)

computes the next time point
Parameters

t (float) – The current time point of the simulation. The returned next time point lies later
than this time, so interrupts might be skipped.

Return type
float

class InterruptsBase

Bases: object
base class for implementing interrupts
abstract copy()

4.7. pde.trackers package 233

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

py-pde Documentation, Release unknown

dt: float

current time difference between interrupts
Type

float
abstract initialize(t)

Parameters
t (float) –

Return type
float

abstract next(t)

Parameters
t (float) –

Return type
float

class LogarithmicInterrupts(dt_initial=1, factor=1, t_start=None)
Bases: ConstantInterrupts
class representing logarithmically spaced time interrupts

Parameters
• dt_initial (float) – The initial duration between subsequent interrupts. This is mea-
sured in simulation time units.

• factor (float) – The factor by which the time between interrupts is increased every time.
Values larger than one lead to time interrupts that are increasingly further apart.

• t_start (float, optional) – The time after which the tracker becomes active. If
omitted, the tracker starts recording right away. This argument can be used for an initial
equilibration period during which no data is recorded.

dt: float

current time difference between interrupts
Type

float
next(t)

computes the next time point
Parameters

t (float) – The current time point of the simulation. The returned next time point lies later
than this time, so interrupts might be skipped.

Return type
float

class RealtimeInterrupts(duration, dt_initial=0.01)
Bases: ConstantInterrupts
class representing time interrupts spaced equidistantly in real time
This spacing is only achieved approximately and depends on the initial value set by dt_initial and the actual variation
in computation speed.

234 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

Parameters
• duration (float or str) – The duration (in real seconds) that the interrupts should
be spaced apart. The duration can also be given as a string, which is then parsed using the
function parse_duration().

• dt_initial (float) – The initial duration between subsequent interrupts. This is mea-
sured in simulation time units.

dt: float

current time difference between interrupts
Type

float
initialize(t)

initialize the interrupt class
Parameters

t (float) – The starting time of the simulation
Returns

The first time the simulation needs to be interrupted
Return type

float
next(t)

computes the next time point
Parameters

t (float) – The current time point of the simulation. The returned next time point lies later
than this time, so interrupts might be skipped.

Return type
float

interval_to_interrupts(data)
create interrupt class from various data formats specifying time intervals

Parameters
data (str or number or InterruptsBase) – Data determining the interrupt class. If this is a
InterruptsBase, it is simply returned, numbers imply ConstantInterrupts, a string is
parsed as a time forRealtimeInterrupts, and lists are interpreted asFixedInterrupts.

Returns
An instance that represents the time intervals

Return type
InterruptsBase

4.7. pde.trackers package 235

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

4.7.4 pde.trackers.trackers module

Module defining classes for tracking results from simulations.
The trackers defined in this module are:

CallbackTracker Tracker calling a function periodically
ProgressTracker Tracker showing the progress of the simulation
PrintTracker Tracker printing data to a stream (default: stdout)
PlotTracker Tracker plotting data on screen, to files, or writes a movie
LivePlotTracker PlotTracker with defaults for live plotting
DataTracker Tracker storing custom data obtained by calling a function
SteadyStateTracker Tracker aborting the simulation once steady state is

reached
RuntimeTracker Tracker interrupting the simulation once a duration has

passed
ConsistencyTracker Tracker interrupting the simulation when the state is not

finite
MaterialConservationTracker Tracking interrupting the simulation when material con-

servation is broken

class CallbackTracker(func, interval=1)
Bases: TrackerBase
Tracker calling a function periodically

Example
The callback tracker can be used to check for conditions during the simulation:

def check_simulation(state, time):
if state.integral < 0:

raise StopIteration

tracker = CallbackTracker(check_simulation, interval="0:10")

Adding tracker to the simulation will perform a check every 10 real time seconds. If the integral of the entire
state falls below zero, the simulation will be aborted.

Parameters
• func (Callable) – The function to call periodically. The function signature should be
(state) or (state, time), where state contains the current state as an instance of FieldBase
and time is a float value indicating the current time. Note that only a view of the state is
supplied, implying that a copy needs to be made if the data should be stored. The function can
thus adjust the state by modifying it in-place and it can even interrupt the simulation by raising
the special exception StopIteration.

• interval (Union[InterruptsBase, float, str, Sequence[float],
ndarray]) – Determines how often the tracker interrupts the simulation. Simple numbers
are interpreted as durations measured in the simulation time variable. Alternatively, a string
using the format ‘hh:mm:ss’ can be used to give durations in real time. Finally, instances of
the classes defined in interrupts can be given for more control.

236 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

handle(field, t)
handle data supplied to this tracker

Parameters
• field (FieldBase) – The current state of the simulation
• t (float) – The associated time

Return type
None

class ConsistencyTracker(interval=None)
Bases: TrackerBase
Tracker interrupting the simulation when the state is not finite

Parameters
interval (Optional[Union[InterruptsBase, float, str, Se-
quence[float], ndarray]]) – Determines how often the tracker interrupts the
simulation. Simple numbers are interpreted as durations measured in the simulation time variable.
Alternatively, a string using the format ‘hh:mm:ss’ can be used to give durations in real time.
Finally, instances of the classes defined in interrupts can be given for more control. The
default value None checks for consistency approximately every (real) second.

handle(field, t)
handle data supplied to this tracker

Parameters
• field (FieldBase) – The current state of the simulation
• t (float) – The associated time

Return type
None

name = 'consistency'

class DataTracker(func, interval=1, filename=None)
Bases: CallbackTracker
Tracker storing custom data obtained by calling a function
times

The time points at which the data is stored
Type

list
data

The actually stored data, which is a list of the objects returned by the callback function.
Type

list

Parameters
• func (Callable) – The function to call periodically. The function signature should be
(state) or (state, time), where state contains the current state as an instance of FieldBase and
time is a float value indicating the current time. Note that only a view of the state is supplied,
implying that a copy needs to be made if the data should be stored. Typical return values of the

4.7. pde.trackers package 237

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Callable

py-pde Documentation, Release unknown

function are either a single number, a numpy array, a list of number, or a dictionary to return
multiple numbers with assigned labels.

• interval (Union[InterruptsBase, float, str, Sequence[float],
ndarray]) – Determines how often the tracker interrupts the simulation. Simple numbers
are interpreted as durations measured in the simulation time variable. Alternatively, a string
using the format ‘hh:mm:ss’ can be used to give durations in real time. Finally, instances of
the classes defined in interrupts can be given for more control.

• filename (str) – A path to a file to which the data is written at the end of the tracking.
The data format will be determined by the extension of the filename. ‘.pickle’ indicates a
python pickle file storing a tuple (self.times, self.data), whereas any other data format requires
pandas.

property dataframe: pandas.DataFrame

the data in a dataframe
If func returns a dictionary, the keys are used as column names. Otherwise, the returned data is enumerated
starting with ‘0’. In any case the time point at which the data was recorded is stored in the column ‘time’.

Type
pandas.DataFrame

finalize(info=None)
finalize the tracker, supplying additional information

Parameters
info (dict) – Extra information from the simulation

Return type
None

handle(field, t)
handle data supplied to this tracker

Parameters
• field (FieldBase) – The current state of the simulation
• t (float) – The associated time

Return type
None

to_file(filename, **kwargs)
store data in a file
The extension of the filename determines what format is being used. For instance, ‘.pickle’ indicates a python
pickle file storing a tuple (self.times, self.data), whereas any other data format requires pandas. Supported
formats include ‘csv’, ‘json’.

Parameters
• filename (str) – Path where the data is stored
• **kwargs – Additional parameters may be supported for some formats

class LivePlotTracker(interval='0:03', *, show=True, max_fps=2, **kwargs)
Bases: PlotTracker
PlotTracker with defaults for live plotting

238 Chapter 4. Reference manual

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

The only difference to PlotTracker are the changed default values, where output is by default shown on screen
and the interval is set something more suitable for interactive plotting. In particular, this tracker can be enabled by
simply listing ‘plot’ as a tracker.

Parameters
• interval (Union[InterruptsBase, float, str, Sequence[float],
ndarray]) – Determines how often the tracker interrupts the simulation. Simple numbers
are interpreted as durations measured in the simulation time variable. Alternatively, a string
using the format ‘hh:mm:ss’ can be used to give durations in real time. Finally, instances of
the classes defined in interrupts can be given for more control.

• title (str) – Text to show in the title. The current time point will be appended to this text,
so include a space for optimal results.

• output_file (str, optional) – Specifies a single image file, which is updated peri-
odically, so that the progress can be monitored (e.g. on a compute cluster)

• output_folder (str, optional) – Specifies a folder to which all images are written.
The files will have names with increasing numbers.

• movie_file (str, optional) – Specifies a filename to which a movie of all the frames
is written after the simulation.

• show (bool, optional) – Determines whether the plot is shown while the simulation
is running. If False, the files are created in the background. This option can slow down a
simulation severely.

• max_fps (float) – Determines the maximal rate (frames per second) at which the plots
are updated. Some plots are skipped if the tracker receives data at a higher rate. A larger value
(e.g., math.inf) can be used to ensure every frame is drawn, which might penalizes the overall
performance.

• plot_args (dict) – Extra arguments supplied to the plot call. For example, this can be
used to specify axes ranges when a single panel is shown. For instance, the value {‘ax_style’:
{‘ylim’: (0, 1)}} enforces the y-axis to lie between 0 and 1.

name = 'plot'

class MaterialConservationTracker(interval=1, atol=0.0001, rtol=0.0001)
Bases: TrackerBase
Tracking interrupting the simulation when material conservation is broken

Parameters
• interval (Union[InterruptsBase, float, str, Sequence[float],
ndarray]) – Determines how often the tracker interrupts the simulation. Simple numbers
are interpreted as durations measured in the simulation time variable. Alternatively, a string
using the format ‘hh:mm:ss’ can be used to give durations in real time. Finally, instances of
the classes defined in interrupts can be given for more control.

• atol (float) – Absolute tolerance for amount deviations
• rtol (float) – Relative tolerance for amount deviations

handle(field, t)
handle data supplied to this tracker

Parameters
• field (FieldBase) – The current state of the simulation

4.7. pde.trackers package 239

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

• t (float) – The associated time
Return type

None
initialize(field, info=None)

Parameters
• field (FieldBase) – An example of the data that will be analyzed by the tracker
• info (dict) – Extra information from the simulation

Returns
The first time the tracker needs to handle data

Return type
float

name = 'material_conservation'

class PlotTracker(interval=1, *, title='Time: {time:g}', output_file=None, movie=None, show=None,
max_fps=inf, plot_args=None)

Bases: TrackerBase
Tracker plotting data on screen, to files, or writes a movie
This tracker can be used to create movies from simulations or to simply update a single image file on the fly (i.e.
to monitor simulations running on a cluster). The default values of this tracker are chosen with regular output to a
file in mind.

Parameters
• interval (Union[InterruptsBase, float, str, Sequence[float],
ndarray]) – Determines how often the tracker interrupts the simulation. Simple numbers
are interpreted as durations measured in the simulation time variable. Alternatively, a string
using the format ‘hh:mm:ss’ can be used to give durations in real time. Finally, instances of
the classes defined in interrupts can be given for more control.

• title (str or callable) – Title text of the figure. If this is a string, it is shown with a
potential placeholder named time being replaced by the current simulation time. Conversely,
if title is a function, it is called with the current state and the time as arguments. This function
is expected to return a string.

• output_file (str, optional) – Specifies a single image file, which is updated peri-
odically, so that the progress can be monitored (e.g. on a compute cluster)

• movie (str or Movie) – Create a movie. If a filename is given, all frames are written to this
file in the format deduced from the extension after the simulation ran. If a Movie is supplied,
frames are appended to the instance.

• show (bool, optional) – Determines whether the plot is shown while the simulation is
running. If False, the files are created in the background. This option can slow down a simu-
lation severely. For the default value of None, the images are only shown if neither output_file
nor movie is set.

• max_fps (float) – Determines the maximal rate (frames per second) at which the plots are
updated in real time during the simulation. Some plots are skipped if the tracker receives data
at a higher rate. A larger value (e.g., math.inf) can be used to ensure every frame is drawn,
which might penalizes the overall performance.

240 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

py-pde Documentation, Release unknown

• plot_args (dict) – Extra arguments supplied to the plot call. For example, this can be
used to specify axes ranges when a single panel is shown. For instance, the value {‘ax_style’:
{‘ylim’: (0, 1)}} enforces the y-axis to lie between 0 and 1.

Note: If an instance of Movie is given as the movie argument, it can happen that the movie is not written to the
file when the simulation ends. This is because, the movie could still be extended by appending frames. To write the
movie to a file call its save() method. Beside adding frames before and after the simulation, an explicit movie
object can also be used to adjust the output, e.g., by setting the dpi argument or the frame_rate.

finalize(info=None)
finalize the tracker, supplying additional information

Parameters
info (dict) – Extra information from the simulation

Return type
None

handle(state, t)
handle data supplied to this tracker

Parameters
• state (FieldBase) – The current state of the simulation
• t (float) – The associated time

Return type
None

initialize(state, info=None)
initialize the tracker with information about the simulation

Parameters
• state (FieldBase) – An example of the data that will be analyzed by the tracker
• info (dict) – Extra information from the simulation

Returns
The first time the tracker needs to handle data

Return type
float

class PrintTracker(interval=1, stream=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)
Bases: TrackerBase
Tracker printing data to a stream (default: stdout)

Parameters
• interval (Union[InterruptsBase, float, str, Sequence[float],
ndarray]) – Determines how often the tracker interrupts the simulation. Simple numbers
are interpreted as durations measured in the simulation time variable. Alternatively, a string
using the format ‘hh:mm:ss’ can be used to give durations in real time. Finally, instances of
the classes defined in interrupts can be given for more control.

• stream (IO[str]) – The stream used for printing

4.7. pde.trackers package 241

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

handle(field, t)
handle data supplied to this tracker

Parameters
• field (FieldBase) – The current state of the simulation
• t (float) – The associated time

Return type
None

name = 'print'

class ProgressTracker(interval=None, ndigits=5, leave=True)
Bases: TrackerBase
Tracker showing the progress of the simulation

Parameters
• interval (Optional[Union[InterruptsBase, float, str, Se-
quence[float], ndarray]]) – Determines how often the tracker interrupts the simu-
lation. Simple numbers are interpreted as durations measured in the simulation time variable.
Alternatively, a string using the format ‘hh:mm:ss’ can be used to give durations in real time.
Finally, instances of the classes defined in interrupts can be given for more control. The
default value None updates the progress bar approximately every (real) second.

• ndigits (int) – The number of digits after the decimal point that are shown maximally.
• leave (bool) – Whether to leave the progress bar after the simulation has finished (default:
True)

finalize(info=None)
finalize the tracker, supplying additional information

Parameters
info (dict) – Extra information from the simulation

Return type
None

handle(field, t)
handle data supplied to this tracker

Parameters
• field (FieldBase) – The current state of the simulation
• t (float) – The associated time

Return type
None

initialize(field, info=None)
initialize the tracker with information about the simulation

Parameters
• field (FieldBase) – An example of the data that will be analyzed by the tracker
• info (dict) – Extra information from the simulation

Returns
The first time the tracker needs to handle data

242 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

Return type
float

name = 'progress'

class RuntimeTracker(max_runtime, interval=1)
Bases: TrackerBase
Tracker interrupting the simulation once a duration has passed

Parameters
• max_runtime (float or str) – The maximal runtime of the simulation. If the runtime
is exceeded, the simulation is interrupted. Values can be either given as a number (interpreted
as seconds) or as a string, which is then parsed using the function parse_duration().

• interval (Union[InterruptsBase, float, str, Sequence[float],
ndarray]) – Determines how often the tracker interrupts the simulation. Simple numbers
are interpreted as durations measured in the simulation time variable. Alternatively, a string
using the format ‘hh:mm:ss’ can be used to give durations in real time. Finally, instances of
the classes defined in interrupts can be given for more control.

handle(field, t)
handle data supplied to this tracker

Parameters
• field (FieldBase) – The current state of the simulation
• t (float) – The associated time

Return type
None

initialize(field, info=None)

Parameters
• field (FieldBase) – An example of the data that will be analyzed by the tracker
• info (dict) – Extra information from the simulation

Returns
The first time the tracker needs to handle data

Return type
float

class SteadyStateTracker(interval=None, atol=1e-08, rtol=1e-05, progress=False)
Bases: TrackerBase
Tracker aborting the simulation once steady state is reached
Steady state is obtained when the state does not change anymore. This is the case when the derivative is close to
zero. Concretely, the current state cur is compared to the state prev at the previous time step. Convergence is
assumed when abs(prev - cur) <= dt * (atol + rtol * cur) for all points in the state. Here,
dt denotes the time that elapsed between the two states that are compared.

Parameters
• interval (Optional[Union[InterruptsBase, float, str, Se-
quence[float], ndarray]]) – Determines how often the tracker interrupts the simu-
lation. Simple numbers are interpreted as durations measured in the simulation time variable.
Alternatively, a string using the format ‘hh:mm:ss’ can be used to give durations in real time.

4.7. pde.trackers package 243

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

py-pde Documentation, Release unknown

Finally, instances of the classes defined in interrupts can be given for more control. The
default value None checks for the steady state approximately every (real) second.

• atol (float) – Absolute tolerance that must be reached to abort the simulation
• rtol (float) – Relative tolerance that must be reached to abort the simulation
• progress (bool) – Flag indicating whether the progress towards convergence is shown
graphically during the simulation

handle(field, t)
handle data supplied to this tracker

Parameters
• field (FieldBase) – The current state of the simulation
• t (float) – The associated time

Return type
None

name = 'steady_state'

progress_bar_format = 'Convergence: {percentage:3.0f}%|{bar}|
[{elapsed}<{remaining}]'

determines the format of the progress bar shown when progress = True

4.8 pde.visualization package

Functions and classes for visualizing simulations.

movies Functions for creating movies of simulation results
plotting Functions and classes for plotting simulation data

4.8.1 pde.visualization.movies module

Functions for creating movies of simulation results

Movie Class for creating movies from matplotlib figures using
ffmpeg

movie_scalar produce a movie for a simulation of a scalar field
movie_multiple produce a movie for a simulation with n components
movie produce a movie by simply plotting each frame

class Movie(filename, framerate=30, dpi=None, **kwargs)
Bases: object
Class for creating movies from matplotlib figures using ffmpeg

Note: Internally, this class uses matplotlib.animation.FFMpegWriter. Note that theffmpeg program
needs to be installed in a system path, so that matplotlib can find it.

244 Chapter 4. Reference manual

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.FFMpegWriter.html#matplotlib.animation.FFMpegWriter

py-pde Documentation, Release unknown

Warning: The movie is only fully written after the save() method has been called. To aid with this, it is
best practice to use a contextmanager:
with Movie("output.mp4") as movie:

movie.add_figure()

Parameters
• filename (str) – The filename where the movie is stored. The suffix of this path also
determines the default movie codec.

• framerate (float) – The number of frames per second, which determines how fast the
movie will appear to run.

• dpi (float) – The resolution of the resulting movie
• **kwargs – Additional parameters are used to initialize matplotlib.animation.
FFMpegWriter. Here, we can for instance set the bit rate of the resulting video using the
bitrate parameter.

add_figure(fig=None)
adds the figure fig as a frame to the current movie

Parameters
fig (Figure) – The plot figure that is added to the movie

classmethod is_available()

check whether the movie infrastructure is available
Returns

True if movies can be created
Return type

bool
save()

convert the recorded images to a movie using ffmpeg
movie(storage, filename, *, progress=True, show_time=True, plot_args=None, movie_args=None)

produce a movie by simply plotting each frame
Parameters

• storage (StorageBase) – The storage instance that contains all the data for the movie
• filename (str) – The filename to which the movie is written. The extension determines
the format used.

• progress (bool) – Flag determining whether the progress of making the movie is shown.
• show_time (bool) – Whether to show the simulation time in the movie
• plot_args (dict) – Additional arguments for the function plotting the state
• movie_args (dict) – Additional arguments for Movie. For example, this can be used to
set the resolution (dpi), the framerate (framerate), and the bitrate (bitrate).

Return type
None

4.8. pde.visualization package 245

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.FFMpegWriter.html#matplotlib.animation.FFMpegWriter
https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.FFMpegWriter.html#matplotlib.animation.FFMpegWriter
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

py-pde Documentation, Release unknown

movie_multiple(storage, filename, quantities=None, scale='automatic', progress=True)
produce a movie for a simulation with n components

Parameters
• storage (StorageBase) – The storage instance that contains all the data for the movie
• filename (str) – The filename to which the movie is written. The extension determines
the format used.

• quantities – A 2d list of quantities that are shown in a rectangular arrangement. If quan-
tities is a simple list, the panels will be rendered as a single row. Each panel is defined by a
dictionary, where the mandatory item ‘source’ defines what is being shown. Here, an integer
specifies the component that is extracted from the field while a function is evaluate with the
full state as an input and the result is shown. Additional items in the dictionary can be ‘title’
(setting the title of the panel), ‘scale’ (defining the color range shown; these are typically two
numbers defining the lower and upper bound, but if only one is given the range [0, scale] is
assumed), and ‘cmap’ (defining the colormap being used).

• scale (str, float, tuple of float) – Flag determining how the range of the
color scale is determined. In the simplest case a tuple of numbers marks the lower and upper
end of the scalar values that will be shown. If only a single number is supplied, the range starts
at zero and ends at the given number. Additionally, the special value ‘automatic’ determines
the range from the range of scalar values.

• progress (bool) – Flag determining whether the progress of making the movie is shown.
Return type

None
movie_scalar(storage, filename, scale='automatic', extras=None, progress=True, tight=False, show=True)

produce a movie for a simulation of a scalar field
Parameters

• storage (StorageBase) – The storage instance that contains all the data for the movie
• filename (str) – The filename to which the movie is written. The extension determines
the format used.

• scale (str, float, tuple of float) – Flag determining how the range of the
color scale is determined. In the simplest case a tuple of numbers marks the lower and upper
end of the scalar values that will be shown. If only a single number is supplied, the range starts
at zero and ends at the given number. Additionally, the special value ‘automatic’ determines
the range from the range of scalar values.

• extras (dict, optional) – Additional functions that are evaluated and shown for each
time step. The key of the dictionary is used as a panel title.

• progress (bool) – Flag determining whether the progress of making the movie is shown.
• tight (bool) – Whether to call matplotlib.pyplot.tight_layout(). This af-
fects the layout of all plot elements.

• show (bool) – Flag determining whether images are shown during making the movie
Return type

None

246 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.tight_layout.html#matplotlib.pyplot.tight_layout
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

4.8.2 pde.visualization.plotting module

Functions and classes for plotting simulation data

ScalarFieldPlot class managing compound plots of scalar fields
plot_magnitudes plot spatially averaged quantities as a function of time
plot_kymograph plots a single kymograph from stored data
plot_kymographs plots kymographs for all fields stored in storage
plot_interactive plots stored data interactively using the napari viewer

class ScalarFieldPlot(fields, quantities=None, scale='automatic', fig=None, title=None, tight=False,
show=True)

Bases: object
class managing compound plots of scalar fields

Parameters
• fields (FieldBase) – Collection of fields
• quantities – A 2d list of quantities that are shown in a rectangular arrangement. If quan-
tities is a simple list, the panels will be rendered as a single row. Each panel is defined by a
dictionary, where the mandatory item ‘source’ defines what is being shown. Here, an integer
specifies the component that is extracted from the field while a function is evaluate with the
full state as an input and the result is shown. Additional items in the dictionary can be ‘title’
(setting the title of the panel), ‘scale’ (defining the color range shown; these are typically two
numbers defining the lower and upper bound, but if only one is given the range [0, scale] is
assumed), and ‘cmap’ (defining the colormap being used).

• scale (str, float, tuple of float) – Flag determining how the range of the
color scale is determined. In the simplest case a tuple of numbers marks the lower and upper
end of the scalar values that will be shown. If only a single number is supplied, the range starts
at zero and ends at the given number. Additionally, the special value ‘automatic’ determines
the range from the range of scalar values.

• ((fig) – class:matplotlib.figure.Figure): Figure to be used for plotting. If `None, a new figure
is created.

• title (str) – Title of the plot.
• tight (bool) – Whether to call matplotlib.pyplot.tight_layout(). This af-
fects the layout of all plot elements.

• show (bool) – Flag determining whether to show a plot. If False, the plot is kept in the
background, which can be useful if it only needs to be written to a file.

classmethod from_storage(storage, quantities=None, scale='automatic', tight=False, show=True)
create ScalarFieldPlot from storage

Parameters
• storage (StorageBase) – Instance of the storage class that contains the data
• quantities – A 2d list of quantities that are shown in a rectangular arrangement. If
quantities is a simple list, the panels will be rendered as a single row. Each panel is defined
by a dictionary, where the mandatory item ‘source’ defines what is being shown. Here, an
integer specifies the component that is extracted from the field while a function is evaluate
with the full state as an input and the result is shown. Additional items in the dictionary
can be ‘title’ (setting the title of the panel), ‘scale’ (defining the color range shown; these are

4.8. pde.visualization package 247

https://napari.org
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.tight_layout.html#matplotlib.pyplot.tight_layout
https://docs.python.org/3/library/functions.html#bool

py-pde Documentation, Release unknown

typically two numbers defining the lower and upper bound, but if only one is given the range
[0, scale] is assumed), and ‘cmap’ (defining the colormap being used).

• scale (str, float, tuple of float) – Flag determining how the range of
the color scale is determined. In the simplest case a tuple of numbers marks the lower and
upper end of the scalar values that will be shown. If only a single number is supplied, the
range starts at zero and ends at the given number. Additionally, the special value ‘automatic’
determines the range from the range of scalar values.

• tight (bool) – Whether to call matplotlib.pyplot.tight_layout(). This
affects the layout of all plot elements.

• show (bool) – Flag determining whether to show a plot. If False, the plot is kept in the
background.

Returns
ScalarFieldPlot

Return type
ScalarFieldPlot

make_movie(storage, filename, progress=True)
make a movie from the data stored in storage

Parameters
• storage (StorageBase) – The storage instance that contains all the data for the movie
• filename (str) – The filename to which the movie is written. The extension determines
the format used.

• progress (bool) – Flag determining whether the progress of making the movie is shown.
Return type

None
savefig(path, **kwargs)

save plot to file
Parameters

• path (str) – The path to the file where the image is written. The file extension determines
the image format

• **kwargs – Additional arguments are forwarded to matplotlib.figure.Figure.
savefig().

update(fields, title=None)
update the plot with the given fields

Parameters
• fields (FieldBase) – The field or field collection of which the defined quantities are
shown.

• title (str, optional) – The title of this view. IfNone, the current title is not changed.
Return type

None
extract_field(fields, source=None, check_rank=None)

Extracts a single field from a possible collection.
Parameters

248 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.tight_layout.html#matplotlib.pyplot.tight_layout
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.savefig
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.savefig
https://docs.python.org/3/library/stdtypes.html#str

py-pde Documentation, Release unknown

• fields (FieldBase) – The field from which data is extracted
• source (int or callable, optional) – Determines how a field is extracted from
fields. If None, fields is passed as is, assuming it is already a scalar field. This works for the
simple, standard case where only a single ScalarField is treated. Alternatively, source can
be an integer, indicating which field is extracted from an instance of FieldCollection.
Lastly, source can be a function that takes fields as an argument and returns the desired field.

• check_rank (int, optional) – Can be given to check whether the extracted field has
the correct rank (0 = ScalarField, 1 = VectorField, …).

Returns
The extracted field

Return type
DataFieldBase

plot_interactive(storage, time_scaling='exact', viewer_args=None, **kwargs)
plots stored data interactively using the napari viewer

Parameters
• storage (StorageBase) – The storage instance that contains all the data
• time_scaling (str) – Defines how the time axis is scaled. Possible options are “exact”
(the actual time points are used), or “scaled” (the axis is scaled so that it has similar dimension
to the spatial axes). Note that the spatial axes will never be scaled.

• viewer_args (dict) – Arguments passed to napari.viewer.Viewer to affect the
viewer.

• **kwargs – Extra arguments passed to the plotting function
plot_kymograph(storage, field_index=None, scalar='auto', extract='auto', colorbar=True, transpose=False, *args,

title=None, filename=None, action='auto', ax_style=None, fig_style=None, ax=None, **kwargs)
plots a single kymograph from stored data
The kymograph shows line data stacked along time. Consequently, the resulting image shows space along the
horizontal axis and time along the vertical axis.

Parameters
• storage (StorageBase) – The storage instance that contains all the data
• field_index (int) – An index to choose a single field out of many in a collection stored
in storage. This option should not be used if only a single field is stored in a collection.

• scalar (str) – The method for extracting scalars as described in DataFieldBase.
to_scalar().

• extract (str) – The method used for extracting the line data. See the docstring of the grid
method get_line_data to find supported values.

• colorbar (bool) – Whether to show a colorbar or not
• transpose (bool) – Determines whether the transpose of the data should is plotted
• title (str) – Title of the plot. If omitted, the title might be chosen automatically.
• filename (str, optional) – If given, the plot is written to the specified file.
• action (str) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() will be called to show the plot. If the value is none, the
figure will be created, but not necessarily shown. The value close closes the figure, after saving

4.8. pde.visualization package 249

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://napari.org
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://napari.org/api/napari.view_layers.Viewer.html#napari.view_layers.Viewer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show

py-pde Documentation, Release unknown

it to a file when filename is given. The default value auto implies that the plot is shown if it is
not a nested plot call.

• ax_style (dict) – Dictionary with properties that will be changed on the axis after the
plot has been drawn by calling matplotlib.pyplot.setp(). A special item i this
dictionary is use_offset, which is flag that can be used to control whether offset are shown
along the axes of the plot.

• fig_style (dict) – Dictionary with properties that will be changed on the figure after
the plot has been drawn by calling matplotlib.pyplot.setp(). For instance, using
fig_style={‘dpi’: 200} increases the resolution of the figure.

• ax (matplotlib.axes.Axes) – Figure axes to be used for plotting. The special value
“create” creates a new figure, while “reuse” attempts to reuse an existing figure, which is the
default.

• **kwargs – Additional keyword arguments are passed to matplotlib.pyplot.
imshow().

Returns
The reference to the plot

Return type
PlotReference

plot_kymographs(storage, scalar='auto', extract='auto', colorbar=True, transpose=False, resize_fig=True, *args,
title=None, constrained_layout=True, filename=None, action='auto', fig_style=None, fig=None,
**kwargs)

plots kymographs for all fields stored in storage
The kymograph shows line data stacked along time. Consequently, the resulting image shows space along the
horizontal axis and time along the vertical axis.

Parameters
• storage (StorageBase) – The storage instance that contains all the data
• scalar (str) – The method for extracting scalars as described in DataFieldBase.
to_scalar().

• extract (str) – The method used for extracting the line data. See the docstring of the grid
method get_line_data to find supported values.

• colorbar (bool) – Whether to show a colorbar or not
• transpose (bool) – Determines whether the transpose of the data should is plotted
• resize_fig (bool) – Whether to resize the figure to adjust to the number of panels
• title (str) – Title of the plot. If omitted, the title might be chosen automatically. This is
shown above all panels.

• constrained_layout (bool) – Whether to use constrained_layout in matplotlib.
pyplot.figure() call to create a figure. This affects the layout of all plot elements.
Generally, spacing might be better with this flag enabled, but it can also lead to problems when
plotting multiple plots successively, e.g., when creating a movie.

• filename (str, optional) – If given, the figure is written to the specified file.
• action (str) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() will be called to show the plot. If the value is none, the
figure will be created, but not necessarily shown. The value close closes the figure, after saving

250 Chapter 4. Reference manual

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show

py-pde Documentation, Release unknown

it to a file when filename is given. The default value auto implies that the plot is shown if it is
not a nested plot call.

• fig_style (dict) – Dictionary with properties that will be changed on the figure after
the plot has been drawn by calling matplotlib.pyplot.setp(). For instance, using
fig_style={‘dpi’: 200} increases the resolution of the figure.

• fig (matplotlib.figures.Figure) – Figure that is used for plotting. If omitted, a
new figure is created.

• **kwargs – Additional keyword arguments are passed to the calls to matplotlib.
pyplot.imshow().

Returns
The references to all plots

Return type
list of PlotReference

plot_magnitudes(storage, quantities=None, *args, title=None, filename=None, action='auto', ax_style=None,
fig_style=None, ax=None, **kwargs)

plot spatially averaged quantities as a function of time
For scalar fields, the default is to plot the average value while the averaged norm is plotted for vector fields.

Parameters
• storage (StorageBase) – Instance of StorageBase that contains the simulation data
that will be plotted

• quantities – A 2d list of quantities that are shown in a rectangular arrangement. If quan-
tities is a simple list, the panels will be rendered as a single row. Each panel is defined by a
dictionary, where the mandatory item ‘source’ defines what is being shown. Here, an integer
specifies the component that is extracted from the field while a function is evaluate with the
full state as an input and the result is shown. Additional items in the dictionary can be ‘title’
(setting the title of the panel), ‘scale’ (defining the color range shown; these are typically two
numbers defining the lower and upper bound, but if only one is given the range [0, scale] is
assumed), and ‘cmap’ (defining the colormap being used).

• title (str) – Title of the plot. If omitted, the title might be chosen automatically.
• filename (str, optional) – If given, the plot is written to the specified file.
• action (str) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() will be called to show the plot. If the value is none, the
figure will be created, but not necessarily shown. The value close closes the figure, after saving
it to a file when filename is given. The default value auto implies that the plot is shown if it is
not a nested plot call.

• ax_style (dict) – Dictionary with properties that will be changed on the axis after the
plot has been drawn by calling matplotlib.pyplot.setp(). A special item i this
dictionary is use_offset, which is flag that can be used to control whether offset are shown
along the axes of the plot.

• fig_style (dict) – Dictionary with properties that will be changed on the figure after
the plot has been drawn by calling matplotlib.pyplot.setp(). For instance, using
fig_style={‘dpi’: 200} increases the resolution of the figure.

• ax (matplotlib.axes.Axes) – Figure axes to be used for plotting. The special value
“create” creates a new figure, while “reuse” attempts to reuse an existing figure, which is the
default.

4.8. pde.visualization package 251

https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes

py-pde Documentation, Release unknown

• **kwargs – All remaining parameters are forwarded to the ax.plot method
Returns

The reference to the plot
Return type

PlotReference

Indices and tables
• genindex
• modindex
• search

252 Chapter 4. Reference manual

PYTHON MODULE INDEX

f
pde.fields, 57
pde.fields.base, 58
pde.fields.collection, 70
pde.fields.scalar, 76
pde.fields.tensorial, 79
pde.fields.vectorial, 84

g
pde.grids, 89
pde.grids.base, 132
pde.grids.boundaries, 90
pde.grids.boundaries.axes, 92
pde.grids.boundaries.axis, 94
pde.grids.boundaries.local, 97
pde.grids.cartesian, 143
pde.grids.cylindrical, 149
pde.grids.operators, 121
pde.grids.operators.cartesian, 122
pde.grids.operators.common, 124
pde.grids.operators.cylindrical_sym, 124
pde.grids.operators.polar_sym, 127
pde.grids.operators.spherical_sym, 129
pde.grids.spherical, 153

p
pde, 57
pde.pdes, 160
pde.pdes.allen_cahn, 161
pde.pdes.base, 162
pde.pdes.cahn_hilliard, 166
pde.pdes.diffusion, 167
pde.pdes.kpz_interface, 168
pde.pdes.kuramoto_sivashinsky, 169
pde.pdes.laplace, 171
pde.pdes.pde, 172
pde.pdes.swift_hohenberg, 174
pde.pdes.wave, 175

s
pde.solvers, 176
pde.solvers.base, 180

pde.solvers.controller, 181
pde.solvers.explicit, 182
pde.solvers.explicit_mpi, 183
pde.solvers.implicit, 184
pde.solvers.scipy, 185
pde.storage, 185
pde.storage.base, 186
pde.storage.file, 190
pde.storage.memory, 191

t
pde.tools, 193
pde.tools.cache, 194
pde.tools.config, 199
pde.tools.cuboid, 201
pde.tools.docstrings, 203
pde.tools.expressions, 204
pde.tools.math, 209
pde.tools.misc, 210
pde.tools.mpi, 213
pde.tools.numba, 214
pde.tools.output, 216
pde.tools.parameters, 217
pde.tools.parse_duration, 220
pde.tools.plotting, 220
pde.tools.spectral, 225
pde.tools.typing, 226
pde.trackers, 226
pde.trackers.base, 227
pde.trackers.interactive, 230
pde.trackers.interrupts, 232
pde.trackers.trackers, 236

v
pde.visualization, 244
pde.visualization.movies, 244
pde.visualization.plotting, 247

253

py-pde Documentation, Release unknown

254 Python Module Index

INDEX

A
add_figure() (Movie method), 245
add_scaled_colorbar() (in module

pde.tools.plotting), 222
AdjacentEvaluator (class in pde.tools.typing), 226
AllenCahnPDE (class in pde.pdes.allen_cahn), 161
append() (StorageBase method), 186
apply() (FieldBase method), 66
apply() (StorageBase method), 186
asanyarray_flags() (in module pde.tools.cuboid),

202
assert_field_compatible() (FieldBase method),

66
assert_field_compatible() (FieldCollection

method), 70
assert_grid_compatible() (GridBase method),

132
attributes (FieldBase property), 66
attributes (FieldCollection property), 71
attributes_serialized (FieldBase property), 66
attributes_serialized (FieldCollection property),

71
average (DataFieldBase property), 58
averages (FieldCollection property), 71
ax (PlotReference attribute), 221
axes (CylindricalSymGrid attribute), 149
axes (GridBase attribute), 132
axes (PolarSymGrid attribute), 153
axes (SphericalSymGrid attribute), 155
axes (SphericalSymGridBase attribute), 156
axes (UnitGrid attribute), 147
axes_bounds (GridBase property), 133
axes_coords (GridBase property), 133
axes_symmetric (CylindricalSymGrid attribute), 149
axes_symmetric (GridBase attribute), 133
axes_symmetric (PolarSymGrid attribute), 154
axes_symmetric (SphericalSymGrid attribute), 155
axis (BoundaryAxisBase property), 94
axis_coord (BCBase property), 98

B
BasicOutput (class in pde.tools.output), 216

BasicPlottingContext (class in pde.tools.plotting),
221

BCBase (class in pde.grids.boundaries.local), 98
BCDataError, 101
Boundaries (class in pde.grids.boundaries.axes), 92
boundary_names (CartesianGrid attribute), 143
boundary_names (CylindricalSymGrid attribute), 149
boundary_names (GridBase attribute), 133
boundary_names (SphericalSymGridBase attribute),

156
BoundaryAxisBase (class in

pde.grids.boundaries.axis), 94
BoundaryPair (class in pde.grids.boundaries.axis), 95
BoundaryPeriodic (class in

pde.grids.boundaries.axis), 96
bounds (Cuboid property), 201
bounds (SmoothData1D property), 209
buffer() (Cuboid method), 201

C
cache_rhs (PDEBase attribute), 162
cached_method (class in pde.tools.cache), 194
cached_property (class in pde.tools.cache), 196
CahnHilliardPDE (class in pde.pdes.cahn_hilliard),

166
CallbackTracker (class in pde.trackers.trackers), 236
CartesianGrid (class in pde.grids.cartesian), 143
cell_coords (GridBase attribute), 133
cell_volume_data (CartesianGrid property), 144
cell_volume_data (CylindricalSymGrid attribute),

149
cell_volume_data (GridBase attribute), 133
cell_volume_data (PolarSymGrid attribute), 154
cell_volume_data (SphericalSymGrid attribute), 155
cell_volume_data (SphericalSymGridBase attribute),

156
cell_volumes (GridBase attribute), 133
CellVolume (class in pde.tools.typing), 226
centroid (Cuboid property), 201
check_implementation (PDEBase attribute), 162
check_length() (DictFiniteCapacity method), 194

255

py-pde Documentation, Release unknown

check_package_version() (in module
pde.tools.config), 200

check_rhs_consistency() (PDEBase method),
162

check_value_rank() (BCBase method), 98
check_value_rank() (Boundaries method), 92
check_value_rank() (BoundaryPair method), 95
check_value_rank() (BoundaryPeriodic method),

96
classmethod() (hybridmethod method), 211
classproperty (class in pde.tools.misc), 210
clear() (FileStorage method), 190
clear() (MemoryStorage method), 191
clear() (StorageBase method), 186
close() (FileStorage method), 190
close() (JupyterPlottingContext method), 221
close() (NapariViewer method), 231
close() (PlottingContextBase method), 222
compatible_with() (GridBase method), 133
complex (ExpressionBase property), 204
complex_valued (PDEBase attribute), 163
Config (class in pde.tools.config), 199
conjugate() (FieldBase method), 67
ConsistencyTracker (class in pde.trackers.trackers),

237
constant (ExpressionBase property), 204
ConstantInterrupts (class in

pde.trackers.interrupts), 232
ConstBC1stOrderBase (class in

pde.grids.boundaries.local), 101
ConstBC2ndOrderBase (class in

pde.grids.boundaries.local), 103
ConstBCBase (class in pde.grids.boundaries.local), 105
contains_point() (Cuboid method), 201
contains_point() (GridBase method), 133
Controller (class in pde.solvers), 177
Controller (class in pde.solvers.controller), 181
ConvergenceError, 184
convert() (Parameter method), 218
coordinate_arrays (GridBase attribute), 134
coordinate_constraints (CylindricalSymGrid at-

tribute), 150
coordinate_constraints (GridBase attribute), 134
coordinate_constraints (PolarSymGrid at-

tribute), 154
coordinate_constraints (SphericalSymGrid at-

tribute), 155
copy() (BCBase method), 98
copy() (Boundaries method), 92
copy() (BoundaryAxisBase method), 94
copy() (BoundaryPeriodic method), 96
copy() (ConstantInterrupts method), 232
copy() (ConstBCBase method), 105
copy() (Cuboid method), 201

copy() (DataFieldBase method), 58
copy() (ExpressionBC method), 109
copy() (FieldBase method), 67
copy() (FieldCollection method), 71
copy() (FixedInterrupts method), 233
copy() (GridBase method), 134
copy() (InterruptsBase method), 233
copy() (MixedBC method), 113
copy() (ScalarExpression method), 206
copy() (StorageBase method), 186
copy() (UserBC method), 119
corners (Cuboid property), 201
Counter (class in pde.tools.numba), 214
cuboid (CartesianGrid attribute), 144
Cuboid (class in pde.tools.cuboid), 201
cuboid (UnitGrid attribute), 148
CurvatureBC (class in pde.grids.boundaries.local), 106
CylindricalSymGrid (class in pde.grids.cylindrical),

149

D
data (DataTracker attribute), 237
data (FieldBase property), 67
data (FileStorage property), 190
data (MemoryStorage attribute), 191
data (StorageBase attribute), 187
data_shape (DataFieldBase property), 58
data_shape (StorageBase property), 187
DataFieldBase (class in pde.fields.base), 58
dataframe (DataTracker property), 238
DataTracker (class in pde.trackers.trackers), 237
decorator_arguments() (in module pde.tools.misc),

210
default_capacity (DictFiniteCapacity attribute), 194
deleter() (classproperty method), 210
depends_on() (ExpressionBase method), 205
DeprecatedParameter (class in

pde.tools.parameters), 217
derivative() (SmoothData1D method), 209
derivatives (ScalarExpression attribute), 206
derivatives (TensorExpression attribute), 207
diagnostics (CahnHilliardPDE attribute), 166
diagnostics (DiffusionPDE attribute), 167
diagnostics (KPZInterfacePDE attribute), 169
diagnostics (KuramotoSivashinskyPDE attribute), 170
diagnostics (PDE attribute), 173
diagnostics (PDEBase attribute), 163
diagnostics (SwiftHohenbergPDE attribute), 174
diagnostics (WavePDE attribute), 175
diagonal (Cuboid property), 201
DictFiniteCapacity (class in pde.tools.cache), 194
difference_vector_real() (GridBase method),

134
differentiate() (ScalarExpression method), 206

256 Index

py-pde Documentation, Release unknown

differentiate() (TensorExpression method), 207
DiffusionPDE (class in pde.pdes.diffusion), 167
dim (Cuboid property), 201
dim (CylindricalSymGrid attribute), 150
dim (GridBase attribute), 134
dim (PolarSymGrid attribute), 154
dim (SphericalSymGrid attribute), 155
dim (SphericalSymGridBase attribute), 156
dim (UnitGrid attribute), 148
DimensionError, 132
DirichletBC (class in pde.grids.boundaries.local), 107
disable_interactive() (in module

pde.tools.plotting), 222
discretization (GridBase property), 134
discretize_interval() (in module

pde.grids.base), 142
display_progress() (in module pde.tools.output),

216
distance_real() (GridBase method), 135
divergence() (Tensor2Field method), 80
divergence() (VectorField method), 84
DomainError, 132
dot() (Tensor2Field method), 80
dot() (VectorField method), 84
dt (ConstantInterrupts attribute), 232
dt (FixedInterrupts attribute), 233
dt (InterruptsBase attribute), 233
dt (LogarithmicInterrupts attribute), 234
dt (RealtimeInterrupts attribute), 235
dt_max (ExplicitSolver attribute), 178, 182
dt_min (ExplicitSolver attribute), 178, 182
dtype (FieldBase property), 67
dtype (StorageBase property), 187

E
element (PlotReference attribute), 221
end_writing() (FileStorage method), 190
end_writing() (StorageBase method), 187
ensure_directory_exists() (in module

pde.tools.misc), 211
environment variable

PYTHONPATH, 4
environment() (in module pde.tools.config), 200
estimate_computation_speed() (in module

pde.tools.misc), 211
evaluate() (in module pde.tools.expressions), 207
evolution_rate() (AllenCahnPDE method), 161
evolution_rate() (CahnHilliardPDE method), 166
evolution_rate() (DiffusionPDE method), 167
evolution_rate() (KPZInterfacePDE method), 169
evolution_rate() (KuramotoSivashinskyPDE

method), 170
evolution_rate() (PDE method), 173
evolution_rate() (PDEBase method), 163

evolution_rate() (SwiftHohenbergPDE method),
174

evolution_rate() (WavePDE method), 176
explicit_time_dependence (AllenCahnPDE at-

tribute), 161
explicit_time_dependence (CahnHilliardPDE

attribute), 167
explicit_time_dependence (DiffusionPDE

attribute), 168
explicit_time_dependence (KPZInterfacePDE

attribute), 169
explicit_time_dependence (KuramotoSivashin-

skyPDE attribute), 170
explicit_time_dependence (PDEBase attribute),

163
explicit_time_dependence (SwiftHohenbergPDE

attribute), 175
explicit_time_dependence (WavePDE attribute),

176
ExplicitMPISolver (class in

pde.solvers.explicit_mpi), 183
ExplicitSolver (class in pde.solvers), 177
ExplicitSolver (class in pde.solvers.explicit), 182
expr_prod() (in module pde.pdes.base), 165
expression (AllenCahnPDE property), 161
expression (CahnHilliardPDE property), 167
expression (DiffusionPDE property), 168
expression (ExpressionBase property), 205
expression (KPZInterfacePDE property), 169
expression (KuramotoSivashinskyPDE property), 170
expression (SwiftHohenbergPDE property), 175
ExpressionBase (class in pde.tools.expressions), 204
ExpressionBC (class in pde.grids.boundaries.local),

108
ExpressionDerivativeBC (class in

pde.grids.boundaries.local), 110
expressions (PDE property), 173
expressions (WavePDE property), 176
ExpressionValueBC (class in

pde.grids.boundaries.local), 111
extract_field() (in module

pde.visualization.plotting), 248
extract_field() (StorageBase method), 187
extract_time_range() (StorageBase method), 187

F
factory (OperatorInfo attribute), 142
FieldBase (class in pde.fields.base), 66
FieldCollection (class in pde.fields.collection), 70
fields (FieldCollection property), 71
FileStorage (class in pde.storage.file), 190
fill_in_docstring() (in module

pde.tools.docstrings), 203
finalize() (DataTracker method), 238

Index 257

py-pde Documentation, Release unknown

finalize() (InteractivePlotTracker method), 230
finalize() (PlotTracker method), 241
finalize() (ProgressTracker method), 242
finalize() (StorageTracker method), 189
finalize() (TrackerBase method), 227
finalize() (TrackerCollection method), 228
FinishedSimulation, 227
FixedInterrupts (class in pde.trackers.interrupts),

233
flat_idx() (in module pde.tools.numba), 215
flip_sign (BoundaryPeriodic property), 97
fluctuations (DataFieldBase property), 58
from_bounds() (CartesianGrid class method), 144
from_bounds() (Cuboid class method), 201
from_bounds() (CylindricalSymGrid class method),

150
from_bounds() (GridBase class method), 135
from_bounds() (SphericalSymGridBase class method),

156
from_centerpoint() (Cuboid class method), 202
from_collection() (MemoryStorage class method),

192
from_data() (BCBase class method), 98
from_data() (Boundaries class method), 92
from_data() (BoundaryPair class method), 96
from_data() (FieldCollection class method), 71
from_data() (TrackerBase class method), 228
from_data() (TrackerCollection class method), 229
from_dict() (BCBase class method), 99
from_dict() (FieldCollection class method), 72
from_expression() (ScalarField class method), 76
from_expression() (Tensor2Field class method), 81
from_expression() (VectorField class method), 85
from_fields() (MemoryStorage class method), 192
from_file() (FieldBase class method), 67
from_image() (ScalarField class method), 76
from_name() (SolverBase class method), 180
from_points() (Cuboid class method), 202
from_polar_coordinates() (CartesianGrid

method), 144
from_scalar_expressions() (FieldCollection

class method), 72
from_scalars() (VectorField class method), 85
from_state() (CartesianGrid class method), 144
from_state() (CylindricalSymGrid class method), 150
from_state() (DataFieldBase class method), 59
from_state() (FieldBase class method), 68
from_state() (FieldCollection class method), 72
from_state() (GridBase class method), 135
from_state() (SphericalSymGridBase class method),

156
from_state() (UnitGrid class method), 148
from_storage() (ScalarFieldPlot class method), 247
from_str() (BCBase class method), 99

G
get_all_parameters() (in module

pde.tools.parameters), 219
get_axis_index() (GridBase method), 135
get_boundary_axis() (in module

pde.grids.boundaries.axis), 97
get_boundary_conditions() (GridBase method),

135
get_boundary_values() (DataFieldBase method),

59
get_cartesian_grid() (CylindricalSymGrid

method), 150
get_cartesian_grid() (SphericalSymGridBase

method), 157
get_class_by_rank() (DataFieldBase class

method), 59
get_common_dtype() (in module pde.tools.misc), 211
get_common_numba_dtype() (in module

pde.tools.numba), 215
get_compiled() (ExpressionBase method), 205
get_compiled_array() (TensorExpression method),

207
get_current_time() (Controller method), 177, 181
get_data() (BCBase method), 99
get_data() (BoundaryAxisBase method), 94
get_data() (ConstBC1stOrderBase method), 102
get_data() (ConstBC2ndOrderBase method), 104
get_data() (ExpressionBC method), 109
get_help() (BCBase class method), 100
get_help() (Boundaries class method), 93
get_help() (BoundaryAxisBase class method), 94
get_image_data() (CartesianGrid method), 144
get_image_data() (CylindricalSymGrid method),

150
get_image_data() (DataFieldBase method), 59
get_image_data() (FieldBase method), 68
get_image_data() (FieldCollection method), 72
get_image_data() (GridBase method), 136
get_image_data() (SphericalSymGridBase method),

157
get_initial_condition() (WavePDE method),

176
get_line_data() (CartesianGrid method), 145
get_line_data() (CylindricalSymGrid method), 151
get_line_data() (DataFieldBase method), 60
get_line_data() (FieldBase method), 68
get_line_data() (FieldCollection method), 73
get_line_data() (GridBase method), 136
get_line_data() (SphericalSymGridBase method),

157
get_mathematical_representation()

(BCBase method), 100
get_mathematical_representation()

(Boundaries method), 93

258 Index

py-pde Documentation, Release unknown

get_mathematical_representation()
(BoundaryAxisBase method), 94

get_mathematical_representation() (Cur-
vatureBC method), 107

get_mathematical_representation()
(DirichletBC method), 108

get_mathematical_representation() (Ex-
pressionBC method), 109

get_mathematical_representation()
(MixedBC method), 113

get_mathematical_representation() (Neu-
mannBC method), 114

get_mathematical_representation()
(UserBC method), 120

get_memory_storage() (in module
pde.storage.memory), 192

get_named_trackers() (in module
pde.trackers.base), 230

get_package_versions() (in module
pde.tools.config), 200

get_parameter_default() (Parameterized
method), 218

get_parameters() (Parameterized class method), 219
get_plotting_context() (in module

pde.tools.plotting), 223
get_progress_bar_class() (in module

pde.tools.output), 217
get_random_point() (CartesianGrid method), 145
get_random_point() (CylindricalSymGrid method),

151
get_random_point() (GridBase method), 136
get_random_point() (SphericalSymGridBase

method), 157
get_text_block() (in module pde.tools.docstrings),

203
get_vector_data() (DataFieldBase method), 60
get_vector_data() (VectorField method), 85
get_virtual_point() (BCBase method), 100
get_virtual_point() (ConstBC1stOrderBase

method), 102
get_virtual_point() (ConstBC2ndOrderBase

method), 104
get_virtual_point() (ExpressionBC method), 109
get_virtual_point_data() (Con-

stBC1stOrderBase method), 102
get_virtual_point_data() (Con-

stBC2ndOrderBase method), 104
get_virtual_point_data() (CurvatureBC

method), 107
get_virtual_point_data() (DirichletBC

method), 108
get_virtual_point_data() (MixedBC method),

113
get_virtual_point_data() (NeumannBC

method), 114
getter() (classproperty method), 210
GhostCellSetter (class in pde.tools.typing), 226
gradient() (ScalarField method), 77
gradient() (VectorField method), 86
gradient_squared() (ScalarField method), 77
grid (Boundaries attribute), 93
grid (BoundaryAxisBase property), 94
grid (FieldBase property), 68
grid (StorageBase property), 188
GridBase (class in pde.grids.base), 132

H
handle() (CallbackTracker method), 236
handle() (ConsistencyTracker method), 237
handle() (DataTracker method), 238
handle() (InteractivePlotTracker method), 231
handle() (MaterialConservationTracker method), 239
handle() (PlotTracker method), 241
handle() (PrintTracker method), 241
handle() (ProgressTracker method), 242
handle() (RuntimeTracker method), 243
handle() (SteadyStateTracker method), 244
handle() (StorageTracker method), 189
handle() (TrackerBase method), 228
handle() (TrackerCollection method), 229
has_collection (StorageBase property), 188
has_hole (SphericalSymGridBase property), 158
hash_mutable() (in module pde.tools.cache), 198
hash_readable() (in module pde.tools.cache), 198
hdf_write_attributes() (in module

pde.tools.misc), 211
HideParameter (class in pde.tools.parameters), 218
high (BoundaryAxisBase attribute), 94
high (BoundaryPair attribute), 96
high (BoundaryPeriodic attribute), 97
homogeneous (BCBase attribute), 100
homogeneous (CurvatureBC attribute), 107
homogeneous (DirichletBC attribute), 108
homogeneous (ExpressionBC attribute), 110
homogeneous (ExpressionDerivativeBC attribute), 111
homogeneous (ExpressionValueBC attribute), 112
homogeneous (MixedBC attribute), 113
homogeneous (NeumannBC attribute), 115
homogeneous (NormalCurvatureBC attribute), 115
homogeneous (NormalDirichletBC attribute), 116
homogeneous (NormalMixedBC attribute), 117
homogeneous (NormalNeumannBC attribute), 118
homogeneous (UserBC attribute), 120
hybridmethod (class in pde.tools.misc), 211

I
imag (FieldBase property), 68
ImplicitSolver (class in pde.solvers), 178

Index 259

py-pde Documentation, Release unknown

ImplicitSolver (class in pde.solvers.implicit), 184
import_class() (in module pde.tools.misc), 212
in_ipython() (in module pde.tools.plotting), 223
in_jupyter_notebook() (in module

pde.tools.output), 217
increment() (Counter method), 215
info (ExplicitMPISolver attribute), 183
info (ExplicitSolver attribute), 182
info (ImplicitSolver attribute), 184
info (ScipySolver attribute), 185
initialize() (ConstantInterrupts method), 232
initialize() (FixedInterrupts method), 233
initialize() (InteractivePlotTracker method), 231
initialize() (InterruptsBase method), 234
initialize() (MaterialConservationTracker method),

240
initialize() (PlotTracker method), 241
initialize() (ProgressTracker method), 242
initialize() (RealtimeInterrupts method), 235
initialize() (RuntimeTracker method), 243
initialize() (StorageTracker method), 189
initialize() (TrackerBase method), 228
initialize() (TrackerCollection method), 229
initialized (in module pde.tools.mpi), 213
insert() (DataFieldBase method), 60
instancemethod() (hybridmethod method), 211
integral (DataFieldBase property), 60
integral (ScalarField property), 78
integral (Tensor2Field property), 81
integral (VectorField property), 86
integrals (FieldCollection property), 73
integrate() (GridBase method), 136
InteractivePlotTracker (class in

pde.trackers.interactive), 230
interface_width (AllenCahnPDE attribute), 161
interpolate() (DataFieldBase method), 60
interpolate_to_grid() (DataFieldBase method),

61
interpolate_to_grid() (FieldCollection method),

73
InterruptsBase (class in pde.trackers.interrupts), 233
interval_to_interrupts() (in module

pde.trackers.interrupts), 235
is_available() (Movie class method), 245
is_complex (FieldBase property), 68
is_main (in module pde.tools.mpi), 213
is_sde (PDEBase property), 163
is_zero (ScalarExpression property), 206
items() (StorageBase method), 188
iter_mirror_points() (CartesianGrid method),

145
iter_mirror_points() (CylindricalSymGrid

method), 151
iter_mirror_points() (GridBase method), 137

iter_mirror_points() (SphericalSymGridBase
method), 158

J
jit() (in module pde.tools.numba), 215
JupyterOutput (class in pde.tools.output), 216
JupyterPlottingContext (class in

pde.tools.plotting), 221

K
KPZInterfacePDE (class in pde.pdes.kpz_interface),

168
KuramotoSivashinskyPDE (class in

pde.pdes.kuramoto_sivashinsky), 169

L
label (FieldBase property), 68
labels (FieldCollection property), 73
laplace() (ScalarField method), 78
laplace() (VectorField method), 86
length (CylindricalSymGrid property), 152
link_value() (ConstBCBase method), 106
LivePlotTracker (class in pde.trackers.trackers), 238
LogarithmicInterrupts (class in

pde.trackers.interrupts), 234
low (BoundaryAxisBase attribute), 95
low (BoundaryPair attribute), 96
low (BoundaryPeriodic attribute), 97

M
magnitude (DataFieldBase property), 61
magnitudes (FieldCollection property), 74
make_adjacent_evaluator() (BCBase method),

100
make_adjacent_evaluator() (Con-

stBC1stOrderBase method), 102
make_adjacent_evaluator() (Con-

stBC2ndOrderBase method), 104
make_adjacent_evaluator() (ExpressionBC

method), 110
make_array_constructor() (in module

pde.tools.numba), 215
make_cell_volume_compiled() (GridBase

method), 137
make_colored_noise() (in module

pde.tools.spectral), 225
make_divergence() (in module

pde.grids.operators.cartesian), 122
make_divergence() (in module

pde.grids.operators.cylindrical_sym), 125
make_divergence() (in module

pde.grids.operators.polar_sym), 127
make_divergence() (in module

pde.grids.operators.spherical_sym), 129

260 Index

py-pde Documentation, Release unknown

make_dot_operator() (Tensor2Field method), 81
make_dot_operator() (VectorField method), 87
make_general_poisson_solver() (in module

pde.grids.operators.common), 124
make_ghost_cell_sender() (BCBase method),

100
make_ghost_cell_setter() (BCBase method),

100
make_ghost_cell_setter() (Boundaries method),

93
make_ghost_cell_setter() (BoundaryAxisBase

method), 95
make_ghost_cell_setter() (UserBC method),

120
make_gradient() (in module

pde.grids.operators.cartesian), 122
make_gradient() (in module

pde.grids.operators.cylindrical_sym), 125
make_gradient() (in module

pde.grids.operators.polar_sym), 127
make_gradient() (in module

pde.grids.operators.spherical_sym), 129
make_gradient_squared() (in module

pde.grids.operators.cylindrical_sym), 125
make_gradient_squared() (in module

pde.grids.operators.polar_sym), 127
make_gradient_squared() (in module

pde.grids.operators.spherical_sym), 130
make_inserter_compiled() (GridBase method),

137
make_integrator() (GridBase method), 137
make_interpolator() (DataFieldBase method), 62
make_laplace() (in module

pde.grids.operators.cartesian), 122
make_laplace() (in module

pde.grids.operators.cylindrical_sym), 126
make_laplace() (in module

pde.grids.operators.polar_sym), 128
make_laplace() (in module

pde.grids.operators.spherical_sym), 130
make_laplace_from_matrix() (in module

pde.grids.operators.common), 124
make_modify_after_step() (PDEBase method),

163
make_movie() (ScalarFieldPlot method), 248
make_normalize_point_compiled() (GridBase

method), 137
make_operator() (GridBase method), 138
make_operator_no_bc() (GridBase method), 138
make_outer_prod_operator() (VectorField

method), 87
make_pde_rhs() (PDEBase method), 163
make_poisson_solver() (in module

pde.grids.operators.cartesian), 122

make_poisson_solver() (in module
pde.grids.operators.polar_sym), 128

make_poisson_solver() (in module
pde.grids.operators.spherical_sym), 130

make_sde_rhs() (PDEBase method), 164
make_serializer() (in module pde.tools.cache), 198
make_stepper() (ExplicitMPISolver method), 183
make_stepper() (ExplicitSolver method), 178, 182
make_stepper() (ImplicitSolver method), 179, 184
make_stepper() (ScipySolver method), 179, 185
make_stepper() (SolverBase method), 180
make_tensor_divergence() (in module

pde.grids.operators.cartesian), 123
make_tensor_divergence() (in module

pde.grids.operators.cylindrical_sym), 126
make_tensor_divergence() (in module

pde.grids.operators.polar_sym), 128
make_tensor_divergence() (in module

pde.grids.operators.spherical_sym), 131
make_tensor_double_divergence() (in module

pde.grids.operators.spherical_sym), 131
make_unserializer() (in module pde.tools.cache),

198
make_vector_gradient() (in module

pde.grids.operators.cartesian), 123
make_vector_gradient() (in module

pde.grids.operators.cylindrical_sym), 126
make_vector_gradient() (in module

pde.grids.operators.polar_sym), 128
make_vector_gradient() (in module

pde.grids.operators.spherical_sym), 131
make_vector_laplace() (in module

pde.grids.operators.cartesian), 123
make_vector_laplace() (in module

pde.grids.operators.cylindrical_sym), 126
make_virtual_point_evaluator() (BCBase

method), 100
make_virtual_point_evaluator() (Con-

stBC1stOrderBase method), 103
make_virtual_point_evaluator() (Con-

stBC2ndOrderBase method), 104
make_virtual_point_evaluator() (Expres-

sionBC method), 110
make_virtual_point_evaluator() (UserBC

method), 120
MaterialConservationTracker (class in

pde.trackers.trackers), 239
MemoryStorage (class in pde.storage.memory), 191
MixedBC (class in pde.grids.boundaries.local), 112
module

pde, 57
pde.fields, 57
pde.fields.base, 58
pde.fields.collection, 70

Index 261

py-pde Documentation, Release unknown

pde.fields.scalar, 76
pde.fields.tensorial, 79
pde.fields.vectorial, 84
pde.grids, 89
pde.grids.base, 132
pde.grids.boundaries, 90
pde.grids.boundaries.axes, 92
pde.grids.boundaries.axis, 94
pde.grids.boundaries.local, 97
pde.grids.cartesian, 143
pde.grids.cylindrical, 149
pde.grids.operators, 121
pde.grids.operators.cartesian, 122
pde.grids.operators.common, 124
pde.grids.operators.cylindrical_sym,

124
pde.grids.operators.polar_sym, 127
pde.grids.operators.spherical_sym,

129
pde.grids.spherical, 153
pde.pdes, 160
pde.pdes.allen_cahn, 161
pde.pdes.base, 162
pde.pdes.cahn_hilliard, 166
pde.pdes.diffusion, 167
pde.pdes.kpz_interface, 168
pde.pdes.kuramoto_sivashinsky, 169
pde.pdes.laplace, 171
pde.pdes.pde, 172
pde.pdes.swift_hohenberg, 174
pde.pdes.wave, 175
pde.solvers, 176
pde.solvers.base, 180
pde.solvers.controller, 181
pde.solvers.explicit, 182
pde.solvers.explicit_mpi, 183
pde.solvers.implicit, 184
pde.solvers.scipy, 185
pde.storage, 185
pde.storage.base, 186
pde.storage.file, 190
pde.storage.memory, 191
pde.tools, 193
pde.tools.cache, 194
pde.tools.config, 199
pde.tools.cuboid, 201
pde.tools.docstrings, 203
pde.tools.expressions, 204
pde.tools.math, 209
pde.tools.misc, 210
pde.tools.mpi, 213
pde.tools.numba, 214
pde.tools.output, 216
pde.tools.parameters, 217

pde.tools.parse_duration, 220
pde.tools.plotting, 220
pde.tools.spectral, 225
pde.tools.typing, 226
pde.trackers, 226
pde.trackers.base, 227
pde.trackers.interactive, 230
pde.trackers.interrupts, 232
pde.trackers.trackers, 236
pde.visualization, 244
pde.visualization.movies, 244
pde.visualization.plotting, 247

module_available() (in module pde.tools.misc), 212
Movie (class in pde.visualization.movies), 244
movie() (in module pde.visualization.movies), 245
movie_multiple() (in module

pde.visualization.movies), 245
movie_scalar() (in module pde.visualization.movies),

246
mpi_allreduce() (in module pde.tools.mpi), 213
mpi_recv() (in module pde.tools.mpi), 213
mpi_send() (in module pde.tools.mpi), 214
mutable (Cuboid property), 202

N
name (ConsistencyTracker attribute), 237
name (ExplicitMPISolver attribute), 184
name (ExplicitSolver attribute), 178, 182
name (ImplicitSolver attribute), 179, 184
name (InteractivePlotTracker attribute), 231
name (LivePlotTracker attribute), 239
name (MaterialConservationTracker attribute), 240
name (OperatorInfo attribute), 142
name (PrintTracker attribute), 242
name (ProgressTracker attribute), 243
name (ScipySolver attribute), 179, 185
name (SteadyStateTracker attribute), 244
names (BCBase attribute), 100
names (CurvatureBC attribute), 107
names (DirichletBC attribute), 108
names (ExpressionBC attribute), 110
names (ExpressionDerivativeBC attribute), 111
names (ExpressionValueBC attribute), 112
names (MixedBC attribute), 113
names (NeumannBC attribute), 115
names (NormalCurvatureBC attribute), 115
names (NormalDirichletBC attribute), 116
names (NormalMixedBC attribute), 118
names (NormalNeumannBC attribute), 119
names (UserBC attribute), 120
napari_add_layers() (in module pde.tools.plotting),

223
napari_process() (in module

pde.trackers.interactive), 231

262 Index

py-pde Documentation, Release unknown

napari_viewer() (in module pde.tools.plotting), 223
NapariViewer (class in pde.trackers.interactive), 231
nested_plotting_check (class in

pde.tools.plotting), 223
NeumannBC (class in pde.grids.boundaries.local), 114
next() (ConstantInterrupts method), 233
next() (FixedInterrupts method), 233
next() (InterruptsBase method), 234
next() (LogarithmicInterrupts method), 234
next() (RealtimeInterrupts method), 235
noise_realization() (PDEBase method), 164
normal (BCBase attribute), 101
normal (NormalCurvatureBC attribute), 116
normal (NormalDirichletBC attribute), 117
normal (NormalMixedBC attribute), 118
normal (NormalNeumannBC attribute), 119
NormalCurvatureBC (class in

pde.grids.boundaries.local), 115
NormalDirichletBC (class in

pde.grids.boundaries.local), 116
normalize_point() (GridBase method), 139
NormalMixedBC (class in pde.grids.boundaries.local),

117
NormalNeumannBC (class in

pde.grids.boundaries.local), 118
num_axes (CylindricalSymGrid attribute), 152
num_axes (GridBase attribute), 139
num_axes (SphericalSymGridBase attribute), 158
num_axes (UnitGrid attribute), 148
num_cells (GridBase property), 139
numba_dict() (in module pde.tools.numba), 215
numba_environment() (in module pde.tools.numba),

216
numba_type (GridBase property), 139
number() (in module pde.tools.misc), 212
number_array() (in module pde.tools.misc), 212

O
objects_equal() (in module pde.tools.cache), 199
ol_flat_idx() (in module pde.tools.numba), 216
ol_mpi_allreduce() (in module pde.tools.mpi), 214
OperatorFactory (class in pde.tools.typing), 226
OperatorInfo (class in pde.grids.base), 142
operators (GridBase attribute), 139
OperatorType (class in pde.tools.typing), 226
outer_product() (VectorField method), 88
OutputBase (class in pde.tools.output), 216

P
packages_from_requirements() (in module

pde.tools.config), 200
parallel_run (in module pde.tools.mpi), 214
Parameter (class in pde.tools.parameters), 218
Parameterized (class in pde.tools.parameters), 218

parameters (PlotReference attribute), 221
parameters_default (Parameterized attribute), 219
parse_duration() (in module

pde.tools.parse_duration), 220
parse_number() (in module pde.tools.expressions),

208
parse_version_str() (in module pde.tools.config),

200
pde

module, 57
PDE (class in pde.pdes.pde), 172
pde.fields

module, 57
pde.fields.base

module, 58
pde.fields.collection

module, 70
pde.fields.scalar

module, 76
pde.fields.tensorial

module, 79
pde.fields.vectorial

module, 84
pde.grids

module, 89
pde.grids.base

module, 132
pde.grids.boundaries

module, 90
pde.grids.boundaries.axes

module, 92
pde.grids.boundaries.axis

module, 94
pde.grids.boundaries.local

module, 97
pde.grids.cartesian

module, 143
pde.grids.cylindrical

module, 149
pde.grids.operators

module, 121
pde.grids.operators.cartesian

module, 122
pde.grids.operators.common

module, 124
pde.grids.operators.cylindrical_sym

module, 124
pde.grids.operators.polar_sym

module, 127
pde.grids.operators.spherical_sym

module, 129
pde.grids.spherical

module, 153
pde.pdes

Index 263

py-pde Documentation, Release unknown

module, 160
pde.pdes.allen_cahn

module, 161
pde.pdes.base

module, 162
pde.pdes.cahn_hilliard

module, 166
pde.pdes.diffusion

module, 167
pde.pdes.kpz_interface

module, 168
pde.pdes.kuramoto_sivashinsky

module, 169
pde.pdes.laplace

module, 171
pde.pdes.pde

module, 172
pde.pdes.swift_hohenberg

module, 174
pde.pdes.wave

module, 175
pde.solvers

module, 176
pde.solvers.base

module, 180
pde.solvers.controller

module, 181
pde.solvers.explicit

module, 182
pde.solvers.explicit_mpi

module, 183
pde.solvers.implicit

module, 184
pde.solvers.scipy

module, 185
pde.storage

module, 185
pde.storage.base

module, 186
pde.storage.file

module, 190
pde.storage.memory

module, 191
pde.tools

module, 193
pde.tools.cache

module, 194
pde.tools.config

module, 199
pde.tools.cuboid

module, 201
pde.tools.docstrings

module, 203
pde.tools.expressions

module, 204
pde.tools.math

module, 209
pde.tools.misc

module, 210
pde.tools.mpi

module, 213
pde.tools.numba

module, 214
pde.tools.output

module, 216
pde.tools.parameters

module, 217
pde.tools.parse_duration

module, 220
pde.tools.plotting

module, 220
pde.tools.spectral

module, 225
pde.tools.typing

module, 226
pde.trackers

module, 226
pde.trackers.base

module, 227
pde.trackers.interactive

module, 230
pde.trackers.interrupts

module, 232
pde.trackers.trackers

module, 236
pde.visualization

module, 244
pde.visualization.movies

module, 244
pde.visualization.plotting

module, 247
PDEBase (class in pde.pdes.base), 162
periodic (BCBase property), 101
periodic (Boundaries property), 93
periodic (BoundaryAxisBase property), 95
periodic (CylindricalSymGrid attribute), 152
periodic (GridBase attribute), 140
periodic (SphericalSymGridBase attribute), 158
periodic (UnitGrid attribute), 148
PeriodicityError, 142
plot() (CartesianGrid method), 146
plot() (DataFieldBase method), 62
plot() (FieldBase method), 68
plot() (FieldCollection method), 74
plot() (GridBase method), 140
plot() (SphericalSymGridBase method), 158
plot_components() (Tensor2Field method), 81
plot_interactive() (FieldBase method), 68

264 Index

py-pde Documentation, Release unknown

plot_interactive() (in module
pde.visualization.plotting), 249

plot_kymograph() (in module
pde.visualization.plotting), 249

plot_kymographs() (in module
pde.visualization.plotting), 250

plot_magnitudes() (in module
pde.visualization.plotting), 251

plot_on_axes() (in module pde.tools.plotting), 224
plot_on_figure() (in module pde.tools.plotting), 224
PlotReference (class in pde.tools.plotting), 221
PlottingContextBase (class in pde.tools.plotting),

222
PlotTracker (class in pde.trackers.trackers), 240
point_from_cartesian() (CartesianGrid method),

146
point_from_cartesian() (CylindricalSymGrid

method), 152
point_from_cartesian() (GridBase method), 140
point_from_cartesian() (SphericalSymGridBase

method), 159
point_to_cartesian() (CartesianGrid method),

146
point_to_cartesian() (CylindricalSymGrid

method), 152
point_to_cartesian() (GridBase method), 140
point_to_cartesian() (PolarSymGrid method),

154
point_to_cartesian() (SphericalSymGrid

method), 155
polar_coordinates_real() (CartesianGrid

method), 146
polar_coordinates_real() (CylindricalSymGrid

method), 152
polar_coordinates_real() (GridBase method),

140
polar_coordinates_real() (SphericalSymGrid-

Base method), 159
PolarSymGrid (class in pde.grids.spherical), 153
preserve_scalars() (in module pde.tools.misc), 212
PrintTracker (class in pde.trackers.trackers), 241
progress_bar_format (SteadyStateTracker at-

tribute), 244
ProgressTracker (class in pde.trackers.trackers), 242
project() (ScalarField method), 78
PYTHONPATH, 4

R
radius (CylindricalSymGrid property), 153
radius (SphericalSymGridBase property), 159
random_colored() (DataFieldBase class method), 63
random_harmonic() (DataFieldBase class method),

63
random_normal() (DataFieldBase class method), 64

random_uniform() (DataFieldBase class method), 64
rank (BoundaryAxisBase property), 95
rank (DataFieldBase attribute), 64
rank (ExpressionBase property), 205
rank (in module pde.tools.mpi), 214
rank (ScalarField attribute), 79
rank (Tensor2Field attribute), 82
rank (VectorField attribute), 88
rank_in (OperatorInfo attribute), 142
rank_out (OperatorInfo attribute), 142
RankError, 70
real (FieldBase property), 69
RealtimeInterrupts (class in

pde.trackers.interrupts), 234
register_operator() (GridBase class method), 140
registered_boundary_condition_classes()

(in module pde.grids.boundaries.local), 121
registered_boundary_condition_names()

(in module pde.grids.boundaries.local), 121
registered_operators() (in module

pde.grids.base), 143
registered_solvers (SolverBase attribute), 180
registered_solvers() (in module pde.solvers), 179
replace_in_docstring() (in module

pde.tools.docstrings), 203
run() (Controller method), 177, 181
RuntimeTracker (class in pde.trackers.trackers), 243

S
save() (Movie method), 245
savefig() (ScalarFieldPlot method), 248
scalar_random_uniform() (FieldCollection class

method), 75
ScalarExpression (class in pde.tools.expressions),

205
ScalarField (class in pde.fields.scalar), 76
ScalarFieldPlot (class in pde.visualization.plotting),

247
ScipySolver (class in pde.solvers), 179
ScipySolver (class in pde.solvers.scipy), 185
SerializedDict (class in pde.tools.cache), 194
set_ghost_cells() (BCBase method), 101
set_ghost_cells() (Boundaries method), 93
set_ghost_cells() (BoundaryAxisBase method), 95
set_ghost_cells() (ConstBC1stOrderBase method),

103
set_ghost_cells() (ConstBC2ndOrderBase

method), 105
set_ghost_cells() (DataFieldBase method), 65
set_ghost_cells() (ExpressionBC method), 110
set_ghost_cells() (UserBC method), 120
setter() (classproperty method), 210
shape (ExpressionBase property), 205
shape (GridBase property), 141

Index 265

py-pde Documentation, Release unknown

shape (ScalarExpression attribute), 206
shape (StorageBase property), 188
shape (TensorExpression property), 207
show() (BasicOutput method), 216
show() (JupyterOutput method), 216
show() (OutputBase method), 216
show_parameters() (Parameterized method), 219
sigma_auto_scale (SmoothData1D attribute), 209
size (Cuboid property), 202
size (in module pde.tools.mpi), 214
skipUnlessModule() (in module pde.tools.misc), 213
slice() (CartesianGrid method), 147
slice() (CylindricalSymGrid method), 153
slice() (GridBase method), 141
slice() (ScalarField method), 79
slice() (UnitGrid method), 148
smooth() (DataFieldBase method), 65
smooth() (FieldCollection method), 75
SmoothData1D (class in pde.tools.math), 209
solve() (PDEBase method), 164
solve_laplace_equation() (in module

pde.pdes.laplace), 171
solve_poisson_equation() (in module

pde.pdes.laplace), 171
SolverBase (class in pde.solvers.base), 180
SphericalSymGrid (class in pde.grids.spherical), 154
SphericalSymGridBase (class in

pde.grids.spherical), 155
sphinx_display_parameters() (in module

pde.tools.parameters), 219
split_mpi() (FieldBase method), 69
start_writing() (FileStorage method), 191
start_writing() (MemoryStorage method), 192
start_writing() (StorageBase method), 188
state (CartesianGrid property), 147
state (CylindricalSymGrid property), 153
state (GridBase property), 141
state (SphericalSymGridBase property), 159
state (UnitGrid property), 148
state_serialized (GridBase property), 141
SteadyStateTracker (class in pde.trackers.trackers),

243
storage (StorageTracker attribute), 189
StorageBase (class in pde.storage.base), 186
StorageTracker (class in pde.storage.base), 189
supports_update (JupyterPlottingContext attribute),

221
supports_update (PlottingContextBase attribute), 222
surface_area (Cuboid property), 202
SwiftHohenbergPDE (class in

pde.pdes.swift_hohenberg), 174
symmetrize() (Tensor2Field method), 82

T
t_range (Controller property), 177, 181
Tensor2Field (class in pde.fields.tensorial), 79
TensorExpression (class in pde.tools.expressions),

206
time_next_action (TrackerCollection attribute), 229
times (DataTracker attribute), 237
times (FileStorage property), 191
times (MemoryStorage attribute), 192
times (StorageBase attribute), 188
to_cartesian() (UnitGrid method), 148
to_dict() (Config method), 199
to_file() (DataTracker method), 238
to_file() (FieldBase method), 69
to_scalar() (DataFieldBase method), 65
to_scalar() (ScalarField method), 79
to_scalar() (Tensor2Field method), 82
to_scalar() (VectorField method), 88
to_subgrid() (BCBase method), 101
to_subgrid() (ConstBCBase method), 106
to_subgrid() (ExpressionBC method), 110
to_subgrid() (MixedBC method), 113
to_subgrid() (UserBC method), 120
trace() (Tensor2Field method), 83
tracker() (StorageBase method), 188
tracker_action_times (TrackerCollection at-

tribute), 229
TrackerBase (class in pde.trackers.base), 227
TrackerCollection (class in pde.trackers.base), 228
trackers (TrackerCollection attribute), 228
transform() (GridBase method), 141
transpose() (Tensor2Field method), 83
typical_discretization (GridBase property), 142

U
uniform_cell_volumes (GridBase attribute), 142
uniform_discretization() (in module

pde.grids.operators.common), 124
UnitGrid (class in pde.grids.cartesian), 147
unserialize_attributes() (DataFieldBase class

method), 66
unserialize_attributes() (FieldBase class

method), 70
unserialize_attributes() (FieldCollection class

method), 75
update() (DictFiniteCapacity method), 194
update() (NapariViewer method), 231
update() (ScalarFieldPlot method), 248
UserBC (class in pde.grids.boundaries.local), 119

V
value (ConstBCBase property), 106
value (ScalarExpression property), 206

266 Index

py-pde Documentation, Release unknown

value (TensorExpression property), 207
value_is_linked (ConstBC1stOrderBase attribute),

103
value_is_linked (ConstBC2ndOrderBase attribute),

105
value_is_linked (ConstBCBase attribute), 106
value_is_linked (CurvatureBC attribute), 107
value_is_linked (DirichletBC attribute), 108
value_is_linked (MixedBC attribute), 114
value_is_linked (NeumannBC attribute), 115
value_is_linked (NormalCurvatureBC attribute),

116
value_is_linked (NormalDirichletBC attribute), 117
value_is_linked (NormalMixedBC attribute), 118
value_is_linked (NormalNeumannBC attribute),

119
variables (PDE attribute), 172
VectorField (class in pde.fields.vectorial), 84
vertices (Cuboid property), 202
VirtualPointEvaluator (class in pde.tools.typing),

226
volume (CartesianGrid property), 147
volume (Cuboid property), 202
volume (CylindricalSymGrid property), 153
volume (GridBase property), 142
volume (SphericalSymGridBase property), 159
volume_from_radius() (in module

pde.grids.spherical), 160

W
WavePDE (class in pde.pdes.wave), 175
write_mode (FileStorage attribute), 191
write_mode (MemoryStorage attribute), 192
write_mode (StorageBase attribute), 189
writeable (FieldBase property), 70

Index 267

	Getting started
	Install using pip
	Install using conda
	Install from source
	Required prerequisites
	Optional packages
	Downloading py-pde

	Package overview

	Examples
	Plotting a vector field
	Solving Laplace’s equation in 2d
	Plotting a scalar field in cylindrical coordinates
	Solving Poisson’s equation in 1d
	Simple diffusion equation
	Kuramoto-Sivashinsky - Using PDE class
	Spherically symmetric PDE
	Diffusion on a Cartesian grid
	Stochastic simulation
	Time-dependent boundary conditions
	Setting boundary conditions
	1D problem - Using PDE class
	Brusselator - Using the PDE class
	Writing and reading trajectory data
	Diffusion equation with spatial dependence
	Using simulation trackers
	Schrödinger’s Equation
	Kuramoto-Sivashinsky - Using custom class
	Custom Class for coupled PDEs
	1D problem - Using custom class
	Visualizing a scalar field
	Kuramoto-Sivashinsky - Compiled methods
	Solver comparison
	Custom PDE class: SIR model
	Brusselator - Using custom class

	User manual
	Mathematical basics
	Curvilinear coordinates
	Polar coordinates
	Spherical coordinates
	Cylindrical coordinates

	Spatial discretization
	Temporal evolution

	Basic usage
	Defining the geometry
	Initializing a field
	Specifying the PDE
	Running the simulation
	Analyzing the results

	Advanced usage
	Boundary conditions
	Expressions
	Custom PDE classes
	Low-level operators
	Differential operators
	Field integration
	Field interpolation
	Inner products

	Numba-accelerated PDEs
	Configuration parameters

	Performance
	Measuring performance
	Improving performance
	Multiprocessing using MPI

	Contributing code
	Structure of the package
	Extending functionality
	Design choices
	Coding style
	Running unit tests

	Citing the package
	Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Reference manual
	pde.fields package
	pde.fields.base module
	pde.fields.collection module
	pde.fields.scalar module
	pde.fields.tensorial module
	pde.fields.vectorial module

	pde.grids package
	pde.grids.boundaries package
	Boundary conditions
	Boundaries overview
	pde.grids.boundaries.axes module
	pde.grids.boundaries.axis module
	pde.grids.boundaries.local module

	pde.grids.operators package
	pde.grids.operators.cartesian module
	pde.grids.operators.common module
	pde.grids.operators.cylindrical_sym module
	pde.grids.operators.polar_sym module
	pde.grids.operators.spherical_sym module

	pde.grids.base module
	pde.grids.cartesian module
	pde.grids.cylindrical module
	pde.grids.spherical module

	pde.pdes package
	pde.pdes.allen_cahn module
	pde.pdes.base module
	pde.pdes.cahn_hilliard module
	pde.pdes.diffusion module
	pde.pdes.kpz_interface module
	pde.pdes.kuramoto_sivashinsky module
	pde.pdes.laplace module
	pde.pdes.pde module
	pde.pdes.swift_hohenberg module
	pde.pdes.wave module

	pde.solvers package
	pde.solvers.base module
	pde.solvers.controller module
	pde.solvers.explicit module
	pde.solvers.explicit_mpi module
	pde.solvers.implicit module
	pde.solvers.scipy module

	pde.storage package
	pde.storage.base module
	pde.storage.file module
	pde.storage.memory module

	pde.tools package
	pde.tools.cache module
	pde.tools.config module
	pde.tools.cuboid module
	pde.tools.docstrings module
	pde.tools.expressions module
	pde.tools.math module
	pde.tools.misc module
	pde.tools.mpi module
	pde.tools.numba module
	pde.tools.output module
	pde.tools.parameters module
	pde.tools.parse_duration module
	pde.tools.plotting module
	pde.tools.spectral module
	pde.tools.typing module

	pde.trackers package
	pde.trackers.base module
	pde.trackers.interactive module
	pde.trackers.interrupts module
	pde.trackers.trackers module

	pde.visualization package
	pde.visualization.movies module
	pde.visualization.plotting module

	Python Module Index
	Index

